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Lyapunov exponent analysis of irregular fluctuations in a
self-pumped BaTiO3; phase-conjugate
mirror, establishing transition to chaotic behavior
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The behavior of the phase-conjugate outbut from a self-pumped, BaTiO3 phase-conjugate mirror is known to

exhibit temporal instabilities under certain conditions.

Approaches for investigating these experimentally

observed fluctuations indicate the presence of chaotic behavior. However, a dynamic system that possesses
one or more positive Lyapunov exponents is by definition chaotic. For the first time, to our knowledge,
we calculate directly from experimental data the largest nonnegative Lyapunov exponent of these irregular
fluctuations and report examples of definite transitions from stable to chaotic behavior.

INTRODUCTION

There has been continued interest in photorefractive
crystals because of their potential suitability for optical
communication devices and applications. Photorefrac-
tive barium titanate (BaTiO3) is of particular interest
because it provides a simple self-aligning phase-conjugate
mirror. There are many different geometries for the
operation of these phase-conjugate mirrors, such as
the interaction of two mutually incoherent beams!? or,
more simply, the introduction of a single beam to form
a self-pumped phase conjugator.® Recently reported
increases in both the reflectivity®® and response time®
of self-pumped phase conjugation (SPPC) in BaTiO; and
the inherent simplicity of requiring only a single input
beam makes these phase-conjugate mirrors particularly
suitable for a range of optical communication devices
and applications. However, all practical devices would
require that the SPPC’s properties exhibit both long-term
spatial and temporal stability. Therefore it is desirable
to investigate the nature of any such instability so that
future systerns can be designed to operate under optimum
conditions.

Spatial instability in SPPC in BaTiO; has been pre-
viously investigated’ and was shown to be due in cer-
tain cases to feedback from internal reflections from the
crystal faces. Temporal instability has also been investi-
gated and was seen to depend on factors such as the input
beam position, angle, and incident laser intensity.8-°
Power spectra observations!! and attempts to estimate
the lower bound of the Hausdorff (fractal) dimension
of the temporal field'? also reveal that the temporal
instabilities are critically dependent on the input-beam
position.

Kaplan and Yorke'? formulated an expression for the
dimension of an underlying attractor in a system in
terms of the Lyapunov exponents A;, which measure the
exponential separation of nearby orbits in phase space.
Measurement of the Lyapunov exponents (the largest
exponent is A1, but certain directions will produce smaller
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exponents Ag, Ag,... with Ay = Ag = A3 = ...) permits
quantities such as useful bounds on the dimension of an
attractor to be derived. We have experimentally inves-
tigated the largest Lyapunov exponent (A;) for different
input-beam positions in SPPC in BaTiO;, in order to
ascertain whether the increasingly unstable fluctuations
in the phase-conjugate output become chaotic. Accurate
calculation of the Hausdorff dimension!? requires knowl-
edge of all but the most negative Lyapunov exponents,
which is problematic for real systems. It has been shown
that the following inequality holds!4-!° if the points in
phase space are uniformly distributed over the attractor:

Dy =D, =Dy, o))

where D, is the correlation dimension, Dy, the information
dimension, and Dy, the Hausdorff dimension.

Investigations of irregular behavior in phase-conjugate
resonators2®?! and four-wave mixing?>?? in BaTiO3 have
been reported to show chaotic behavior. However there
are difficulties with the use of the correlation dimension to
establish chaotic behavior in SPPC because the Hausdorff
dimension of an attractor is independent of the frequency
of visitation of the attractor, whereas the correlation
exponent exhibits sensitive dependence on the rate of
visitation.’* In SPPC in the unstable reflectivity regime
the phase-conjugate intensity is often observed to be
near zero, suggesting that some parts of the attractor
are visited more often than others, and therefore the
correlation dimension is an insufficient measure of the
Hausdorff dimension.

Gauthier et al.?* confirmed this by investigating SPPC
in BaTiO; and reporting that the correlation dimension
showed sensitive dependence on the crystal orientation.
The correlation dimension was found to be effectively
independent of the input intensity, suggesting that al-
though the laser intensity determines the time scale of
the chaotic evolution, geometrical factors are principally
responsible for the trajectories in phase space.
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Fig. 1. Experimental setup used to investigate SPPC in BaTiO3.
BS, beam splitter; SH, shutter; VND, variable neutral-density fil-
ter; SF, spatial filter; PBS, polarizing beam splitter; IR, mechan-
ical iris; POL, polarizer; PD1, PD2, photodiodes; FR, Faraday
rotator; HWP1, HWP2, 514.5-nm half-wave plates.

In contrast to techniques that use the correlation
dimension and other methods,25?¢ we have used the
algorithm established by Wolf et al.?"*® and modified
by Rand and Wilson?®% to calculate directly the largest
nonnegative Lyapunov exponent from an experimental
time series. The advantage of this technique is that
the algorithm is insensitive to the frequency of visitation
of the attractor and is fairly parameter independent.
Therefore this algorithm is better suited to analysis
of experimental data from SPPC than are alternative
methods for determining chaotic behavior.

Wolf? investigated other approaches to quantifying
chaos from experimental data, such as fractal power spec-
tra, entropy, and fractal dimension, all of which have
been reported previously for SPPC in BaTiO3.111122¢  Wolf
comments that these approaches often fail to characterize
chaotic data accurately and are susceptible to external
noise and are sensitive to the amount of data being
analyzed. The techniques also show strong parameter
dependence, which can lead to large errors. However,
the algorithm reported by Wolf* has been shown to
provide an accurate calculation of the largest nonnegative
Lyapunov exponent from experimentally produced data.
The algorithm favorably shows only weak parameter de-
pendence, with experimental results containing relatively
small (5-10%) errors.

EXPERIMENTAL CONFIGURATION

The experimental configuration is shown in Fig. 1.
The dimension of the BaTiO3; crystal was 5 mm X
5mm X 5 mm and had been electrically poled into a
single ferroelectric domain before experimental inves-
tigation. The input beam was from a 5-W Ar* laser
operating at 514.5 nm, e polarized with respect to the
input crystal face, The beam was split by a 50:50 beam
splitter so that the laser stability could be measured by
a photodiode (PD1) connected to a Newport powermeter.
The laser output was stable to <0.5%. The input-beam
intensity could be varied by the variable neutral-density
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filter, and the polarization was rotated to the horizontal
by a half-wave plate (HWP1).

The spatially filtered beam, with beam diameter
approximately 1.5 mm, was then transmitted by a high-
extinction-ratio (10*) polarizing beam splitter, The Fara-
day rotator (FR) rotated the plane of polarization of the
beam by +45° before it was rotated by —45° (back to hori-
zontal polarization) by a second half-wave plate (HWP2).

The crystal was mounted onto a rotation stage, per-
mitting an accurate translation (~1 um) of the crystal
horizontally (varying the beam position, x, along the
crystal face), vertically, and rotation about the center of
the crystal to vary the angle 4, between the input beam
and the normal to the crystal face, as shown in Fig. 1.
To minimize instabilities due to air currents and thermal
effects, we mounted and thermally insulated the crystal
within a black insulating container, with an entrance slit
just large enough to permit the input beam to pass. The
thermal stability of the crystal and the surrounding cham-
ber was monitored with a thermocouple placed close to
the crystal. The input beam was observed to fan toward
the +c axis, and several self-pumped channels formed.
The SPPC mechanism produced a phase-conjugate beam,
which was redirected by the polarizing beam splitter after
retraversal of the Faraday isolator. A mechanical iris
blocked out any stray light before the phase conjugator
was passed through a high-extinction polarizer aligned to
transmit the vertically polarized phase conjugator, while
filtering out any residual horizontally polarized light from
stray reflections and scattering.

The phase-conjugate intensity was measured by a sec-
ond photodiode (PD2), the output from which was am-
plified by a low-noise amplifier and fed into a computer-
based data-acquisition system. Before any data were
obtained by the computer, the crystal was illuminated by
a 75-W white-light source for 5 min to ensure that all the
gratings within the crystal were erased.

EXPERIMENTAL RESULTS

Experimental data of the phase-conjugate intensity were
taken as a function of time (over periods of hours), as
a function of input beam intensity (/i,), horizontal beam
position (x), and angle (6). For § < 40° and for a narrow
region across the crystal face, irregular fluctuations were
observed in the phase-conjugate output (as shown in
Fig. 2). As detailed elsewhere,'® on either side of this
narrow region the phase-conjugate output was stable.
However, as the input-beam position was systematically
tracked through this region, a definite transition from
regular to irregular behavior and then back to regular
behavior was observed before the phase-conjugate out-
put finally became stable again. The experimental time
series is first reconstructed into an n-dimensional phase
space by the choice of a time delay 7 (equal to one-quarter
orbital period).®! The mean orbital period was defined
by observing a dominant spectral feature in the power
spectrum. The largest nonnegative Lyapunov exponent
can then be calculated:

1 & L’(tk)
A= 1 2
. ; 82 T, (2)
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Fig. 2. Experimental results showing the variation of the phase-conjugate intensity with transverse position (x) of the input beam
along the crystal face (§ = 2°). (a) x = 3.50 mm, (b) x = 3.90 mm, and (c) x = 4.10 mm.
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Fig. 3. Dependence of the largest nonnegative Lyapunov ex-
ponent (A1) as a function of the evolution time A for § = 2°,
In =21 Wem™2, and x = 3.50 mm.

where M is the total number of replacement steps and
the length L(t;) between the initial point of the fiducial
trajectory and the nearest neighbor to the initial point is
observed to have evolved to a length L'(¢,) after time ¢;.
The evolution time A, defined as

A=ty — tg, 3

was held constant at one-quarter orbital period.

Figure 3 shows that the exponent calculation was found
to be independent of the evolution time when we assumed
that the orbital divergence was monitored at least a
few times per orbit. Data were sampled at ~12 data
points per mean orbital period, and data files contained
32,000 data points. Thus the reconstructed attractor in
phase space contained ~3,000 orbits. The nature of the
transition from stable phase-conjugate output to periodic
behavior to irregular fluctuations and back again to sta-
bility was observed to be essentially the same for different
input-beam intensities, position, and angle. Although
varying the input-beam intensity changed the period of
regular oscillations,® the same transitional behavior was
observed. Again, varying the input angle changed the
position along the crystal where the transition to instabil-
ity occurred but did not alter the transitional characteris-
tic behavior of the phase-conjugate output. Results are
presented in Fig. 4, which shows the largest nonnegative
Lyapunov exponent (A;) obtained from experimental data
of SPPC in BaTiO;. The input-beam intensity, I, =
2.1 W cm ™2, was kept constant for the three cases shown
in Fig. 4. Figure 4(a) shows the results for § = 2°. Data
files were obtained at intervals of 0.1 mm along the crys-
tal face. For x < 3.0 mm and x > 4.0 mm the Lyapunov
exponent (A;) was observed to be zero (0.00 * 0.02), show-
ing nonchaotic behavior corresponding to stable phase-
conjugate output. For x = 3.5 mm a Lyapunov exponent
of A; = 0.31 was obtained, thereby establishing that the
transition is definitely one from nonchaotic behavior to
chaotic and back to nonchaotic behavior as the input beam
is tracked across the crystal. Estimated errors in the
calculation of the Lyapunov exponent are 5-10%.

Figure 4(b) shows a similar result for # = 15°. How-
ever, the chaotic region is reduced to a smaller region x <
8.6 mm and x > 3.1 mm. A Lyapunov exponent of A; =
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0.29 was obtained for x = 3.4 mm. Figure 4(c) shows
that for § = 50° the phase-conjugate output remains
stable.

CONCLUSION

For the first time, to our knowledge, we report investiga-
tions of the variation of the largest nonnegative Lyapunov
exponent (A;) as a function of input-beam position for
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Fig. 4. Experimental results showing the calculated largest
nonnegative Lyapunov exponent (A;) as a function of input-beam
Iy = 2.1 W cm™ 2) position along the x axis of the crystal (5 mm):
(a) 8 =2° (b) § = 15°, and (c) § = 50°.
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SPPC in BaTiO;, proving that for certain beam geome-
tries variation in the input-beam position causes the
phase-conjugated output to become increasingly chaotic
within a narrowly defined region. This technique has
the advantage over other methods of determining chaos
because of its good parameter independence and insensi-
tivity to the rate of visitation of the attractor, which is
important for the specific case of SPPC.

The experimental analysis used in this paper could
also be extended to investigations of instabilities that
have been observed in other forms of phase conjuga-
tors in BaTiOj3, such as the mutually pumped phase
conjugator.?2®  We have also observed similar instabil-
ities in SPPC at 514.5 nm in an ion-implanted planar
waveguide in an impurity-doped blue BaTiQOj crystal.’
This investigation is currently under way.
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