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Abstract

We develop the theory of linear and nonlinear grating superstructures, grat-
ings in which the parameters vary periodically with position on the scale of
typically about 1 mm. Following earlier work in semiconductors, these have
now been written in optical fibers. We develop the theory by introducing a set
of super envelopes: envelopes of the usual envelope functions of the grating
structure. We show that under very general conditions these super envelopes
satisfy a set of super coupled mode equations, and that these equations have
solitary wave solutions.
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I. INTRODUCTION

Recent developments in grating writing techniques in optical fibers allows for the fabri-
cation of a wide range of nonuniform Bragg gratings [1]. Among the more important designs
are superstructure gratings (SSG’s), or optical superlattices [2]. These are gratings in which
the parameters are periodically modulated with a period of typically 100 um-1cm. Using
different techniques, a variety of periodic profiles can be fabricated [3-6]. In Fig. 1 we show
the variation of the coupling strength %, which is proportional to the refractive index mod-
ulation, with position for a SSG. Note that the strength varies periodically, with period of
9mm, and that the repeated profile has a triangular shape. The periodic modulation of
the SSG results in a comb like reflection spectrum with the various peaks, the “Rowland
ghosts,” [7] being closely spaced in frequency.

In semiconductor geometries SSG’s have been used in tuneable distributed feedback
lasers [8,9]; something which has also recently been achieved in optical fibers [4]. In optical
fibers, SSG’s have also been used as multichannel dispersion compensators in wavelength
division multiplexing systems [10]. It should be mentioned that sometimes an SSG is written
unintentionally if the phase mask used to write a uniform grating has periodic stitching errors
[6].

Of course the properties of SSG’s can be found by solving the relevant coupled mode
equations numerically, but this does not give much physical insight. Therefore, in the
applications mentioned above the SSG has often been assumed to be “weak” allowing a
Fourier description to be used [8]. In this description the different reflection peaks are well
separated, and the peak reflectivity of the jth peak is given by tanh®(x;L) where L is the
length of the grating and ; is the strength of the j*h component in the Fourier decomposition
of the 5SG.

The Fourier method mentioned above is similar to the standard coupled mode analysis
of uniform Bragg gratings [11], in which only a single Fourier coeflicient of the refractive
index profile is included. But this approach fails when the grating is too deep, i.e. when
the refractive index modulation depth is too large [12,13]. Similarly, the Fourier description
is valid for weak SSG’s, but it fails when the SSG is sufficiently deep. We see below that
deep superstructures can easily be obtained in fiber geometries, even though the gratings
themselves are shallow; then an alternative to the Fourier description must be used for the
quantitative description of an SSG.

Recently a convenient method was developed by de Sterke et al. [12,13] to treat deep
Bragg gratings. It leads to a set of coupled mode equations which are similar to those which
follow from conventional coupled mode theory. De Sterke’s approach relies on the Bloch
functions {14] of the grating and thus a knowledge of the linear properties of the grating is
required. We have adapted this approach so that it can be applied to treat deep SSG’s; it
makes use of the SSG’s Bloch functions. We reported on some preliminary results earlier
[15,16]. Here we give the full theory and discuss the implications of our results in detail. In
our discussion we follow closely the notation of Ref. [13], as many of the results established
there carry over to SSG’s. Our theory is also well suited to problems involving optical
nonlinearities. This is of particular importance as the first results of high-intensity pulse
propagation experiments in SSG’s, written in the optical fibers, were recently reported [5].

The outline of this paper is as follows: in Section II we present the coupled mode equa-
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tions for SSG’s, and analyze the linear properties of SSG’s. In Section III we present the
evolution equations for the super envelopes in a nonlinear SSG. We use a one-band approxi-
mation, leading to the nonlinear Schrodinger equation (Section III A), as well as a two-band
approximation (Section III B), leading to super coupled mode equations. Solutions to the
super coupled mode equations are discussed in Section IV.

II. COUPLED MODE EQUATIONS

We consider one-dimensional propagation through a grating with a nearly periodic re-
fractive index i.e. [17]

2rx

n(z) = ng + én(z) + An(z) cos ( y

+i()). (1

where én, An and 9 are, in principle, all slowly varying functions of position, while ng
and dg are a fixed reference refractive index and period, respectively. Note that the actual
period d of the grating may be varied through variation of ¥(z). In addition to the spatial
dependence in Eq. (1), we take the grating to exhibit a Kerr nonlinearity; the refractive
index thus depends on intensity through

0

n(I) =n +n?I, (2)

where I is the intensity, and n(?) is the nonlinear refractive index.

In the usual applications, gratings couple light with a wavenumber around ko = %7 /dy,
to kg = Fr/dg, i.e. they reflect light with wavenumber kg [11,17]. Defining wq as the
frequency at kg, then for light with a frequency w such that w = wy, propagating through a
Bragg grating, one may approximate the electric field as [17]

E(z,t)= (E+(x,t)e+i(k°"‘+’9/2) +
E_(z, t)e_i(k””/?))e_i“"’t + c.c., (3)

where c.c. indicates the complex conjugate, and we have assumed the grating to be shallow.
The functions F. are the slowly varying envelopes of the forward and backward propagating

modes. With this ansatz for the electric field we can approximate Maxwell’s equations by
[18,19]
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are all real. Further, v, is the group velocity at wg in the absence of a grating, A is the free
space wavelength, and Z the vacuum impedance. The parameter x(z) gives the strength of
the grating, while é(z) describes the detuning of the Bragg frequency from wg. Nonlinear
effects are described by I' which we take to be constant in space although this is not essential.

Though ultimately we are interested in gratings for which both « and § are periodic, and
I' # 0, we now briefly consider uniform linear gratings for which x and § are constant and
[' = 0, as some of the concepts carry over. Under the conditions discussed above we first
consider the uniform grating’s dispersion relation [14,19]. Substituting

E:{:(.T, t) — Aiei(kr—ngt)’ (6)

where the detuning A is related to the actual frequency w through

A:w—wo’ (
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we find that Eqgs. (4) lead to two coupled linear algebraic equations. Nontrivial solutions
can be found when

A =-§+Vrr+ kL (8)

This relation is indicated by long-dashed lines in Fig. 2; subscripts on the symbols should
for now be ignored. Fig. 2 shows that for -6 — x < A < —¢ + & no plane wave solutions
exist; this corresponds to the photonic band gap of the uniform grating. The center of the
photonic band gap, at A = —4, corresponds to the Bragg frequency.

A. Linear properties of SSG

As mentioned in Section I, our procedure for deep SSG’s requires knowledge of the Bloch
functions of these structures. To define these we write the linear coupled mode equations as

[13]
——- = M(z) - E, (9)

where E is the vector with elements (E,, E_), and M is the operator defined as

[ —19/0z — é(x) —k(z)
M(z) = ( —k(z) +ia/8:c—5(z))' (10)

For SSG’s, the key property of M is that it is periodic with period A, so that
Mz + A) = M(2). (11)
We now search for the eigenvectors ¥, with elements (¢4,1_), of M, by setting [13]
E = Te™? (12)

so that



M- U =AU, (13)

because of the periodicity of M we refer to the ¥ as the Bloch functions [14].

We have now recast the coupled mode equations into a Schrédinger equation like formal-
ism, with M playing the role of the Hamiltonian. Indeed many of the results from quantum
mechanics concerning periodic potentials can be applied to SSG’s with little modifications.
The most important of these is Bloch’s theorem according to which the solutions to Eq. (13)
with M satisfying Eq. (11), must have the property [20,21]

Uz 4+ A) = e* U(2), (14)

for some real number £. This restatement of Bloch’s theorem can be proven by a straight-
forward adaption of, for example, the approach in Ziman [20]. Eq. (14) implies that an
eigenfunction of M can be written as

U(z) = (ng) et (15)

with the associated eigenvalue A. As in solid state physics [21,20], the functions hy are
periodic with period A. The real number k is the reduced wavenumber, which is usually
chosen in the first Brillouin zone, where —n/A < k < 4n/A; it labels the eigenvalues and
eigenfunctions of M. For a periodic system it is expected that for fixed k, the eigenvalues
of M are discrete, as is true in quantum mechanics [20,21]. This implies that the allowed
detunings A, corresponding to the eigenvalues of M, can be labelled by integers. Thus for a
SSG each Bloch function has two “quantum numbers:” an integer n which labels the band,
and the (real) reduced wavenumber k. Usually one considers the eigenvalues A, to be
functions of k, which immediately leads to the photonic bandstructure: the photonic band
diagram for a SSG is obtained by plotting the A, versus k. We illustrate these general
statements in Section I B.

B. Photonic band structure of SSG’s

Before illustrating the discussion in Section Il A with a complete photonic band diagram,
we first treat the limiting case where the SSG is a small perturbation to a uniform grating.
This allows us to find the approximate positions of the Rowland ghost gaps in the dispersion
relation analytically. For a general SSG, let k¢ and g be the zeroth order Fourier components
of k(z) and §(z). The SSG is then considered a perturbation, characterized by the other
Fourier coefficients, to a uniform grating with strength o and center frequency A = —&o.
The dispersion relationship for the uniform grating is [Eq. (8)]

A = —50:}:\/162-*-/{(2) (16)

where the wavenumber k can take on any value (long-dashed lines in Fig. 2). Introducing
an infinitesimally weak periodic perturbation with period A, we now apply the standard
results from condensed matter physics (see the last paragraph of Section I A): k represents
a reduced wave number within the first Brillouin zone: —m/A < k < +m/A [20,21]. As



mentioned, this restriction of & implies that A is now a multi-valued function of k. as
illustrated by the solid lines in Fig. 2.

Folding the uniform grating dispersion relation into the first Brillouin zone causes cross-
ings of the dispersion relation at the edges and in the center of the Brillouin zone at detunings

2 |
De = —65 + sgn(f) (7:-)2 K2, €T (17)

with the exception of £ = 0 (see Fig. 2). The function sgn(¢) is defined by sgn(¢) = 1 if
¢ >0,sgn(0) =0 and sgn(f) = —1 if £ < 0. It is at these detunings that gaps open up due
to Bragg reflection as the strength of the SSG increases.

For weak SSG’s previous authors have stated [8] that the width of the gap centered
around D, is 2|x,| where x, is the strength of the nth Fourier coeflicient of x; we confirm
this in the Appendix, though we also prove somewhat more general results valid under less
restricitve conditions. But for a deep SSG these predictions break down and a different
formalism must be used. Nevertheless the gaps occur at detunings given by Eq. (17), when
k =0or k = n/A. The opening of gaps in the dispersion relation can be seen in Fig. 3(a),
which shows the full dispersion relation of the SSG in Fig. 1. We took ¥ in Eq. (1) a constant,
and én = An, as is usually the case in optical fibers [17], so that, with Eqs. (5), § = 2x. In
Fig. 3(a) Dy ~5cm™, Dy = 1.5cm™, Dy ~ —2cm™, D_; ~ -5.5ecm™}, D_y ~ —9cm™!
etc., consistent with Eq. (17).

For most SSG’s analytic solutions to Eq. (13) are not known and the Bloch functions
and dispersion relation must be found numerically. A method to do this is described in
the Appendix [21]; the bands in Fig. 3(a) were obtained using this method. In Fig. 3(b)
we show the associated reflection spectrum. Clearly each peak in the reflection spectrum
corresponds to a gap in the dispersion relation for the SSG. Following the notation used to
describe periodic errors in diffraction gratings [7] we refer to the reflection peaks as Rowland
ghosts, and to the corresponding gap in the dispersion relation as Rowland ghost gaps. We
note that the standard Fourier treatment of shallow SSG’s (see Section I) requires that the
reflection peaks of the SSG are sufficiently spaced to be able to treat them as independent.
Though this i1s a good approximation for the reflection peaks with A > 5 and A < —10 in
Fig. 3(b), it is clearly suspicious for the strong central reflection peaks, for which the spacing
roughly equals the width.

We can now formulate a rough criterion for a superstructure to be deep. The centers of
two adjacent gaps at the edge or the center of the Brillouin zone are spaced by a frequency,
approximately given by [see Eq. (20)]

)

m
ng. (18)

As shown in the Appendix below Eq. (A12), in a shallow grating the width of a gap is of
order [3]

2vg|kinl, (19)

where &, is the strength of the nth Fourier component of x. For the various reflection peaks
to be independent, we require the associated gaps not to be too close. We thus find that for
a superstructure to be shallow, it is necessary that



kA € = = 1, (20)
for all appropriate Fourier components. If at least one of these inequalities is not satisfied
then the grating cannot be treated as shallow over its entire spectrum. At this point we note
that there 1s some ambiguity as to how one would define a shallow SSG. The implicit choice
in the literature [3,8] corresponds to applying inequality (20) to all Fourier components
of the SSG. However, in the Appendix we argue that the inclusion of n = 0, the Fourier
component associated with the underlying uniform grating, can lead to paradoxical results.
We return to this in Section A1l. From Fig. 1 we estimate the left-hand side of Eq. (20) to

be about 0.7 for n = %1, confirming that, by either criterion, the SSG is not shallow at all
detunings.

C. Properties of Bloch functions

Before continuing we need to establish some key properties of Bloch functions. From
Eq. (10) it can be seen that if U with components (4(z),%_(z)) is an eigenfunction of M,
then for any real number £ so is

(21)

with the same eigenvalue A as ¥. Furthermore Bloch’s theorem implies that if U has a
reduced wavenumber k then W has the reduced wavenumber —k. Physically the solution ¥
corresponds to the same solution as ¥ but moving with the opposite group velocity. This
implies that the photonic band diagram must have inversion symmetry about & = 0 as is
seen in Fig 3.

However, since gaps occur at k = 0,+7/d, if U is a Bloch function at the top or bottom
of a gap then so is U defined by Eq. (21), and furthermore it is associated with the same
point of the dispersion relation as ¥. Since for a particular £ and A the (normalized) Bloch
functions are unique up to a constant phase we must have

=0 (22)

for some phase angle £ in Eq. (21). If we make the transformation ¥ — exp(—:£/2)¥ then

Eq (22) implies that
_ [ ¥(2)
U= (1#(3;)*) (23)

We now choose the phases of 1, and 1_ such that at the edges of any Rowland ghost gap
Eq. ((23) is satisfied.

Fig. 4 shows the moduli of the Bloch functions at the top (solid line) and bottom (dashed
line) of the Rowland ghost gap centered on D; =~ 1.5cm™'. By comparing Fig. 1 of the
grating profile and Fig. 4 we see that at positions where the grating strength vanishes the
Bloch functions have a constant intensity. This is as expected as in these regions light freely

propagates.



D. Preliminary results

Here we establish some preliminary results which will prove useful when deriving the su-
per coupled mode equations. Eigenvalue equation (13) is equivalent to Eq. (9) from Ref. [13].
Much of the derivations following this equation can be carried over straightforwardly to the
present case. In particular, we adopt the normalization

L
/ drWt. 0 = N, (24)
0

where L is the normalization length over which the periodic boundary conditions are applied,
and N = L/A is the number of periods in L. A feature of normalization (24) is the absence
of a non-constant metric or kernel; this should be contrasted to related systems where the
refractive index [13] or the dielectric function [22] play this role. Apart from the sign then,
convention (23) and normalization (24) uniquely specify the Bloch functions at the edges of
each Rowland ghost gap.

Using a k- V expansion as in Ref. [13], it can be proven that the group velocity A/ ,,
and the group velocity dispersion A ,, associated with a position on the dispersion relation
indicated by k and n are given by,

N aAnk

Snk = Ok = Unn(k)
0N\ Vpn (k) Unp(K)
" — Tl — _() PT‘- np 2—-
nk k2 Z pk_—\nk ( O)

where
Upn(k) = / dx \I} pk 0z \I}nk‘v
= / dx h pk 0 hnk, (26)

where h is the column vector with the elements (hy,h_) [see Eq. (15)], and o, is the Pauli
matrix diag(l, —1). At the edges and in the center of the Brilouin zone the group velocity
vanishes [see Fig. 3(a)], so that the first of Eqgs. (25) with Eq. (26) imply that |y, | = ||,

confirming that the net energy transport vanishes.

III. EVOLUTION EQUATIONS FOR SUPER ENVELOPES

Here we present the derivation of the super-coupled mode equations which describe light
propagation through a nonlinear SSG. Briefly, this approach can be understood as follows.
It is well know that applying standard coupled mode theory to a uniform grating, allows one
to replace the Maxwell equations with periodic coefficients, with coupled mode equations
with constant coefficients. Such an approach is valid for a range of frequencies about one
of the Bragg frequencies of the periodic structure. For SSG’s, which are characterized by
a doubly periodic refractive index [see Eq. (1)], applying standard coupled mode theory
then allows us to replace Maxwell’s equations by the coupled mode equations with periodic



coefficients [Eqs. (4)]. Presumably, then, applying a coupled mode-like theory to the latter
would be expected to result in a set of equations (super coupled mode equations) with
constant coeflicients. Such a super coupled mode theory would be valid close to one of the
Rowland ghost gaps shown in Fig. 3(a). Below we show this to be true.

Below we take two approaches to deriving evolution equations for the super envelopes.
First we expand the envelopes in terms of a single Bloch function of the field envelopes
(Section IITA) which leads to the nonlinear Schrddinger equation. In Section IIIB we
expand in terms of two such Bloch functions, leading to the super coupled mode equations

(Section IIIC).

A. Single-band approximation: the nonlinear Schrodinger equation

Here we take the envelopes E of the form
E(z,t) = a(z, )W i (z)e™ Vo nr, (27)

where W, () is a Bloch function of the superstructure, while A indicates its eigendetuning,.
Here U, (z) is taken to be at the edge of one of the Rowland ghost gaps (such as those in
Fig. 3), though this is not essential. In Eq. (27) a(z,t) is a function which varies slowly
compared to the Bloch function of the superstructure; we thus require that a varies slowly
compared to A. By the same argument we also require a to vary slowly in time on the scale
of (vgko)~!. Since a(z,t) varies slowly in space and time on the scale of the usual envelope
functions of the electric field we refer to it as a super envelope.

We now substitute ansatz (27) for the field into the coupled mode equations and find the
evolution equation for the super envelope a(z,t). As mentioned, the details of this procedure
are virtually identical to those described in Section V B of Ref. [13] and so we do not repeat
it here. The only difference is that the envelopes F. are complex, while the actual electric
and magnetic fields are, of course, real. We therefore do not need to take the real part
of (27) as was done in the corresponding Eq. (63) in Ref. [13]. Following now Ref. {13] we
find that a(z,t) satisfies a nonlinear Schrédinger equation.

da , da 1., 9% 2
(0 + Mg + 58 + ol =0 2

1

Here A7, is the group velocity associated with .z, while A”, is its group velocity dispersion
[Egs. (25)]. Finally, « is an effective nonlinearity, which is given in terms of a nonlinear
overlap of W, :

*= F/OL de ([ * + 41— P + ")
L
= 6FA dz [ |7, (29)

where the 14 are the components of W,;, and for the last equality we have used Eq. (23),
so that it is only valid at k = 0 and & = 7 /A. The nonlinear Schrodinger equation is well
known to have soliton solutions. The significance of these solutions in the context of SSG’s
1s discussed in the sections below.



The accuracy of one-band approximations where k£ was taken to be at the edge of a
photonic band gap was studied before [22]. It was found that it is valid only over the narrow
range of frequencies for which mixing of Bloch functions can be ignored [22]. It is likely that
the one-band approach is better when U, is taken to be away from any of the gaps, but
since grating effects are then not very prominent this is not of primary interest.

Using the explicit expressions for the Bloch functions in the center and at the edges of

the Brillouin zone in the shallow SSG limit [Egs. (A14 and (A16)], it is easily found that in
this limit

A'=0,
A= 250 (30)
Ke
3r
a= 4A(7 + sin? () N,

where the ¢, are defined in Egs. (A12). Because the group velocity always vanishes for
k = 0,m/d, the first of these is true for any SSG. Further, through N, o depends explicitly
on the normalization length L. This can easily be avoided by defining a(z,t) = av/N [22],
for which the nonlinear parameter does not depend on NV at all.

B. Two-band approximation

A more general approach than Eq. (27) involves two Bloch functions and two super
envelopes,

E(z,t) = (fulz,t)Vu(z) + filz, ) Ui(z)) e, (31)
which is the approach we concentrate on henceforth. We take the ¥, ; to be Bloch functions

at the upper and lower edges of one of the Rowland ghost gaps [Fig. 3(a)], respectively, as
this describes the situation of most interest. Writing the eigendetunings as A, ;, we define

1
A0 - §(Au+Al)7 (32)

corresponding to the center of the Rowland ghost gap under consideration. Finally, the
fui(z,t) in Eq. (31) are slowly varying super envelope functions. Ansatz (31) is similar
to Eq. (80) in Ref. [13], and the analysis in Section VI B straightforwardly carries over to
SSG’s; again, the only difference is that the E; are complex functions, while the electric
and magnetic fields are real.

Following then the derivation of de Sterke et al. [13], the super envelopes f,; can be
shown to satisfy a set of super coupled mode equations of the form

aaf“ = o fut v@ — arlful* fu = ol ',

— as(2|ful? fz + fiff) = asRUAP fu + SEFD),

z%ltil =—0ofi - Vaafu — aslful* fu = asfil* fi

— QU A+ fLFT) = QLA fu + 2D
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Here,
o=A0A, —Ng=A0g— 4y, (34)
where the last equality follows from Eq. (32), and
Vo= 1vy, (35)

1s real, as can be ascertained from definition (26), and convention (23). Finally, the o are
various nonlinear overlap integrals of the Bloch functions, defined as

o =6 [ de [l

0 =30 [ delpal (Bt + 00),

0 = 3T [ de P (bt + Vi) (36)
oy = F/OL dx <4|'¢+u¢+1|2 + <(¢+l¢1u)2+(¢:—1¢+“)2))

as = 6F/OL dz | )?,

where 14, is the first element of ¥, ;. Note that it follows immediately from the definitions
that all o; are real. In addition, using the method described in Ref. [23] we can find
inequalities pertaining to the magnitudes of the «;. First note that by inspection

L
ay < g = 6/0 d |yt (37)
Then, using the method in Ref. [23] it is straightforward to prove the Schwarz inequality
[65¥2 %3 Z di 2 ai. (38)

Another inequality can be formulated if one first defines

L
ay < ayp = 6/0 dzx |"/)+u¢il|7

L
Q3 S Qs = 6'/(; dzx Ilp.*.ﬂ/)_a*_u{.

Then write the argument of the right-hand side of the first inequality (39) as |t41]* X [ 1011,

and that of the second as |14, |* X [¢¥4ut4i|. Applying the Schwarz inequality to each of
these, it can then be shown that

Qs Z &2&3 2 Qo ¥z, (40)

Egs. (33) are identical to Eqs. (100) in Ref. [13]. However in the subsequent step in this
reference only the special case k = 0,7/d, where a; = a3 = 0, is considered. Note that in
the present case of SSG’s, we also restrict ourselves to the center and edges of the Brillouin
zone; but now a5, az generally do not vanish.

11



C. Transformation to super coupled-mode equations

Egs. (33) take on a more familiar form if we introduce the super envelopes fi through
[13,24]

fe=fiF1fe (41)

In terms of these new envelope functions the super coupled mode equations (SCME’s) attain
their final form:

af-i- U af+ ~ T 2 oT 2
s + vV ot + R+ U fe + 20 f- 7 f+
+ D (e P+ 1) o+ (D fo fr A DL S e + T f2 5 =0,
(42)
Of- v Of- Sr 12 Bleo(2
e + Vot + RSy + DI f- + 200 f4 | £-
F 0TS P+ ) e + (D f fE + T f2)f- + T2 f2 = 0.
Here
. o
K= Vﬁ (43)
and the nonlinear coefficients are linear combinations of the «; [Egs. (36)], given by
- 1
['= §‘7(011 + 204 + a3),
1 :
Fl = W((——al + 05) — 27,((12 + a3)), (44)
1 .
[, = g—‘;<(a1 — 6ay + as) — 4i(ay — a3)).

Thus I is real, while Iy, generally are complex. As mentioned, Eqs. (42) are identical to
the coupled mode equation for deep gratings, except that in the latter case, for £ = 0, 7/d,
a; = az = 0, so that all nonlinear coefficients are real. We note that despite I'; » being
complex in Eqs. (42), we find that

a 2 a 2 2
U4+ 101 = (Ul = 1£-), (45)

indicating that energy is conserved, as required for a lossless system.
Using inequality (38) it is easy to show that

|F1r|7|F2r| S fa (46)

where I';, indicates the real part of I';. Also, using (40) we can formulate an inequality in
terms of the imaginary parts of I'; ; however, it appears not to be very useful, and we do
not give it here.

We now first consider the shallow SSG limit of the results derived above. By substituting
expressions (A14) and (A16) for the Bloch functions of a shallow SSG into definitions (36)
it is found that



as =a3=0, a =as=3ay, (47)

consistent with inequality (38). Thus we find from Egs. (44) that I';; = 0. The SCME for a
shallow SSG thus have the same form as the coupled mode equations for a shallow uniform
grating [2] (i.e. Egs. (4) with constant coefficients [18,19]). We comment on this below.
Using Eqs. (A14) and (A16) it is found that in the shallow SSG limit

NT
4Av,

Ly

= (2 + sin® o). (43)
Thus just like coefficient « in the nonlinear Schrédinger equation [Eq. (30)], T' depends on
the normalization length, via N; it is removed by considering the evolution of the super
envelopes f+V/N [22].

Another case for which the general SCME's simplify is when the SSG is an even function
of position. This implies that all the Fourier coefficients can be made real. Then matrix A
[Egs. (A8) and (A10)] is real and symmetric, and it thus has real eigenvectors. It can be
shown that now the first set of Eqs. (47) still holds, but that the second does not. Thus,
from Eqs. (44), all I’s are real, but ['; 3 # 0. The SCME are now identical to the coupled
mode equations for deep gratings [13]; solutions to these equations have been discussed by
de Sterke et al. [13].

We finally note that numerical examination of a wide variety of SSG’s suggests that the
moduli of the new nonlinear coefficients ['; and I's tend to be smaller than I'. If we neglect
these coeflicients, the SCMEs are formally identical to the nonlinear coupled mode equa-
tions (4) with constant coefficients [16]. Thus, for frequencies sufficiently close to a Rowland
ghost gap, a nonlinear SSG then behaves identically to a shallow uniform nonlinear grat-
ing; we showed above that this is also generally true for shallow SSG’s. Since previously a
variety of solitary wave solutions for shallow gratings have been found, these immediately
carry over to a large class of SSG’s. These solutions include bright solitary wave solutions,
referred to as gap solitons or grating solitons in the context of uniform gratings [19,26-28],
and Rowland ghost solitons in the context of SSG’s [5,16]; dark solutions, and bright solu-
tions on a pedestal are also known {13,29]. Rowland ghost solitons represent high-intensity
pulses propagating through the SSG without changing shape, at velocities which can be
substantially below that in bare fiber. This has been verified numerically by Broderick et
al. [16], and experimentally in an optical fiber geometry by Eggleton et al. [3].

In Section IV we discuss bright solitary wave solutions to the SCME for the general case
in which the simplifications listed above do not apply.

IV. SOLITARY WAVES IN ROWLAND GHOST GAPS

In Section III we showed that for frequencies close to a ghost gap the original coupled
mode equations Eqgs. (4) with periodic coefficients can be approximated by the super coupled
mode equations Egs. (42) with constant coefficients. In this section we focus on soliton
solutions to the most general version of these equations in which the I'; ; are complex.

For gratings for which the new nonlinear coefficients I'y ; are complex, and are comparable
in magnitude to ' we can find stationary soliton solutions using a method earlier used by
Kivshar and Flytzanis [25], and de Sterke et al. [13]. To use this method we start from
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Eqgs. (33) which of course are equivalent to the SCME (42). Introducing the super envelopes
uy 2 through

fl — Ule_iAt, fu — u2e—i[kt’ (49)
and taking u; ; to be real, we find
ul = —ANous + alug + agu? -+ 3a3u1u§ + 3a4uf'u2,
(50)
u; = —{-Alul — agug - (1511.:13 — 3a4u1u§ — 3a2ufu2,
where the prime indicates differentiation with respect to z/V', and
A1:—~O'—A, AQZU_A. (51)
These equations can be derived from the Hamiltonian [25,13]
Lrx 20 Ao 1 4
H= — §(A1u1 + A2u2> + Z(a1u2 +
+ dasuyul + baguiul + dapudu, + asuf) (52)

It is well known [13,25] that the separatrices of system (50) correspond to stationary solitary
wave solutions to the SCME [Eq. (42)]. Thus to give a complete analysis of such solutions we
would require a classification of all critical points of (50). However, here we limit ourselves to
frequencies within the photonic bandgap for which —o < A < 40, so that, from Egs. (51),
A; <0, Ay, > 0. Egs. (50) show that the origin is now a saddle point [13,25]; the associated
separatrix can be found via the evolution equation for the ratio r = u;/u, [25):

(r')? = (Az + AlrQ) +
+ 4E(a1 + 4dazr + 6ayr? + dagr® + asr4), (53)

where F is the “energy” associated with Hamiltonian H. Concentrating on the separatrix
starting and finishing at the origin, we take £ = 0, and find [25,13]

r= _AA2 tanh (\/—231&2 :C/V) = \ —~A2 tanh(C'z) (54)

1 1

Using this result it is straightforward to show that system (50) has the solution

—9OA, A2
uyp = \/ %;A}_ sinh(Cz),

2AZA,

Uy = cosh(Cz),

where the denominator B is given by
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B = alifc" + 4a3(~A?AQ)%c33 + 6a4(—A152) c2s? 4+
+ 4a2(—/311~33)%c33 + asAlst) (56)

where
¢ =cosh(Cz), s =sinh(Cz), (57)

and the constant C was defined in Eq. (54).

From transformation (41) it can be seen that Eqgs. (55) represent a solution to Eqgs. (42)
with f_ = f¥, consistent with the properties of the stationary solutions of similar systems
[13,19,25]. However an important difference is that the solutions represented by Eqs. (55)
are asymmetric, due to the presence of the o, and a3 terms. This is illustrated in Figs. 5
and 6. Fig. 5 shows the separatrix in the u;,u, plane for the parameters

V=1 k=1 A=-05 a =17
a;=—-0.7, az3=-05, ay=03, a5=107; (58)

it exhibits no symmetry, in contrast to the corresponding curves for uniform gratings [13].
The associated solution to the SCME’s is given in Fig. 6, which shows u? + u2 = |f4]? as a
function of position; it is also asymmetric. As an aside we mention that Hamiltonian (52)
always has inversion symmetry w.r.t. the origin; this implies the existence of a separatrix
like that shown in Fig. 5. but inverted. However, the field densities associated with these
solutions are the same as those in Fig. 6.

Eqgs. (55) represent stationary bright solitary wave solutions to Egs. (33), and thus,
via transformation (41), to Eqs. (42) as well; they are generalization of previously found
solutions for deep [13], and shallow gratings [27].

As a final point we note that it has been shown that for a shallow gratings a one-
band description as in Section IIT A can be obtained from the two-band description as in
Section IIIB [30] in the limit that A — o. This limiting behavior can be recognized in
solution (55): as Ay = 20, A, — 0. Then u; — 0, and wuy takes on a hyperbolic secant
shape, consistent with the one-soliton solutions to Eq. (28).

V. DISCUSSION AND CONCLUSION

We have applied an approach, originally developed for treating deep uniform nonlin-
ear gratings, to deep nonlinear SSG’s, leading to a set of SCME’s. Since our method is
based upon the Bloch functions of the SSG’s its validity is quite general. It represents a
generalization of results obtained by others [2,8] in the limit of shallow, linear SSG’s. We
have shown that the SCME’s for deep SSG’s are simple generalizations of the coupled mode
equations for uniform gratings, by the additon of some extra terms. Now often the extra
terms obtained for deep SSG’s are quite small: in this case a deep SSG thus behaves the
same as a shallow grating. Thus, we may conclude that in analogy to grating solitons in
uniform gratings, solitary wave solutions (Rowland ghost solitons) can propagate through
SSG’s. These solitary waves can be excited by a sufficiently strong external pulse incident
on the SSG, as has been demonstrated in recent experiments in optical fibers [5]. For the
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case in which the new terms in the SCME'’s for deep SSG’s cannot be neglected, we have
proven the existence of stationary solitary solutions. We would expect that in this case more
general solutions, like traveling solitary wave solutions, and stationary and traveling dark
solutions also exist.

As mentioned in the previous paragraph, SSG’s often behave like shallow uniform grat-
ings. However, it should be noted that this resemblence fails at the two boundaries of an
SSG: in a shallow uniform grating the envelope functions are continuous over each such
interface, while for SSG’s the interface condtions are somewhat more complicated, and in-
volve the Bloch functions. This difference is not important when considering solitary wave
solutions in inifinite media, but do play an important role when, for example, calculating
the reflection spectrum of a SSG [15].

Our treatment shows that the criterion commonly used in the literature for a SSG to
be shallow is overly restrictive, and that simple results can be obtained under somewhat
more general conditions (see Eqgs. (A13) and the discussion following it). Under these more
general conditions the Rowland ghost gaps are not equally spaced in detuning, especially
if ¢ is not too large [Eq. (17)]; this contrasts standard results in which the Rowland ghost
gaps are taken to be equally spaced [3,8]. Moreover, we show that in Appendix that the
size of a Rowland ghost gap is not simply given by the associated Fourier component of the
SSG [Eqgs. (A13)]. The differences occur because a SSG can be considered to be a perturbed
uniform grating, which has a curved dispersion relation (see Fig. 2); equally spaced Bragg
resonances only occur when the underlying dispersion relation is taken to be a straight line.

Possible generalizations of our work would involve starting from the coupled mode equa-
tions for a deep uniform grating, rather those for a shallow one as we did here [Egs. (4)].
One could surmise that if one could show that these also lead to SCME’s like Eqgs. (42) (of
course with different coeflicients), this would imply the existence of a hierarchy, where at
every length scale a similar set of equations applies. It would also imply that Eqs. (42) are
the most general set of equations that apply to periodic media with a nonlinearity, and that
any such structure supports solitary wave solutions at every scale.

In conclusion, we have presented a general theory of SSG’s, leading to a set of SCME (42).
These reduce to well-known results in appropriate limits, and have an appealing resemblence
to the standard coupled mode equations for uniform gratings. We have also shown that in
the most general case the SCME posses stationary solitary wave solutions, and we surmise
that these are members of a more general set which can travel through the SSG unimpeded.
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APPENDIX A: FOURIER METHOD FOR CALCULATING BLOCH FUNCTIONS

In Section II we showed that the Bloch functions for a meta-grating are solutions to
eigenvalue problem (13). Here we outline a method which provides numerical solutions to
the eigenvalue problem. We also give explicit expressions for the Bloch functions for shallow
SSG’s.

Since all the functions of interest in Eq. (13) have periodic components [e.g. see Eq. (15)],
following a standard procedure in condensed matter physics [21], we can make the following
expansions:

k(z) T, Keet AT (A1)
Sz) = TebeFE (A2)
Yi(z,t) = (Toay e Fe) et (A3)
Y_(z,t) = (Zz a__gei%”) e'ke (Ad)

where the only unknowns are the coefficients ay . Note that since x(z) and §(z) are real
functions [Eq. (5)] we must have k_, = &}, and similarly for . In terms of expansions (Al)-
(A4), Egs. (13) can be written as

2wl 2
[ T D I (49

14

Z {( — k- % - A)a—»f - Zéé—na—,n - Z ’{f—na+,n:! ei%ﬁr = 0.

14

The transformation from Eq. (13) to Eqgs. (A5) can be thought of as being equivalent to
changing from a coordinate representation to a momentum representation in quantum me-
chanics. Since the exponentials in the sums in Eq. (A5) are orthogonal the only way the
sums can be zero are if all the coeflicients vanish. Thus for each integer ¢ we have the
following two equations:

2ml
(-{— k+ % — 60 — A)a_hg — Z 5Z—na+,n — Z Reg—nl-n = 0 (A6)
n;nEl n
( — k- 2—”8 — (So - A)a_,( - Z 5£—na—,n - Z KgenQypn = 0.
A n;n#£l n

This infinite set is equivalent to eigenvalue problem
Ad = Ad (AT)

where A is the infinite Hermitian matrix consisting of:

k+ 2—;{1 — do —Ko } i=
A= —wo  —h= =4 (A8)
) I: 5J‘_,‘ Kj—i ] ; _—)é ]
Kj—; (S]'_,‘
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and d is the column vector with elements

(\cy@y Q8,0 g 0y G ..) (A9)

Eq. (A7) shows that the only effect of the zeroth order Fourier component of §(z) is to shift
the detunings of all the eigenvalues uniformly, as, for example, in Eq. (8). The “central”
region of the matrix A is

‘—50—,1\,'—*—"1—({' —K_1 —‘5_1 —K_2 _5_.‘2 —K_3 —5_3 —K_4
—K1 _50+k_2% —Ko —5_1 —K-1 —5_2 —K_2 --5..3
—51 —Ko —(So—k‘+zA£ —K_} —5_1 —K_2 —5_2 —Kk_3
—HK2 —dy —K] —do+k —ko —6_4 —K_1 —0_9
"‘52 —K —(Sl — Ko —50'—l€ —K_1 -—(5._1 —K_2
—K3 —(52 — K2 ——51 —Ky —(50+k+-2Al —KQ —6_1
'—'(53 —K2 —52 —K1 -—51 —Ko —5()— _QzT” —K_
—K4 ~43 —kK3 —0y —K2 =6 —Kj —5o+k+%§75

(A10)

We have thus transformed the coupled differential equations (13), into matrix equa-
tion (A7), where A is an infinite Hermitian matrix. The eigenvalues of A correspond to
those of Eq. (13), and thus give the frequencies of the Bloch functions. The eigenvectors of
A, via Eqgs. (A9), (A3) and (A4), give the Bloch functions.

It may not be immediately clear that solving the eigenvalue problem for an infinite
Hermitian matrix is an improvement over solving Eq. (13). However this approach has a
number of advantages. Importantly we can truncate the matrix A and find the eigenval-
ues and eigenvectors numerically. This is useful if we are interested in only the first few
eigenvalues, corresponding to the location of the first few Rowland ghosts as the inclusion of
higher order Fourier coeflicients is unlikely to alter the results significantly. To calculate the
band diagram in Fig. 3 and the Bloch functions in Fig 4 we approximated A by a 200 x 200
Hermitean matrix. In Fig. 3 only 15 bands can be seen although by solving the eigenvalue
problem for a 200 x 200 matrix we obtain 200 bands. Choosing an appropriate size for the
matrix is a trade-off between accuracy and speed. The larger the matrix, the more accurate
the eigenvalues, but at the cost of a longer calculation. The required size of the matrix also
depends on the SSG profile. For a SSG as in Fig. 1, which has discontinuities, the magnitude
of the Fourier components decreases as 1/|n|, where n is the order; clearly, in this case the
required size of the matrix is larger than for SSG’s without discontinuities, where the Fourier
components’ magnitude decrease more rapidly.

1. Results for the weak SSG limit

As mentioned in Sect. II B, there is some ambiguity as to how to define a shallow SSG.
Jayaraman et al. [8], for example, implicitly define a SSG to be shallow if all Fourier com-
ponents including n = 0, satisfy inequality (20). However, this would lead to the conclusion
that any uniform grating, which can always be considered to be a SSG with infinitesimal
periodic perturbation with arbitrary period, is a deep SSG! For this reason one could argue
for the exclusion of the DC component of x from inequalities (20). Below we adopt this
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latter definition as results for the more restrictive criterion of Jayaraman et al. [3,3] follow
as a special case.

From the general matrix (A10) it is easy to obtain results valid in the weak SSG limit.
In the shallow SSG limit then, the §, and «, (£ # 0) are taken to be small, and only first
order contributions in these parameters are included. Consider first values of k away from
the edge and the center of the Brillouin zone (k # 0,7/A). Then all diagonal elements of
matrix (A10) differ, and the small parameters §; and ., only contribute to second order to
the eigenvalues. Consequently, we ignore these small parameters, which only leaves the i = j
blocks of Eq. (A8) in matrix (A10). The diagonalization of these gives rise to the dispersion
relation given by the solid line in Fig. 2. Thus for values of k£ away from the center and
edges of the Brillouin zone the dispersion curve for a shallow SSG is the same as that for a
uniform grating (see Sect. II B).

We now consider the edge and the center of the Brillouin zone. The situation is now
more complicated than that discussed in the paragraph above because the diagonal ele-
ments of (A10) are now two-by-two the same. For this reason the small off-diagonal ele-
ments of (A10) contribute linearly to the eigenvalues, and they can thus not be neglected.
Retaining only first-order contributions, it can be seen by inspection that (A10) can be block-
diagonalized by simply interchanging rows and columns; each block is a 4 x 4 sub-matrix.
The sub-matrices can be written as

—50 - De COS ¢ -—De sinapg ——55 —K_¢
—Dysing,  —dg+ Dycos —K_¢ — &y (A11)
—& —Ke —80+ Decospe  —Dysiny
—Ky —0& —Dysingp,  —d0g — Dy cospp
where ¢ is a nonzero integer, and
4
Dy cospp = e
Dy sin pg = Ko. (A12)

Even values of £ occur at k = 0, while odd values occur at k = 7/A. The sub-matrices (A11)
can easily be diagonalized; the four eigenvalues are

A=—6+ D+ lls?g - 5(Sin§0g|,
(A13)
A=~ D, + ‘l{g + (Sgsinlpg|.

This means that, for shallow SSG’s, the Rowland ghost gaps are centered about the detunings
D, [Eq. (17)], and have widths 2|x, & §,sin ,|. The more restrictive results of Jayaraman
et al. [8] are obtained as kg — 0, so that D, = ¢x/A [Eq. (17)], and sing, = 0 [Eq. (A12))].
Thus far we have only used the eigenvalues of the sub-matrices (A11). Via Egs. (A3)
and (A4) the eigenvectors immediately lead to the Bloch functions. Thus using normaliza-
tion (24) and convention (23), the Bloch function at A = —d¢ + D¢ + |k¢ — desin @el, at the
top of Rowland ghost gap ¢, is given by
+i®z)

Y

Yi(z) = ﬁ (Sin Pe e™9¢ 4 cos Pe €

l

Y_(r)=— (cos ©e €79 4 sin g, e+i®‘) . (Al4)
V2A
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where

ml 1
9(3 = X + 5 a,rg(rcg). (:\15)

Similarly, at A = —d¢ + D¢ — |k¢ — dgsin |, at the bottom of Rowland ghost gap ¢,
1

() = JoN (Sin e €790 — cos g e+i@,) ’
1 . '
1012 om0 im0, o

Note that both Bloch functions satisfy Eq. (23), as required. Finally, the Bloch functions
of the photonic bandgap centered around A = —dg— D, can be found from (A14) and (A16)
by replacing o, by @, + 7/2.
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FIGURES

FIG. 1. Coupling coeflicient s as a function of position for a typical SSG. Note that & is periodic
and with a period of 9 mm.

FIG. 2. The dispersion relation for a uniform grating, given by Eq. (16), is indicated by the
dashed line. The introduction of an infinitesimally weak periodicity with period A causes the
dispersion relation to fold in the first Brillouin zone between m/A (solid line).

FIG. 3. (a) Band diagram for the triangular SSG discussed in the text and shown in Fig. 1. The
Rowland ghost gaps are centered on the detunings D, x 5cm~Y, Dy~ 1.5em™}, Dy~ —2cm™},
D_y~=55cm™!, D_y =~ —9cm™!, etc., given by Eq. (17). The corresponding reflection spectrum
is shown in (b); note that the Rowland ghost gaps correspond to detunings with high reflectivity.

FIG. 4. Bloch functions at the top and bottom of the gap centered around A = 1.5 at the edge
of the Brillouin zone. The solid line is |¢4 (2)]? = [¢_ (z)|? at the top of the gap, while the dashed
line gives that at the bottom. Recall that according to the discussion in Section I1 C the square
moduli of the two components of a Bloch function are the same.

FIG. 5. Separatrix of dynamical system 50 for parameters given in Eq. (58) given by Eq. (55).
Since I'y and I’y are complex, this implies, via Eqgs. (44), that a; and a3 are non-zero, leading to
the asymmetry of the separatrix.

FIG. 6. Solitary wave solution corresponding to the separatrix shown in Fig. (5). Shown is
u? + u2 = |f£|? as a function of position.
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