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Abstract A general phase space approach is used to examine
the influence of gravity on the storage of ultracoid
neutrons. In particular, consideration is given to the
effects on the mean free path between wall collisions and
also on the extent to which the rate of loss of UCN in wall
collisions can still be related to the mean free path.
The implications for experiments to determine the neutron
beta decay lifetime are discussed.

1. Introduction

Ultracold neutrons (UCN) which can be stored in material traps will generally
have kinetic energies less than 340 neV and speeds of less than 8 m/s. Recent
experiments to determine the neutron beta decay lifetime using stored UCN have
used walls made from aluminium [1], solid oxygen [2] and Fomblin oil [3,4]. The
maximum UCN energies, which could be stored, were 54 neV, 69 neV and 106 neV
respectively. A neutron with a kinetic energy of 106 neV has a speed of 4.52 m/s. A
neutron, or any other object, rising vertically at this speed against gravity,
will come to rest after rising 1.04 metres. It is evident that gravity has a
significant effect on UCN moving in traps with vertical dimensions which are
typically some tens of centimetres.

UCN can be contained by the walls if their kinetic energy E is less than the
real part V of the mean Fermi potential [5,6] Ve =V - iW, where
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and N; is the number density of nuclgi of type i in the material of the wall

8 June 1993
For Nuclear Instruments and Methods A



surface and b; is their bound scattering length. Also, 1,205 ot (k)/k where k is
the neutron wave vector and o; ... is the total loss cross-section for inelastic
upscattering and nuclear absorbtion processes caused by nuclei of type i in the
wall surface where the UCN wave function penetrates a distance of a few
nanometres. Upscattering is caused by the thermal motions of these nuclei, and
when it occurs, the final kinetic energy is high compared with that of UCN and, as
a result, the neutron is lost from the trap. Both the b; and the 1, and hence V
and W can be taken to be independent of the UCN speed. One case where small
‘non-fatal’ energy transfers to UCN may just be detectable arises when there are
macrocopic vibrations of the trap walls caused by local machinery. [3,6]. However,
with good control of the environment these energy changes can be made negligible.
In this paper we will assume that all neutrons which survive in the trap have
bounced perfectly elastically throughout the period of storage.

We begin with a monochromatic group of UCN. After entering and being sealed
into a trap the individual members of the group will, within a few tens of
seconds, spread uniformly over the phase space which is available within the
constraints of energy conservation and the trap geometry. The time taken to arive
at this uniformity in phase space is governed firstly, by the wall collision rate,
which is typically 20 s ! and given by v/\ where X\ is the mean free path between
wall collisions and v the neutron speed. Secondly, it involves the probability per
collision of significant non-specular reflection, which is usually a few percent
even for polished surfaces. In the case of the liquid walls of reference [3] which
are exceptionally smooth, an area of corrugated surface is built into the trap to
ensure that the relaxation time for approaching uniformity is only a few seconds.
If lifetimes arising from wall losses alone are a few thousand seconds, the
assumption of a quasi-steady state uniform distribution of UCN in all the
accessible phase space after a few tens of seconds of containment should be
accurate to about 1 part in 10°. At this low level there are discrepancies in the
anisotropy of the velocities which are brought about because the loss
probabilities in UCN wall collisions are higher at larger angles of incidence. A
steady state is reached in which there is a dynamic equilibrium between the rate
of selection in angle and the opposing rate of randomisation due to the
non-specular reflections.

Thus, in the absence of gravity the neutrons will soon become uniformly
distributed throughout the volume and will acquire a high degree of isotropy in
their velocity directions. The mean free path A against wall collisions, as
deduced originally by Clausius, is then given by A =4Vol/A, where Vol is the volume
of the trap and A, is the total area of all the internal walls exposed to the UCN.
Continuing with zero gravity, the neutrons can be taken to have the same speed
v(E) and the same kinetic energy E in all parts of the trap. On reflecting from a
wall a neutron has a probability of loss per collision, which, after averaging
over all the angles of incidence for an isotropic distribution of velocities
incident on a surface with an ideal séep function profile [5] is given by the

expression
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where f = W/V. For cases where the density of the wall material rises more slowly
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at the surface, the ;(E) functions deviate very little from this last expression
[7,8]. On the other hand, inhomogenious distributions of impurities such as
hydrogen can cause deviations at the level of tens of percent. If the trap walls
are all of the same material, and still there is no gravity, the rate of loss of
UCN through collisions per unit area is the same on all parts of the walls. Then
the rate of change of the total number, N(t) of UCN within the trap is

a _ Nu(E) v(E)

N
= B R St 3
dt A T, (3)

where T, is the neutron beta decay lifetime. The result is a pure exponential
decrease of N with a decay time constant v,,,., given by

1 1 1
= + —
tgross Tvail Ta (4)
where
1 _ Vv(E) n(E)
Twall A (5)
and
N = 4Vol
- A, : (6)

Also, in the absence of gravity, and when the wall losses remain small, a
number of other considerations of practical interest are very straight forward.
For example, on opening a connection between a trap full of UCN and one which is
empty, the UCN will spread themselves uniformly within a few tens of seconds so
that they apportion themselves between the traps in the ratio of the trap volumes.
On the other hand, if the connected traps are at different heights and gravity is
allowed for, this simple result no longer applies and the methods of the next
section will be needed to calculate the apportionment. Another aspect of the
gravity free result in equation (5) is that traps with the same wall materials
have t,,,, proportional to A, i.e., proportional to 4Vol/A,. Under the influence
of gravity we find that this is, in general, only approximately true, although
under certain conditions, A, as measured along the trajectories, remains equal to
4Vol/A,.

This last point is relevant to the determination of the neutron beta decay

lifetime from experimental measurements of T Values of t,,;; can not be

gross’
predicted since there is only very approximate information on E and f. Also, it is
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not sure how precisely the form of equation (2) describes the real situation.
However, the problem can be circumvented as follows. The minimum requirement is to
use two traps labelled 1 and 2 with walls of the same material, but with values of
Twa11 1 8nd T,.); , which are arranged to be significantly different by choosing
different values of 4Vol/A,. The measured Tgross 1 8Nd Tgp,qe , for the two traps
are obtained using neutrons of same energy in each trap and the provide the two
simultaneous equations

1 S S S
Tgross 1 ) Tvall 1 Tn (7)
and

1 i 11
Taross 2 ) Tyall 2 Th . (8)

If the chosen change of trap geometry gives us a simply calculable value for the
ratio a = (t,,y; ;1)/(T,a11 2) We can immediately extract the value of t,. If, for
example, in going from trap 1 to trap 2 we halve the value of 4Vol/A,, we know from
(5) and (6) that in the absence of gravity a = 2. For this procedure, there is even
no need to assume that the loss function has the form of equation (2). In
practice, the experiments have to be performed with gravity present. In section 5
we show how this simple approach has then to be modified.

2. Effective real space volumes with gravity

Let € be used for-the total energy of the UCN and E and p for their kinetic
energy and momentum respectively. The height coordinate h will be defined in the
upwards sense relative to a horizontal datum plane h = 0 where we will also take
the UCN potential energy to be zero. Consequently, under the assumed conditions of
elastic wall collisions, pz/(2m)= E =€ - mgh. We will consider a monoenergetic
group of UCN, with energies in the range € to € + 8¢ where 8¢ << €. The energies
will remain within this same range 8¢ at all times in the future and at all
accessible heights. Differentiating E =€ - mgh at any given h, shows that the
kinetic energies of the group will cover the same magnitude of range 8E = ¢ at all
accessible h.

To make use of the equilibrium condition that the points representing the UCN
will have spread themselves uniformly through the available phase space we need to
consider the available momentum space. The range 6E = ¢ implies a range 8p where
6E = p 6p/m so that the available volume in momentum space may be expressed as

4ttpz 8p = CJ/ESE = C 4{e-mgh) 8¢ (9)

where C = 4n JEEX. The phase space density for the group is its real space density
n{e,t,h) divided by the volume it occupies in momentum space C {E(h) 8e. When the
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phase space density has become uniform this ratio is independent of position, and
therefore of h, so that

n{e,t,h) _ n(e,t,0)
CJE(h) 8¢ C4E(0) 6 ' (10)
Hence
n(e,t,h) /E(h) j(e - mgh)
—_— = _— = [ h -mgh) >0
n(e,t,0) E(0) € when (e - mgh) > (11)
and n(e,t,h) = 0 whenever (e - mgh) is negative.
We also note that
v(e,h) '/(e - ngh)
v(e,0) € (12)
and that
n(e,t,h) v(h) (e - mgh) _
= h -
n(e,t,0) v(0) € when (e - mgh) > 0 (13)

where nv is set equal to zero whenever € - mgh is negative. Equations (11) (12) and
(13) can only be applied to a UCN group for which 6e is small compared with the
changes of mgh in the set-up of interest.

At height h the trap horizontal section area will be called A(h) and the
perimeter of this section will be called P(h). The total population N(e,t) of an
energy group in a trap can then be calculated as

N(e,t) = jhl:"::n(e,t,h)A(h)dh (14)

where h,;, and h,,, are the lowest and highest points in the trap. Using equation
(11) this becomes

ax - h
N{e,t) = n(e,t,0) J.h}:n Jgielg__) A(h) db (15)

where again the square root function must be replaced by zero whenever its
argument is negative. In the absence of gravity this result could have been simply
expressed as N(e,t) =n(e,t,0) Vol, so that the integral of equation (15) can be
identified as an effective volume y(e) for the trap under the influence of gravity
where

_ h'nax (€ - mgh)
y(e) = — A(h) dh .

hain (16)

In using (16) to calculate the way neutrons of a group are shared between two
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interconnected traps at different heights the two effective volumes must be
calculated using a common datum. If the volume of the connecting pipe can be
neglected then the UCN of the group will apportion themselves in the ratio of the
two effective volumes. When considering a single trap the effective volume will
depend on the choice of datum. Compensating changes in n(e,t,0) and in the
effective volume ensure that the physical N(e,t) is not affected by an arbitrary
change of datum.

3. Mean free path along the trajectories in the presence of gravity

The total rate, R., of making collisions with the walls is given by

_ 1 h'lax
R, = " - n(e,t,h) v(e,h) P(h) dh . (17)

The total rate of path making, Rp, by UCN in the trap is given by

Pya x
R, = jhnin n(e,t,h) v(e,h) A(h) dh . (18)

The mean free path A\ along the trajectories is just Rp/Rc. In the absence of
gravity n and v do not vary with position and they can be taken out of the
integrals. They then cancel in taking the ratio leaving the Clausius result,
A = R,/R, = 4Vol/A,.

We find that, under certain conditions, the same result is obtained in the
presence of gravity. One of the conditions is that the trap should have a centre
of symmetry and the other is that the neutron group should have sufficient energy
€ for UCN to be able to reach the highest point of the trap. We now adopt these
conditions and put the datum at the level of the centre of symmetry. Equation (13)
can now used to express the product nv in (18) in terms of its value at the datum
leading to the expression

. ,0 +hma h
R - n(e,t,0) v(e,0) j x [I_E]p(h) dh . (19)
4 'hmax €

The contents of the square bracket would have to be replaced by zero whenever they
become negative, but his will never be the case for a neutron group whose members
can reach the highest point of the trap. The integrand of (19) is then seen to
have two parts. The second part containing mgh is, given the symmetry of the trap,
an odd function of h and its integral is therefore zero. The first part is just
the total surface area, A;. Thus, we have the result R, = n(e,t,0) v(0) A,/4. The
same methods when applied to R, give Bp =n(e,t,0) v(0) Vol. The new ratio Rp/Rc is
seen to be equal to 4 Vol/A,, which is the same as the gravity free result. The
most extreme case where this unexpected result applies is that where gravity just



reduces the UCN number density to zero at the highest point of the trap.

If neutron groups are considered with energies less than that needed to Just
reach the highest point of the trap, the mean free path falls with total neutron
energy until, eventually, it approaches zero at the stage where the paths are tiny
parabollic arcs in contact with the lowest element of surface. As a particular
example, one might consider a cube of side L with a horizontal base plane which is
taken to be the datum. It is convenient in this problem, and others which follow,
to measure the total neutron energy in terms of the height H given by H = e/mg,
which is the greatest height the neutron could rise above the datum against
gravity if it was in a trap of unlimited height. Starting from (18) and (19) we

obtain
2 .
A= E-L for UCN with H> L (20)
and 5
= ( ) L for UCN with O <H <L (21)
2+ L/H

as illustrated in fig. 1.

H/L
0 1 2 3
1.0 T T l
X/L - . . 8
0.5 - -
0.0 | H 1 1
0 20 40 60 80 100
E (neVv)

Fig. 1. The mean free path A\ along the trajectories between wall
collisions for a cubic trap of side L, taking into account gravity.
The neutron kinetic energy at the base of the trap is E and this is
expressed as a height H = E/(Zg): For H> L, the value of \ is
unaffected by gravity and is eqdal to 2L/3. The lower scale showing E

in neV is appropriate to the case L=0.3m.



4. Effect of gravity on losses in wall collisions

Again we will restrict the discussion to traps with a centre of symmetry and
place the datum at the level of the centre. The mean Fermi potential V of the trap
wall is represented by the critical height H_ where H, = V/mg. The UCN total
energies are represented by H and at the height h relative to the datum, the UCN
kinetic energy is represented by H - h. Besides the convenience of symmetry, this
choice of datum has another advantage. In assessing the modification due to
gravity there is a difficulty of comparing like with like concerning the energy of
the UCN group with, and without, gravity. For a datum at the lowest point of the
trap, equal kinetic energies at the datum means a much lower average kinetic
energy in the middle of the trap when gravity is present. This gives a large
change in UCN wall loss rate which is mainly expressing the well known feature of
UCN that in a given trap slower neutrons suffer a slower rate of loss. If we
choose a datum half way up the trap and standardise the kinetic energy of our
group there, the difference in the average energy with and without gravity is much
smaller. Nevertheless, some ambiguity remains. However, equations (37) and (38)
and the gravitational correction which they imply for the neutron lifetime
experiments do not depend on the choice of datum except for the way in which the
energy labelling of the UCN groups is defined.

The UCN loss rate dR;, on a element of wall of area dA at height h is given by

1 _ (22)
dR,, = Z-n(H,t,h) v(H,h) p(H-h,H_) dA .
For convenience we use (12) and (13) to express this as
1 ' H-h\ -
dRLW = _n(H,t,O) V(H,O) - H(H-h,Hc) . (23)
4 H
The latter can be written as
1
where we have introduced the function L defined as
(H-h)\ - (25)
L(H,h) = —“;;‘* u(H-h,H ) .
For the total loss rate we have
1 +h
Ry = —n(H,t,O)v(H,O)j. "X L(H,h) P(h) dh . (26)
4 “'max
From (15) the total number of stored neutrons in this energy group at time t is
+h (H-h) N
N(H,t) = n(H,t,O)J. max /—-«—— A(h) dh . (27)
~hpax H



These expressions can be used to evaluate T, a11 Using
N(H,t)
Tyall =
Rpw (28)

which is seen to be independent of t giving a pure exponential decay.

The only approximation up to this point has come from ignoring the very small
anisotropies in the neutron velocities, referred to earlier, which can be as
little as 1 part in 103, However, before considering intergrals over h, we now
choose to introduce a Taylor series expansion of the function L in terms of the
variable h/H . In fact, the integrals over L can be done directly without making
any expansion [9]. While this is useful for exact numerical results, we feel the
series expansion method is more helpful here for understanding some features of
this system. Therefore, we use

L(H,h/H_) L(HO)[I (h)+ (h)2+ (h)3 ]
= + a - a - a - “« oo
] c ] 1 Hc 2 Hc 3 Hc (29)
where the second coefficient, a,, for example, is given by
L'’ (H,0)
a, = ————
27 2 L(H,0) (30)

and the double prime represents differentiation with respect to the dimensionless
variable h/H.. In the Fomblin o0il coated trap of Mampe et al [3] the maximum value
of h/H_, which was reached at the trap roof, was 0.14. Inserting (29) into the
integral (26) we have

1 thyay h h)2
Ry =Zn(H,t,O)v(H,O)L(H,O)j_h‘ [1+a1(H—)+az(H—) ---]P(h)dh- (31)

c

The leading term simply gives the loss rate expression which one would have for
this energy group in the absence of gravity. For the subsequent terms in the
expansion, we observe that, for the given trap symmetry and datum, all terms with
odd powers of h/H_ will contribute nothing to the integral. Thus, the largest term
in the loss rate per neutron which has any dependence on gravity comes from the
(h/Hc)2 term. Equation (30) shows how the ratio, between the curvature and the
value of the loss function L, gives the value of the coefficient a,. In fig. 2 we
show a, as a function of the energy H of the UCN group in the case where the ideal
form of ; given in equation (2) applies. The value of a, is smallest and changing
rather slowly with the UCN energy at intermediate energies. When dealing with the
collision rate, as in calculating the mean free path, the height variation was
linear. When calculating loss rates we are dealing with collision rate multiplied
by the loss per collision. The latter is also changing with height since the .
collisions are more violent at lower {gvels; the result is that loss rates have a
non-linear dependence on h. )



10 Y

5 .
0 1 1 Il i | 1 1 i 1
0.0 0.5 1.0

Fig. 2. The dimensionless coefficient a, in the leading term of the
modification due to gravity of the wall loss rate for UCN which can
reach the highest point of a trap which has a centre of symmetry. It
has been calculated according to equations (30) and (25) using the
ideal wall loss function (2). It is plotted as a function of the ratio

of the UCN energy to the critical energy of the wall material.
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5. UCN loss modifications for rectangular traps

Considering now a rectangular trap with a horizontal floor, let the combined area
of the roof and floor be 2A, and the area of the side-walls be Ag. The integral
(31) for the rate of loss on the vertical walls gives

2
Riws = %D(H,t,O)V(H,O)L(H,O)AS [“%2(5%) ] (32)

where h, is the height of the trap. Converting (32) back to normal units gives

1 —~ h, \ 2
Ruvs = 7 n(e18,0) v(€,0) Ble,0) A [1+f‘3£(9-§—v-) ] (33)

which shows that g is only present in the a, term and higher order terms. The
coefficient a, is dimensionless and does not change in this conversion. For the
trap of reference [3] where h, =0.3 m the term (a2/3)(%mght/V)2 was equal to 0.02.
In the case of the roof and the floor the integrand of (31) is only finite at
*h,,, and we have

1 h, |2
Royp = Z-n(u,t,o) v(H,0) L(H,0) 2A; | 1 + aZ(Eﬁ‘) ...].

c

(34)

Adding (32) and (34) to obtain the total losses and introducing the total trap
wall area Ay = Ag + 2A; gives

1 | _(h_)Z( 4_A;) ] (35)
Ry = 2 n(H,t,0) v(H,0) L(H,0) A, [1 + 2 \on 1+ cea b

The number of stored UCNs given by (28) can be integrated and expanded

binomially to give

h,\2
N(H,t) = n(H,t,0) v°1[1 ; -1—(-2) ] (36)
24\2H

where Vol is the true volume of the trap. The expression for t;ill for the UCN
group is obtained from (35) divided by (36). At the same time we replace A; by
Vol/h, and use the fact that 4Vol/A,; =\ to find

2 2
Sin = 28 w0 [1 + 8—2(—1" ) (1 + i) ] [1 + i(ﬁi) ] (37)
s 3 \2H, h, 24\2H

A rearrangement then gives
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The next term in the first series in (37) is proportional to a, and contains the
factor (1+2\/h,) and so on. At this point it becomes evident that the only A
dependence in (38) is that which is shown explicitly. Thus, the form of (38) is
.l =A+B\! and we can write t;:‘oss =t ' +A+BA L,

The conclusion is that if a particular UCN energy group is stored in a series
of traps, all with the same wall material the same height h., but with various
widths and volumes, the wall loss rates, as represented by the t;ill values, have
a major part proportional to the reciprocal mean free path At but, added to this,
there is a small constant, A, given by that part of (38) which is on the first
line, where coefficients such as a, are defined by (29)(30)(25) and (2) and the
whole is multiplied by the effective volume factor at the end of (38). To see the
size of A, we take as an example, the conditions of the experiments in reference
[3] where h, =0.30 m and H. =1.04 m. Then, for the UCN group with H=0.7 H., using
the function (2) with f=W/V=1.6x19"", we obtain A=5.7x10"% s 1. In the
neutron lifetime experiments the measured t;ioss for different trap lengths are
plotted against A"l and extrapolated to obtain the intercept. (In the case of just
two measurements with two trap lengths, the intercept can be found by solving
simultaneous equations as mentioned in section 1). The intercept at At =0, is the

! and the constant A. The latter must therefore be subtracted for

sum of T,
estimating t;l. For the size of A just calculated, the subtraction causes a shift
of 5s or 0.5% in the result for t,. This shift has become known as the gravity
correction. It is interesting how small the correction is, since the terms from
the second line of (38) denoted BX'I, for the case where \ = h,, represent wall
losses which are about 15% of t;l. Another way to view the result (38) is, that
for the purpose of calculating wall losses, 2! has a small constant offset of A/B
added to it. '

The experiments in [3] used a broad UCN energy spectrum so that this correction
took the form of a weighted average over the spectrum. A more complete computer
model was built using the methods outlined here applied to a large number of UCN
energy groups. In the model the integrals were done numerically and the Taylor
series expansion was not needed. Nevertheless, the estimated correction was
similar in size to that just evaluated. Furthermore, the computer model confirmed

that the correction does not change if the choice of height for the datum is
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changed.

Although this correction in the T, measurements is small, it changes the
situation in a fundamental way. If t, is only measured to a precision of 1% the
correction can be ignored, in which case the experimental data can be processed
using nothing more than the Clausius mean free paths (6). The form of the ;(E)
function does not need to be considered and the only thing required of the UCN
energy spectrum is that all UCN should be capable of reaching the top of the trap
and that the shape of the spectrum after filling should be independent of the trap
geometry. However, it now seems feasible and desirable to try to measure T, toa
precision of 0.1%. In this case the 0.5% gravity correction has to be evaluated
quite carefully. This, in turn, requires some knowlege of the shape of the ;(E)
function [7,8,9] and also some knowledge of the energy spectrum of the stored UCN.

6. Ways of reducing the gravity correction

The equations above allow one to see ways of largely eliminating this
correction. The ideal situation when measuring t, would be to have the rate of
loss of stored UCN per unit area of surface be the same for all parts of the trap
surface. In the absence of gravity this can be achieved easily provided we have a
reproducible surface material such as a clean liquid. In the presence of gravity
the correction results from the following feature: the average loss per unit area
on the roof and floor combined is a little greater than the average loss per unit
area on the vertical side-walls. In the experiments of reference [3] Alis
changed by advancing a plane vertical wall as shown in fig. 3(a). With the advance,
the ratio of roof plus floor area, to side-wall area, reduces. This causes the
overall trap average wall loss per unit area to fall slightly whereas we would
like the wall quality to stay constant. A way to avoid this change in relative
areas is shown in fig. 3(b). The profile shown is maintained across the full width
of the trap. The trap now has two recesses which increase the amount of roof and
floor area. Proceeding under the assumption that the upper and lower surfaces of
the upper recess are both nearly enough at the height of the roof, then for the
case where the fixed width of the trap, perpendicular to the plane of fig. 3(b) is
equal to the height of the trap, the length x of the recess should be set equal to
h,/2. Continuing to neglect the height of the recesses, the total combined roof
and floor area for the entire trap is now equal to the total side-wall area.
Furthermore, this remains true for all positions of the movable wall. Thus, the
desired constancy of the ratio of areas is achieved. For this particular case, the
term 1+ 4Ap /A, in (35) which became 1+ \/h, in (37) becomes 3 in both equations.
There are similar replacements in all such terms in the series of (37) and one can

conclude that t;:ll is proportional to \™' with no added constant.
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(a)

(b) —

(c)

Fig. 3. Three kinds of trap where the mean free path between wall
collisions can be varied by changing the trap length. (a) represents
the trap used in the neutron lifetime measurement [3]. (b) and (c)
show traps where the gravity correction arising in [3] would be
largely eliminated. In case (b) for traps where the height is equal to
the fixed width perpendicular to the figure, the length x should be
half the height of the trap. Case (c) is a trap made with a bellows.
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Another approach which will largely eliminate the correction is to use a trap
in the form of a bellows with its axis horizontal as represented by fig. 4c. When
the bellows is compressed, the volume reducess while the surface remains the
unchanged. It is also evident that the distribution of the wall area with respect
to vertical position remains the unchanged to first order. The corrugations of the
bellows which occur in various planes would be excellent for maintaining the
isotropy of the UCN velocities. On disadvantage of the bellows is the increased

wall area which brings increased wall losses in relation to the volume.
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