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Fiber vibrometer with three-phase fringe-analysis
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A fiber-remoted, non-contact, optical surface-vibrometer which uses no source wavelength modulation is reported. Three-phase
fringe sampling using a 3 X 3 fiber coupler and processing using a digital processor allow automatic multi-fringe unwrapping, sub-
fringe interpolation and insensitivity to interferogram intensity and contrast variations. A noise-equivalent sensitivity of 50 pfringe/

/ Hz is demonstrated.

1. Introduction

Optical interferometers are increasingly being used
in mechanical metrology in preference to other tech-
niques [ 1]. They function by beating an optical ref-
erence-wave with a signal-wave reflected from the
object under investigation, forming an interfero-
gram. The non-contact nature of the measurement
gives optical interferometry significant advantages
over, for example, piezoelectric accelerometers, in-
cluding minimal loading of the surface under mea-
surement, very high spatial resolution, and high
measurement bandwidths. In addition, conjunction
with optical fibers gives the ability to measure in in-
accessible locations with a passive optical head.
Lastly, new semiconductor and rare-earth-doped fi-
ber sources promise reduced system complexity and
cost, and operation at a wider range of wavelengths.

In practice, however. many demonstrated systems
are complex. because of the need for fringe process-
ing to remove directional ambiguity and sensitivity
variation inherent in the periodic interference pro-
cess. Many published and commercial systems use
phase- or frequency-modulation (heterodyne) tech-
niques to circumvent these problems. Where the
source is a gas-laser an expensive Bragg-cell fre-
quency shifter is required for this. Direct frequency-
modulation of diode-laser sources is possible, but
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only by introducing new problems of simultaneous
intensity-modulation and laser instability via mode-
hopping. In the scheme described here no source
wavelength modulation is necessary. Instead, static

. measurements of interferogram intensity are made

at several different optical phases. The resultant sys-
tem is much simpler, uses primarily digital process-
ing techniques, and operates the source in an opti-
mum environment of constant temperature and drive
conditions. In principle, any source of adequate tem-
poral coherence may be used, without regard for the
requirement for direct-modulation.

2. Experimental configuration

Figure | shows the optical configuration. Light
from a 40 mW 841 nm wavelength semiconductor
laser (Sharp LT015) was coupled into a length of
non-polarization-maintaining singlemode fiber us-
ing two lenses (/=3.6 mm, NA=0.45 Nippon Sheet
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Fig. 1. Three-phase vibrometer optical configuration.
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Glass type SPL graded index lens and f=10 mm
Grun Optik GmbH. achromat). All fiber ends were
angle-polished at 15° to reduce back-reflection of
light into the laser cavity. Overall coupling efficiency
was ~42% .

At the distal fiber end the light was collected using
an f=30 mm Steinheil achromat (Melles Griot
O01LATI5) and focused onto the vibrating surface of
a 20 mm diameter piezo-electric buzzer, coated in
retroreflecting paint. By driving the buzzer electri-
cally, displacements up to a few um were possible.
About 107° of the incident light was recollected by
the emitting fiber.

100 mm from the emitting fiber end approxi-
mately half of the light was split off in a 2 X2 fiber
coupler to serve as a reference wave, after attenua-
tion in an in-line fiber attenuator formed using a fixed
air-gap. The remaining port of the 2 X 2 coupler sep-
arated half of the reflected signal wave. To form the
interferogram, object and reference waves were
mixed in a second, 3 X 3 fiber-coupler. Only two in-
put ports of this coupler were used.

3. Signal processing

The interferogram to be measured has the sinu-
soidal form /=M+ R cos¢, being described by three
unknowns, namely the mean detected intensity A,
the contrast K=R/M, and the phase ¢. In order to
determine ¢, independent of variations in the other
quantities. at least three independent measurements
of the fringe pattern must be made. A pair of (quad-
rature) measurements spaced by ¢=mx/2 is not ad-
equate unless variations in contrast and mean inten-
sity are small, or can be calibrated out by sweeping
the phase. as in heterodyne techniques. Through the
use of the 3 X 3 coupler. whose outputs are mutually
phase shifted by approximately 27/3 radians. three
independent samples of the interferogram were made.
This configuration 1s much more convenient, more
stable. and optically efficient than a system manip-
ulating fringes in a bulk Michelson interferometer
[21.

Normalization of received contrast level and phase
determination using analogue circuitry via the re-
lation ¢=tan~'(Q/I) is commonly used, but supe-
rior performance can be obtained by converting at

2

OPTICS COMMUNICATIONS

1 August 1993

an early stage to the digital domain, afterwards
translating digital intensity values to phase values in
EPROM look-up tables. This elegant approach was
developed by Mertz [3,4] for use in astronomical
instrumentation. The parallel digitization technique
demonstrated in that work is ideally suited to this
application (fig.2).

The three optical samples were detected in iden-
tical transimpedance amplifier receivers with a trans-
impedance of 100 MQ. This high value was dictated
by the low level ( ~nW) of received power. Using a
dual operational-amplifier design it was possible to
achieve a system bandwidth of > 80 kHz with an un-
biased 1 mm? detector of 20 pF capacitance.

The three electrical signals were then fed in par-
allel to a bank of six 8-bit flash analog to digital
(ADC) converters (Micro Power Systems Inc.
MPS8780). Each ADC was responsible for digitizing
2n/6 of a fringe, namely the approximately linear
branch in the most rapidly varying portion of the
sinusoidal fringe pattern. Note the permutation of
the three signals A, B, C amongst the high-reference,
low-reference and true inputs of the ADCs. Overflow
flags on three of the ADCs encoded a chip-select bit
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Fig.2. Digital processor which performs phase measurement in a
paratlel-connected bank of ADCs, and low-pass filtering with a
multiplier accumulator chip (MAC).
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that was used to switch valid data onto a common
data-bus. As the optical phase was varied, the six
ADCs encoded intensity into 6X256=1536 re-
solved points per cycle. A pair of fast EPROMs (Cy-
press Semiconductor Corp. CY7C291) coded with
the remanent sinusoidal nonlinearity supplied the
1536 per fringe phase values to 12-bit precision.

This technique [3] of digitally normalizing each
intensity sample to a span given by the other two
phase samples removed all effects of absolute inten-
sity and contrast variations. As long as the three
samples exhibit the same mean intensity and con-
trast values, and suffer from zero intensity offsets,
‘hen a reduction in intensity or contrast does not
change the measured phase, but only the signal-to-
noise raiio (S/N).

While the basic digitization-limited resolution was
adequate for a machine-tool application, a resolu-
tion much higher than . (2x1536) was necessary
for surface vibration measurements. This was
achieved by low-pass filtering, performed as in ref.
[3] using a digital infinite-impulse-response (IIR)
filter designed around an adder and 12 x 12-bit mul-
tiplier-accumulator chip (MAC). Filtering band-
width and resolution-enhancement could be chosen
by setting the number N (division input) to the MAC
in the range 2° 1o 2'°, N determines the number of
ciock cycles over which any input phase-change is
averaged by the IIR filter; the effective sampling rate
is therefore clock-rate/N. The MAC also performed
fringe-counting to 16 fringes directly. and to arbi-
trarily large number of whole fringes using external
circuitry.

4. Performance

The 25-bit dynamic range capable of the MAC s- ~-
tem (11-bit sampling plus 10-bit filtering plus 4-b1t
fringe counting) cannot be resolved on an oscillo-
scope display, so an 8-bit digital-to-analog converter
(DAC) was used to display a selected 8-bit segment
from the full phase output. By moving the location
of the 8 bits along the full output, full-scale analog
deflections (FSD) up to 16 fringes could be dis-
played, or down to 1/1024th fringe. Figure 3 shows
one channel of the raw interferometer output (a) and
demodulated motion (b) for a multi-fringe (~81)
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Fig.3. Detected interferogram and demodulated object position
for an ~ 84 peak-to-peak sinusoidal motion.
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Fig.4. Noise spectrum of unilluminated photoreceiver (lower
trace) and vibrometer output (upper trace) with an object mo-
tion of 47 mrad peak-to-peak.

motion. Here the sampling rate was 7.5 MHz. re-
duced to 59 kHz with an N=128 filtering divisor. At
this high amplitude some intensity modulation due
to transverse movement on the retroreflector beads
1s visible. However. the demodulated output is un-
distorted. showing the robustness of the three-phase
system to such effects.

At a source power level of 10 mW, 2 mW was in-
cident on the target. The received power level using
retroreflective tapes was very variable, but typically
an object signal of 2R =40 nW was available. A peak-
to-peak (pk-pk) object motion of >420 nm (1 fringe
pk-pk motion) would therefore give 2 V output at
the receivers. System bandwidth was set at 80 kHz.
Figure 4 shows the interferometer noise spectrum by
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comparison with a 47 mrad object phase excursion
at 40 kHz. Dotted lines give the shot noise levels due
to detector dark current and a 40 nW received power
level. The apparent sub-shot noise level at mid fre-
quencies is due to ~ 3 dB variations in receiver fre-
quency response reducing detected output there also.
The noise level corresponds to a minimum detect-
able phase in 1 Hz bandwidth of ~ 12 pfringe; we
specily the instrument at 50 p.fringe/\/}Tz to allow
for reflectivity variations of the retroreflective
coatings.

5. Summary

In contrast to heterodyne, modulated diode-laser
based vibrometers, the multi-phase static scheme de-
scribed here places the source in an improved en-
vironment, namely optically-isolated from the fiber
delivery system, at constant temperature. and driven
from a low-noise power-control circuit. As no ac
phase-modulation is required of the source, it can
equally well be a gas laser, doped fiber-laser. or broad-
band emitter for short path-difference systems. A
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disadvantage of the present scheme is that the fibers
in the head are not insensitive to phase disturbances,
and so the phase will tend to drift over time. How-
ever, with careful encapsulation drift rates of <1 rad/
min were easily achieved. For vibrometer use this
drift rate is much less than drifts of the experimental
set-up and parts under investigation.

We have described an apparently novel multi-phase
sampling and phase demodulation scheme applied
to a diode-laser-sourced, fiber-delivery optical-vi-
brometer. The technique is applicable also to general
optical sources, even when direct wavelength mod-
ulation is not possible. A noise-equivalent minimum
detectable phase shift of <50 pfringe/ \/E was
achieved with only 40 nW received from the object
surface.
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