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ptical fiber lasers appear to
have come of age at last.
More than 30 years after the initial
demonstration of lasing in a
neodymium-doped glass fiber,! and
nearly ten years after the first er-
bium-doped single-mode fiber am-
plifier,? only now is there interest in
rare-earth-doped fiber lasers as se-
rious competition for other solid-
state laser systems.
Telecommunications has been
the driving force behind the tech-
nology. By 1985 single-mode fiber
technology had developed to the
\ extent that propagation losses in
silica fibers were approaching the

theoretical limit. Simple tech-
niques were developed extending
modified chemical vapor deposi-
tion (MCVD) technology? to incor-
porate rare-earth ions in the core
of single-mode fibers. However, ex-
cept for a fortunate coincidence of
nature that places the attenua-
tion minimum of silica at 1.55 pm,
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Techniques for power scaling and energy
increases broaden nontelecom applications.

within the gain bandwidth of erbium-
doped fibers, it is unlikely that the
technology would have been devel-
oped much further.

New techniques enabling power
scaling to average powers in excess
of tens of watts. energy storage in
the millijoule region and single-lon-
gitudinal-mode operation have
boosted the scope of applications for
fiber lasers. These extend beyond

Figure 1.
High-power
semiconductor
lasers with
fiber delivery
systems find
use in laser
surgery.
Courtesy of
Diomed Ltd.

the telecommunications industry,
with exciting new markets opening
up particularly in medicine, aero-
space and materials processing.
Continuing efforts in materials re-
search should lead to a second gen-
eration of long-wavelength fiber
lasers within a few years.

Benefits in medicine

The pioneering use of lasers in
medical treatment has enabled the
development of minimal access ther-
apy (MAT). Much of the development
in this area has been based on gas
lasers and flashlamp-pumped solid-
state lasers, both of which require
complex and bulky power supplies
and cooling systems. Compact and
portable diode-pumped sources such
as fiber lasers will not only reduce
the purchase and running costs of
the lasers themselves, but also re-
duce the cost of treatment because
much of the therapy could be trans-
ferred away from the traditional op-
erating theater to outpatient de-
partments.

The 805-nm wavelength of a semi-
conductor laser is suitable for
surgery of pigmented soft tissue in
cases where a moderate amount of
collateral thermal injury can be tol-
erated. For surgery of hard or un-
pigmented tissue or where collateral
injury must be minimized, longer
wavelengths with strong water ab-
sorption are required. Conversion of
the diode light to 1.55 or 2.0 pm in
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Figure 3. The chirped-puise
amplification scheme illustrates the
many advantageous features of fiber
lasers. High fiber nonlinearity passively
mode-locks a low-power oscillator.
Mode-Locked ' :_‘:L“Pﬂﬂl Chirped fiber gratings stretch the pulse
Fiber Oscillator - prior to amplification in a cladding-
pumped power amplifier free of
stimulated Raman scattering.
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wave (CW) or high pulse-repetition-
frequency (PRF) regime. an average
output power in the range of 5 to 10
Ouiput W is considered sufficient for most
applications, Alternatively, for iow-
PRF systems, a pulse energy in the
range of 1 to 10 mJ is sufficient. If.
in addition to range data. target ve-

| locity is required via measurements
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laser at 1.083 um for helium isotope
spectroscopy).

The waveguiding nature of the op-
tical fiber means that very high power
densities can be achieved in the fiber
core for moderate power levels. (Gain
coefficients around 10 dB/mW of
pump power can be achieved in er-

bium-doped fiber amplifiers.) The
high surface-area-to-volume ratio of
the fiber geometry virtually elimi-
nates thermal problems. This en-
ables glass lasers in fiber form to lase
readily in CW mode. un-
like bulk glass lasers.

lization of the pump wave-
length with power-con-
suming thermoelectric coolers. Broad
emission spectra means that fiber
lasers are broadly tunable (over a
range of 100 nm in the case of yt-
terbium) and ideal for ultrashort
pulse generation. The technology has
benefited greatly from the develop-
ment of side-writing techniques for
photorefractive fiber gratings,* which
enable precise wavelength selection
and line-narrowing.

The key to power scaling of fiber
lasers is a technique known as
cladding pumping. Specially designed
double-clad fibers convert pump ra-
diation from high-power, but low-
brightness, semiconductor diodes
into highly intense diffraction-lim-
ited laser light (Figure 2). Useful for
applications requiring average pow-
ers from a few hundred milliwatts to
several tens of watts, the technique
was pioneered by groups at Polaroid,
Southampton University, the Insti-
tute of Radioengineering and Elec-
tronics {Moscow), Rutgers University,
and, more recently, by Laser Zen-
trum (Hannover) and the University
of Bern.

The essential difference between a
cladding-pumped fiber laser and a
conventional core-pumped device is
that, despite the higher pump pow-
ers available, the pump intensity is
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actually reduced. This is because.
for reasons of thermal management,
the emitting area of high-power
diodes scales faster than power. and
coupling the pump light into the fiber
further degrades brightness.

In designing a cladding-pumping
fiber, there is therefore, always a com-
promise between launch efficiency.
which improves with increasing
cladding-waveguide dimensions. and
pump rate. which is better for
smaller-cladding waveguides. The
characteristic pump ab-
sorption length will scale

The broad absorption In design, with the area of the
band of the glass host fa- there is cladding waveguide, but
cilitates the choice of also depends on the shape
pump source and elimi- always a of the cladding waveguide

natés the need for stabi- compromise. and the position of the

fiber core.® A rectangular
waveguide gives the high-
est pump absorption for a given
cladding-to-core-area ratio.

Cladding pumping is particularly
suited to four-level laser systems
(where the unpumped fiber is es-
sentially transparent at the lasing
wavelength), such as the 1.06-pm
transition in Nd*-, because the re-
duced pump rate degrades perfor-
mance only slightly as a result of an
increase in background loss associ-
ated with longer cavities. The group
at Polaroid has demonstrated >5W
output power with a slope efficiency
of 55 percent and a threshold of only
a few tens of milliwatts.®

Cladding pumping is not as easy to
implement for three-level systems
such as the 1.55-pm transition of
Er® because the unpumped fiber ab-
sorbs strongly at the lasing wave-
length. Because this absorption must
be bleached before gain can be

achieved, the threshold power is
higher. The first demonstration used
an Yb% co-dopant and an energy-
transfer pumping scheme to com-
pensate for the reduction in pump
rate because of the double-clad
geometry.” A range of high-power am-
plifiers and lasers based on Er*Yb>
technology are now commercially
available from ATx Telecom Systems
Inc. of Naperville, I1l., and IRE Polus
International Inc. in Chicago.

In cases where co-doping is not
possible or convenient, cladding
pumping of three-level systems
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requires a restriction in the dimen-
sions of the cladding waveguide. Di-
mensions ol approximately 20 pym
are appropriate [or pumping with
master-oscillator power amplifier
(MOPA) pump sources that are es-
sentially diffractinn-limited or beam-

shaped high-brizhiness broadstripe
diodes. These ar- Zindes of tvpically
10G- 1o 400-ur -+ l-um emission
arca nat are opticany reshaped prior
to focusing to reduce the asymmetry
and enable coupling to smaller-di-

&Y

ameter libers.” Ciadding pumping of
{ibers ol this tvpe nas been success-
fully applied 1, e development of

1020 nm” and o
singlv doped Er - ibersat 1.55 pme

New applications open up

mprovemen: s i the brightness of

hish-power dinde Jasers and further

development in m-am-shaping and
t =

YL iher lasers o

Figure 4. The top
diagram ilustrates
a distributed Bragg
reflecter in which
co-doping with
Yb* increases the
pump rate at

980 nm of an Er*-
fiber by two orders
of magnitude.

Drawing optical
fiber. Courtesy of
Meteor Optics.

increase the out-
put power of fiber
lasers to perhaps
100 W. szening up a range of appli-
cations ir. material processing.

For many applications. short
pulses are desirable. Widths can vary
from a few femtoseconds in mode-
locked fiber lasers to hundreds of
nanoseconds in Q-switched or pulse-
amplifier svstems. Single-mode fibers
are idea. for situations requiring
maodest piuise energies — up to ~10pJ
— at mocerate-to-high repetition fre-
quencies. The pulse energy is lim-
ited by the active-ion density. self-
saturation by amplified spontaneous
emission and nonlinear effects such
as Raman scattering. Amplifier
chains with a final stage comprising
either « large-mode-area (low-NA]
single-mode fiber!! or a section of
doped muitimode fiber'? can achieve
higher =nergies. A final stage com-
prising 4 cladding-pumped amplifier
can achieve high average powers and
high puise energy simultaneously.'’
Chirped pulse amplification, in which
ultrashort pulses are stretched with
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fiber gratings to widths of ~100 ps
prior to amplification and subse-
quently recompressed to their origi-
nal duration, can overcome nonlin-
ear effects such as stimulated Raman
scattering (SRS) (Figure 3).1

Keeping it to single-frequency

Single-frequency fiber lasers are
being developed as sources for
telecommunications, spectroscopy
and coherent lidar. Under normal
conditions, multilongitudinal-mode
operation resulits from a combina-
tion of spatial holeburmning (periodic
modulation of the optical intensity
and gain saturation by forward- and
backward:propagating
signals) and the relativelv
long length of fiber laser
cavities. Two principal
techniques are used to
suppress this tendency to
multimode oscillation.

One is operating the
laser in a traveling-wave
configuration to eliminate spatial
holeburning, and the other is incor-
porating a narrow-band fiber grat-
ing reflector within a short cavity.
While the ring-laser approach can
vield very narrow linewidths of ~20
kHz, difficulties in selection of a pre-
cise wavelength and a tendency to
mode hop have made the grating
feedback method the favorite.

The initial devices comprised sev-
eral centimeters of Er* fiber with a
narrow-band fiber grating spliced to
the output end.!> The performance of
these devices was somewhat limited
because concentration-quenching of
the laser metastable level at Er®* con-
centrations above 1000 ppm limits
pump absorption to about 10 dBm™'.
In a length of fiber short enough for
single-frequency operation, only a
small fraction of launched purmnp light
is actually absorbed, so the efficiency
is very low, typically less than 1 per-
cent. Although the unabsorbed pump
light can be used to amplify the out-
put from such a source. the oscillator
power is usually too low to achieve
adequate noise levels.

Researchers have created much
more efficient single-frequency
sources by using energyv transfer in

The next
generation
will benefit

from this
research.

Er*Yb® co-doped fibers (Figure 4).
The presence of Yb? increases the
pump absorption at 980 nm by
around two orders of magnitude
compared with singly doped Er®*
fiber, thus enabling efficient pump
absorption in a few centimeters of
fiber. Distributed Bragg reflector
(DBR) and distributed feedback (DFB)
fiber lasers'®!? that have threshold
powers around 1 mW and slope effi-
ciencies as high as 55 percent have
been demonstrated.

As devices based on silica reach
the development stage, we can spec-
ulate on the next generation of fiber
lasers. Just as much of the progress
described above resulted from in-
vestment in silica-based 1.55-pm
Er® amplifiers, the next
generation will benefit
from the extensive re-
search into low-phonon-
energy glasses carried out
in the quest for an im-
proved Pr¥*-doped 1.3-pym
fiber amplifier, which pro-
vides the lowest signal dis-
persion and thus the best-quality
transmission.

Although this search has been of
limited success so far, an important
spinoff has been the development of
purification and fiber-manufacturing
techniques in glasses capable of long-
wavelength transmission and gener-
ation. Impressive results have already
been achieved at 2.7 ym in Er*>*-doped
fluoride fiber,'® a wavelength impor-
tant for medical procedures requir-
ing precise cutting and ablation of tis-
sue. There are exciting prospects for
longer-wavelength sources based on
new glasses such as gallium lan-
thanum sulfide. These include gas
and environmental sensing in the 3-
to 5-pm range.'® a
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