The University of Southampton
University of Southampton Institutional Repository

A comparison of ECMWF, NCEP-NCAR, and SOC surface heat fluxes with moored buoy measurements in the subduction region of the Northeast Atlantic

A comparison of ECMWF, NCEP-NCAR, and SOC surface heat fluxes with moored buoy measurements in the subduction region of the Northeast Atlantic
A comparison of ECMWF, NCEP-NCAR, and SOC surface heat fluxes with moored buoy measurements in the subduction region of the Northeast Atlantic
The accuracy of surface heat flux estimates from the NCEP/NCAR and ECMWF atmospheric model reanalyses is assessed by comparison with WHOI research buoy measurements made during the Subduction Experiment in the North-East Atlantic. Each of the reanalyses persistently underestimates the ocean heat gain in this region, the array averaged net heat gain being less than the corresponding buoy value by 32±9 Wm-2 for ECMWF and 35±12 Wm-2 for NCEP/NCAR. The model biases are primarily due to a combination of underestimated shortwave gain and overestimated latent heat loss. They are similar in sign and magnitude but show a greater spread between the various buoys than was found in an analysis of operational model output by Moyer and Weller (1997). The tendency for the reanalyses to overestimate the latent heat loss in this region is consistent with the results of other studies which show that a bias of this sort is to be expected given the choice of bulk flux algorithm in the models. The poor performance of the reanalyses contrasts with estimates based on ship meteorological reports in the SOC flux dataset. The array averaged net heat flux from the SOC dataset agrees with the buoy value to within 10 Wm-2. Similar results are obtained when the comparison is restricted to winter, which is the period most relevant to studies of subduction. The December - February array averaged net heat flux is -52 Wm-2 from the buoys, -57 Wm-2 for SOC, -78 Wm-2 for NCEP/NCAR and -93 Wm-2 for ECMWF. The results from the buoy comparisons reinforce the need for basin scale evaluations of surface fluxes to be supplemented by local comparisons against high quality flux measurements.
0894-8755
1780-1789
Josey, S.A.
2252ab7f-5cd2-49fd-a951-aece44553d93
Josey, S.A.
2252ab7f-5cd2-49fd-a951-aece44553d93

Josey, S.A. (2001) A comparison of ECMWF, NCEP-NCAR, and SOC surface heat fluxes with moored buoy measurements in the subduction region of the Northeast Atlantic. Journal of Climate, 14 (8), 1780-1789. (doi:10.1175/1520-0442(2001)014<1780:ACOENN>2.0.CO;2).

Record type: Article

Abstract

The accuracy of surface heat flux estimates from the NCEP/NCAR and ECMWF atmospheric model reanalyses is assessed by comparison with WHOI research buoy measurements made during the Subduction Experiment in the North-East Atlantic. Each of the reanalyses persistently underestimates the ocean heat gain in this region, the array averaged net heat gain being less than the corresponding buoy value by 32±9 Wm-2 for ECMWF and 35±12 Wm-2 for NCEP/NCAR. The model biases are primarily due to a combination of underestimated shortwave gain and overestimated latent heat loss. They are similar in sign and magnitude but show a greater spread between the various buoys than was found in an analysis of operational model output by Moyer and Weller (1997). The tendency for the reanalyses to overestimate the latent heat loss in this region is consistent with the results of other studies which show that a bias of this sort is to be expected given the choice of bulk flux algorithm in the models. The poor performance of the reanalyses contrasts with estimates based on ship meteorological reports in the SOC flux dataset. The array averaged net heat flux from the SOC dataset agrees with the buoy value to within 10 Wm-2. Similar results are obtained when the comparison is restricted to winter, which is the period most relevant to studies of subduction. The December - February array averaged net heat flux is -52 Wm-2 from the buoys, -57 Wm-2 for SOC, -78 Wm-2 for NCEP/NCAR and -93 Wm-2 for ECMWF. The results from the buoy comparisons reinforce the need for basin scale evaluations of surface fluxes to be supplemented by local comparisons against high quality flux measurements.

This record has no associated files available for download.

More information

Published date: 2001

Identifiers

Local EPrints ID: 7838
URI: http://eprints.soton.ac.uk/id/eprint/7838
ISSN: 0894-8755
PURE UUID: 445aa813-f4b4-49e3-a751-4dd46e522dcd

Catalogue record

Date deposited: 01 Jul 2004
Last modified: 15 Mar 2024 04:49

Export record

Altmetrics

Contributors

Author: S.A. Josey

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×