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Transmission of 6 ps Linear Pulses Over
50 km of Standard Fiber Using
Midpoint Spectral Inversion
to Eliminate Dispersion

Richard I. Laming, David J. Richardson, Domino Taverner, and David N. Payne

Abstract—Transmission of 6 ps linear pulse pairs over 50 km
of standard fiber is demonstrated by employing midpoint spec-
tral inversion (phase conjugation) of the data signal to compen-
sate dispersion effects. Pulse broadening as low as 10 percent
and faithful reconstruction of the pulse patterns are observed
and confirm the applicability of this technique to bit rates
greater than 100 Gb ~'.

INTRODUCTION

HE advent of erbium-doped fiber amplifiers

(EDFA’s) has made high-capacity transparent optical
networks operating around 1.55 um a reality. However,
since the majority of the world’s installed fiber is designed
to operate around 1.3 um, the minimum dispersion re-
gion, there is strong commercial pressure to upgrade
these links. At present there are two options: either to
develop 1.3 wm amplifiers based on Pr*- or Nd**-doped
fiber [1], [2] or to employ dispersion compensators [3]-[6]
to allow the fiber to be used around 1.5 um, where the
EDFA operates.

Dispersion compensation techniques include the incor-
poration of a special dispersion-equalizing fiber, such as
two-mode fiber [3], to reduce the net link dispersion or
the use of optical phase conjugation (spectral inversion) of
the data spectrum at the midpoint of the transmission link
[4]-[6]. In the latter case, the pulse disperses in the first
half of the link, at which point its spectrum is inverted
such that the dispersion in the second half acts in the
opposite sense and recompresses the pulse.

Nondegenerate four-wave mixing (FWM) in both a
semiconductor amplifier [4] and a dispersion-shifted fiber
[5] (to obtain phase matching) has been employed to
provide spectral inversion. By employing the latter, the
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transmission of 10 Gb~! NRZ data over 360 km of
standard fiber has been demonstrated [6].

In this paper we investigate the applicability of the
spectral-inversion technique to bit rates greater than 100
Gb~!. We demonstrate linear transmission, phase conju-
gation, and retransmission of 6.2 ps pulse pairs
(mark—space ratio in the range of 2-5) over a total
distance of 50 km of standard fiber. It is necessary to
place the phase conjugator slightly away from the mid-
point of the data link to compensate for the discrete
wavelength shift that occurs after spectral inversion and
that results in the two sections of the link having
marginally different dispersions. A minimum pulse broad-
ening of ~ 10 percent is observed limited primarily by
spectral shaping in the optical filters employed. In addi-
tion, no pulse-to-pulse jitter is observed, and thus, the
results confirm the applicability of the technique to bit
rates greater than 100 Gb™'.

EXPERIMENT

The experimental configuration is shown in Fig. 1. A
polarization-maintaining, passively mode-locked figure-
eight erbium-doped fiber laser was employed to generate
short soliton pulses at an average repetition rate of ~ 200
MHz and a center wavelength of 1532 nm [7]. These were
coupled through a short section (~ 30 m) of dispersion-
shifted (DS) fiber (lab to lab), attenuated and split with an
80: 20 coupler. An autocorrelation trace and spectrum of
the pulses measured at this point are shown in Fig. 2(a)
and (b) and indicate a pulse width of 6.2 ps and spectrai
half-width of 0.44 nm, corresponding to a time-bandwidth
product of 0.34, which indicates that the pulses were
slightly chirped due to propagation through the 30 m
section of DS fiber. The pulses were propagated over
24.6 km of standard fiber (D = 16.6 ps/nm-km and
dD/d\ = 0.06 ps/nm? - km) with input power reduced to
~ —16 dB (1 mW) (~ 20 mW peak power) to ensure
that linear transmission (i.e., nonsolitonic) occurred. At
the fiber output the pulses were extensively dispersed
(~ 200 ps).

At this point, spectral inversion of the data spectra was
carried out using FWM. The dispersed pulses [with an
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Fig. 2. (a) Autocorrelation trace and (b) spectra of the pulses at the
transmission fiber input.

average power of —28 dB (1 mW)] were combined with
the output from a tunable single-frequency laser
(1533-1535 nm, —11 dB (1 mW)] with polarizations
aligned to maximize four-wave-mixing, and input to a
35 m germano-alumino-silicate-based EDFA counter-
pumped at 978 nm. The amplified output (~ 50 mW) was

Autocorrelator
or
spectrum analyser

Experimental configuration.

propagated through a 2.2 km section of dispersion-shifted
fiber that had zero dispersion at 1532 nm, and thus, was
phase matched for efficient FWM between the reference
and data signals. The wavelength-upshifted and
spectrally-inverted conjugate of the data was spectrally
filtered using a grating having a 3 dB filter width of
~ 1.5 nm and retransmitted back down the same 24.6 km
of fiber. At the relaunch, the power in the phase-con-
jugated data signal was ~ —25 dB (1 mW). The recon-
structed pulses were split via the 80:20 coupler, ampli-
fied, and input to an autocorrelator. Polarization con-
trollers were included only to maximize, the signal in the
presence of polarization-dependent effects in the grating
filter and the autocorrelator.

RESULTS

Results plotted in Fig. 3 show the transmitted pulse
width as a function of the wavelength separation AA
between the data and the reference. A sech? pulse form is
assumed, and thus, the pulse half-width is a factor of 1.56
shorter than the autocorrelation half-width. Three curves
are shown, corresponding to transmission and retransmis-
sion through 24.6 km of standard fiber alone, and with
additional sections of either 300 or 500 m of standard
fiber (D = 17.6 ps/nm-km) inserted at the input to
effectively shift the phase conjugator away from the mid-
point of the transmission link. For no additional fiber, the
dispersion mismatch between outgoing and return paths
increases approximately linearly with wavelength separa-
tion, and thus, the transmitted pulse width is observed to
increase quasi-quadratically with wavelength separation.
A minimum pulse width of 8.7 (+0.7) ps was observed for
a minimum practical wavelength separation of 1.5 nm.
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Fig. 3. Output pulse width as a function of the wavelength separation
of the data and reference signals.

By adding a fixed dispersion prior to the outgoing fiber
(i.e., moving the phase conjugator away from the mid-
point) the dispersion mismatch between outgoing and
return legs caused by the spectral-inversion wavelength
shift A can be compensated. With an additional 300 m
section of standard fiber added, the transmitted pulse
width is again observed to increase quasi-quadraticaily
with wavelength separation; however, the pulse width is
now reduced for more practical (i.e., larger) wavelength
separations. For this length of additional fiber, the net
link dispersion is predicted to be minimized for a wave-
length separation of ~ 1.1 nm, and experimentally a
minimum transmitted pulse width of 7.7 (£0.3) ps for a
wavelength separation of 1.54 nm was observed.

In the case of the 500 m additional fiber section, the
transmitted pulse width was minimized for a wavelength
separation of 1.85 nm. This is a larger separation than
predicted (1.6 nm) assuming a conjugator of zero length
and the known third-order dispersion of the transmission
fiber. The discrepancy may arise due to the finite length of
the phase conjugator. In addition, the experimental data
appear to exhibit a more pronounced reduction in pulse
width around the optimum wavelength separation than
might be anticipated. This is partially explained by the
initial pulses being slightly chirped. Fig. 4(a) and (b) show
the autocorrelation and spectra of the transmitted pulses
at this optimum operating point and indicate a minimum
pulse width of 6.9 (+0.3) ps. The slightly reduced spec-
trum of 0.41 nm is consistent with the filtering imposed
primarily by the grating filter, which in addition to the
anticipated broadening due to third-order dispersion
(~ 0.2 ps), accounts for the observed minimum pulse
broadening of ~ 10 percent.

In order to further assess the quality and linearity of
the phase-conjugation process, the propagation of pulse
pairs was investigated. The output pulses from the laser
were launched into a Michelson interferometer with a
variable delay in order to generate individual pulse pairs
with a well-defined interpulse separation. In Fig. 5(a) and
(b) we show the autocorrelation and spectra of the pulse
pairs measured at the 80:20 coupler for a reasonably
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Fig. 4. (a) Autocorrelation trace and (b) spectra of the pulses after
transmission.

wide launch pulse duration-to-separation ratio of 1:5. At
this measurement point the pulses have already broad-
ened slightly to 8.8 ps from their initial width of 6.2 ps
because of the 500 m section of fiber. The pulse separa-
tion is observed to be 31.5 ps, corresponding to a repeti-
tion rate of 32 GHz. The optical spectrum of the pulses is
modulated at a period of 0.25 nm, in agreement with the
observed pulse separation. The ratio of the cross to self-
correlation peak heights is 2.3:1, instead of exactly 2:1,
owing to a slight mismatch in powers from the two arms
of the interferometer. The cross-correlation half-width
(8.8 ps) is the same as that of the self-correlation half-
width, confirming the linearity of the autocorrelator scan.

The corresponding autocorrelation after propagation
over the full 50 km is illustrated in Fig. 6(a) and shows a
clear trace of the pulse pair. The self- and cross-correla-
tion widths are identical (~ 7.4 ps) and the intrapulse
separation (~ 31 ps) is preserved, indicating that no addi-
tional jitter has developed, or that significant deformation
of the transmitted pulse pairs has occurred.

Similar data were obtained for interpulse separations
ranging from 5:1 to 2.5:1 and the autocorrelation traces
agreed well with their predicted forms, although at sepa-
rations less than 2.5:1 (~ 70 GH2) it was difficult to
quantify the quality of the pulse train reconstruction,
owing to the relative insensitivity of the autocorrelation
shape to changes once the pulses were packed closely
together. An example of a 50 GHz trace is presented in
Fig. 6(b), where we have resolved a pair of 7.1 ps pulses at
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Fig. 5. (a) Autocorrelation trace and (b) spectrum of the pulse pairs at
the 24.6 km transmission fiber input. Values are given for both the pulse
width and the (autocorrelation half-width).

a separation of 20 ps. Once again, the self- and cross-cor-
relation widths are identical and the period agrees well
with the repetition rate predicted on the basis of the
0.37 nm spectral modulation observed on the input pulse
spectrum.

Fig. 7 shows the transmitted pulses directly over 50 km
(i.., no phase conjugation) that, taking into account the
detector-scope response of 320 ps, indicates a pulse
broadening of ~ 400 ps. Thus, a dispersion compensation
factor of > 500 is demonstrated.

These results confirm the ability to spectrally invert and
reconstruct picosecond pulses, and thus, confirms the ap-
plicability of the technique to dispersion compensation at
bit rates greater than 100 Gb~'. However, phase conjuga-
tion of subpicosecond pulses is likely to be limited by the
bandwidth of the phase conjugator, which in the present
setup was several nanometers (~ 500 GHz), but can be
extended with careful fiber design or the use of a semi-
conductor [8}.

In the present experiments, the input power level was
determined such that linear transmission of the pulses
occurred, however, it corresponds to a approximately one
million photons per pulse and a pulse energy several times
greater than that used in current 10-20 Gb~! soliton
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Fig. 6. Autocorrelation trace of (a) the reconstructed pulse pairs illus-
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Fig. 7. Transmitted pulses directly err 50 km. 200 ps time/div and
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communication systems [9]. In addition, it has recently
been shown theoretically that the phase-conjugation pro-
cess can also compensate for fiber nonlinearities [10].
Thus, it is clear that the technique offers the potential for
increased transmission powers and facilitates the use of
wavelength division multiplexing (WDM) and increased
repeater spacings in long-haul links.

CONCLUSIONS

Linear transmission of 6 ps pulses over 50 km of stan-
dard fiber has been achieved by employing nondegenerate
four-wave mixing in a short-section of dispersion-shifted
fiber to spectrally invert the data close to the midpoint of
the link. By optimizing the exact position and wavelength
shift of the phase conjugator, dispersion effects are mini-
mized, resulting in a transmitted pulse width of 6.9 ps, i.e.,
a broadening of only 10 percent. In addition, pulse pat-
terns are reconstructed with no additional pulse-to-pulse
jitter, even when they have temporally smeared to the
point of extensive pulse overlap in the conjugator. The
results directly demonstrate the potential of the technique
to extend to data rates greater than 100 Gb~' and shows
that optical phase conjugation is a powerful technique
that virtually eliminates fiber dispersion, leaving only
higher order dispersion uncompensated. For example, we
estimate that at 50 Gb~! higher order dispersion will limit
transmission distances to ~ 2000 km in standard (D = 17
ps/nm - km) fiber. However, a detailed analysis including
amplifier and phase-conjugator noise, as well as fiber
nonlinearity is required to fully explore this possibility.
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