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Abstract:

Making use of numerical collisions simulations we study the
stability of the solutions of the nonlinear cubic-quintic
Schrodinger equation.A single value and a pistable region of the

high order parameter were studied and quasi soliton behavicur was

found.



INTRODUCTION

Ultrashort optical solitons are described by the nonlinear
Schrodinger equation (NSE) for a medium with Kerr-type
nonlinearity and anomalous dispersion.

Since the prediction (1) and experimental observation (2)
of soliton propagation in optical fibers there has been an
increasing amount of research in this area.Soliton propagation
may prove to be of high importance in the development of high
bit-rate transmisssion systems(3,12), compression of optical
pulses(4),optical switching and bistability(5).

Recently attention has been given to high order effects
such as third order dispersion,self frequency shift (6,7),and
self steepening,all of which become important when working with
high peak power and ultrashort lasers pulses(®100fs).

When we propagate a high intensity laser pulse down the
fiber, the Kerr type nonlinearity alone cannot describe adequatly
the field induced change of the refractive index.This is due to
the contribution of high order terms.

Pushkarov(8) have obtained solitary-wave solution to the
generalized nonlinear Schrodinger equation,including terms up to

fourth order in the refractive index expansion:

n = ck/w, = n, + n,|E|* +n,|E|* (1)
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where ¢ is the speed of light in vacuum,k is the wave number, and
W, is the frequency.

Since this first demonstration of solitary-wave
behaviour there has been some discussion about the stability of
the high order solutions and the bistability associated with
them(9,10,14).

In order to study the stability of any solitary wave
solution from the generalized NSE(cubic+quintic) we should take
in account whether the cubic nonlinear Schrodinger solutions are
stable against both small and large pertubations.After the
collision of two of these solitons, they emerge with
intensity,velocity and profiles unchanged.

This behaviour was observed theoretically and experimentally
(2,11) and provide a very strong test of stability.This criterion
will be used when comparing with other collisions experiments.

In this paper we examine the stability of solutions of
the cubic-quintic nonlinear Schrodinger equation in a single
value and bistable region of the parameter by means of numerical

collisions simulations



CALCULATIONS:

The nonlinear Schrodinger equation can be derived by assuming

(6,12):

E(x,t)=Re(¢(x,t)EXP(i(kx-wt)))
where ¢ is the electric field amplitude,and expanding the mode
propagation constant k(w, |E|? , |E|* )in a Taylor series about

the center frequency. DNeglecting damping and higher order

dispersion we have:
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where the following dimensionless units are introduced:

A=|P, u =z / L T=T/T, (3)
with

=8, [/(TS ) L =(T,)* /|8, | (4)
where P, is the peak power, T, 1is the width of the incident

pulse, §, is the group velocity dispersion and &« is the

nonlinear cofficient(Kerr):



vy=1n w /[ C Aeff
where Aeff is the fiber effective core area.

In our case the nonlinearity will be given by:

£(lul?)=4 |al> + flaf’ (5)
with
b= - n, |6 |/(T)° 7 and A=-1 (6)

In general the values of the coefficients n, and n; depend
strongly on both the medium and frequency selected.

semiconductor doped glasses have shown high values
for the nonlinear susceptibilities x> and x  (13,15).vValues
of |x’| ranging from |107| to |107?| ESU have been published.For
the high order susceptibilities |x’|®1.8 10 and [x'|=3.2 10
ESU were obtained in commercial glasses(13,15) .Fibres produced
from these kind of glasses could lead to the observation of high
order effects.

Analytic technique to obtain solutions from equation

(2)+(5) can be found elsewhere(8,10,14) .Solutions can be obtained

taking r to be of the form:

s = (r, +(2/3) 0( ") (7)
r(r)= (2 s)/(1 + (1+(4/3) 8 r, )cosh(2r{s)) (8)
and q(r)={r(7)

where r, =r(7=0) and q, = Ii (9)
looking now for solutions where r(r=0.88) = (1/2)r, we have

from equation 8:

(1+(4/3) 6 r, )cosh(1.76 [s) = 3+(8/3) 0 x, (10)



giving a direct relation between q, and the parameter #

In figure 1 one can see a plot of f vs q, derived from
equation (10) for g(o .In this situation for each value of
6 there are two possible values of q, with different
amplitudes for |8|,up to [#]|=0.2 . In this case for the same
|8| parameter we should have two soliton solutions with
different peak powers for the same pulse duration.In figure 2
one can see the plot of function (10) for the case f)0. In this
instance the solutions are single valued.

The stability of the single and bistable solitons are
important for future applications.In the next section we study
the stability of these solitons and discuss the stability
criterion.

In a laboratory experiment the bistable solutions should
pe seen in a situation where,having one soliton pulse,a further
increase of the laser intensity will lead to another soliton

with higher intensity but with the same time duration.



RESULTS:

In order to study the stability of the solitary wave solution
from the generalized Schrodinger equation eqg(7-8) we have to
solve numerically equation (2)+(5)

In this numerical simulation we used the split-step

Fourier technique which has been described elsewhere(6).
The accuracy of the numerical procedure was monitored calculating
the pulses energy during propagation and using optimum step
size(6,16).To study the stability of these soliton pulses we have
to study the collision of two solitary waves( eq.7-9) .If the
collision is perfectly elastic, (the shapes,amplitude and
velocities of the waves are unaltered after the collision) the
two pulses are stable solitons.

Initially the collision of two solitons from equation (2)
with 6=0 was studied . In this case we have the basic NSE with
a perfect elastic scattering(figure 3).After the collision the
solitons are perfectly stable,whithout any change from the
inicial state(before collision),and without any intensity
modulation.

This perfect soliton behaviour will be compared with others
collisions experiments.

We can now look for the two regions of the parameter
where 6#x0:the bistable region (figure 1) where 6f<0and single
valued(figure 2) 6>0.

Initially we will examine the two branches of |6|=0.1



(figure 1).The collision of two solitons of the low amplitude
pranch (6=-0.1 /% —-1.078 )is shown in figure (4).In figure (5)
one has the initial (a) and final shape (b)yof the pulse before
and after the collision.Amplitude instabilities after collision
are clearly seen.The pulse (b) has higher amplitude compared with
(a) .The collision is partially inelastic.Looking now for the high
amplitude pranch (0=-0.1,% =2.622) we found that it is very
unstable even in the normal propagation in the fiber.In figure
(6) one can see clearly strongd amplitude modulation during
propagation.similar behaviocur was found for higher values,of the
parameter ,in this branch

If we start increasing |8| we will find a growing
instability.In figure (7) vwe have the collision of two solitary
waves for 0=-0.2 (d, 7 1.305) .The amplitude instability is quite
clear

Going out of the solution region (figure 1) ,taking 6=-
0.65 for example, the pehaviour is even worse.In figure 8 we have
the collision of two of these solitary waves.A strong amplitude
modulation after scattering is present with the pulses being very
distorted (Figure 9a and figure 9b).

Looking now for the single valued pranch (figure 2) with
g>0,we find a very interesting pehaviour .In figure (10) we have
the collision of two solitary waves with 6=0.1 and

q;=0.952.Looking for the input and output pulses we still find



that we have a partially inelastic scattering (figure 1la and
11b).If we Kkeep increasing the parameter the non-soliton
behaviour is very strong.In figure 12 we have the collision of
two solitary waves with f=+2(g, =0.685) .From figure 13a and 13b
the pulse distortion and amplitude reduction 1is gquite clear.

The conclusion from these calculations is that the
solitary waves solutions from the generalized NSE are not
solitons, because of the partially inelastic collisions
observed.Nevertheless these pulses could survive collisions with
small pulses.In figure 14 we have a collision between a solitary
solution (#=-0.1 g,=1.078)with a pulse of 10% of it's
intensity.Even in this case the pulse experiences a reasonable
pertubation but after all remains unchanged.These solitary waves
are stable under small pertubations.

It was already shown in the literature that in both
regions of the parameter (>0 and 6<0 ) we have dP/dé)0(10) .Here
P is the energy of the solitary pulse and § is the propagation
parameter.Which according to the Kaplan criterion is a necessary
condition to have stability against small pertubations but does
not guarantee the stability against strong pertubations(pulse
collisions).We can conclude that in this region of the
parameter,the solutions present partially inelastic behaviour
which caracterize the quasi-soliton. They are stable under small

pertubations but shows unstable behaviour in normal pulse
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collisions. This behaviour is 1in agreement with the Kaplan

criterion(10).
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CONCLUSIONS:

In this paper we examine the stability of the cubic-quintic
Schrodinger solutions in the single and bistable region of the
high order parameter.The solutions are found to be gquasi-
solitons,presenting partially inelastic collisions, in this region

of the parameter.
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FIGURE CAPTIONS:

Figure 1:Soliton amplitude dependence g, with [8] (6(0)

Figure 2:Soliton amplitude dependence g, with 8(6)0)

Figure 3 Soliton collision behaviour (#=0) and g,=1.In figures
3,4,6,7,8,10,12,14 distance is 1in meters (the dimensionless
propagation unit ({) could be obtained,taking in account that
L,=64.6m)

Figure 4:Quasi soliton collision behaviour,#=-0.1,9,=1.078
Figure 5:Input pulse(a),output pulse(b) extract from figure
4 (central pulse)Vertical scales are normalized.

Figure 6:Pulse propagation,f#=-0.1,q,=2.622

Figure 7:Quasi soliton collision #=-0.2,9,=1.305

Figure 8:Quasi soliton collision,§=-0.65,9=1

Figure 9:Input pulse(a),output pulse(b) ,extract from figure
8 (central pulse) (Vertical scale is normalized)

Figure 10:Quasi soliton collision:f=+0.1,9q,=0.952

Figure 11:Input pulse(a),output pulse(b) extract from figure
10 (central pulse) (Vertical scale is normalized)

Figure 12:Quasi soliton collision,#=+2.0,9,=0.685

Figure 13:Input pulse(a),output pulse(b) extract from figure
12 (central pulse) (Vertical scale is normalized.

Figure 14:Collision with small perturbation,§=-0.1,9,=1.078
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