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Cubic optical nonlinearity of free electrons in bulk gold
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A fast (Tresponse <90 fs) free-electron spin-flipping frequency-degenerate nonlinearity with a significant value

of IXﬁ(ci)yy(w’ 0, w, —w) - Xa(ci)yx(w’ w, w,

new pump—probe polarization-sensitive technique.

It is often anticipated that bulk metals will not yield
any significant nonlinearity y®(w, o, », —») owing to
free electrons. Free electrons, the major agent in in-
frared absorption in metals, were expected to have
no Kerr-type dipole nonlinearity unless they are con-
fined in microparticles, and free-electron third-order
multipole nonlinearities were estimated to be very
small.? Although we do not doubt the essential
truth of these findings, we point out that these stud-
ies did not account for any spin-related processes.
Here we report the results of direct measurements
of the cubic nonlinearity in bulk gold that is re-
sponsible for the incoherent specular inverse Faraday
effect (SIFE). We found that, in the near-infrared re-
gion (at A = 1260 nm), this nonlinearity is rather high
(~1078 esu) and very fast, with relaxation times shorter
than 90 fs. We attribute this to a spin-flipping nonlin-
earity of free-electron absorption that is mainly imagi-
nary. To the best of our knowledge this nonlinearity
has not yet been considered in the case of metals. We
need to emphasize that this nonlinearity is intraband
and consequently should be distinguished from all in-
terband nonlinearities, for example, those responsible
for the coherent third-harmonic generation process®
and the major incoherent visible-range cubic optical
nonlinearity that is due to resonant optical transitions
from the d states to the s—p conduction band in the
vicinity of the Fermi level.*5

The reported characterization of bulk metals became
possible as a result of the development of a new pump—
probe polarization-sensitive technique based on the
incoherent SIFE.*” This is a pump—probe nonlinear-
optical phenomenon in which the medium is stimulated
by a strong, circularly polarized pump wave, result-
ing in the alteration of the polarization of a probe
wave reflected from the surface (see Fig. 1). The
SIFE uniquely complements conventional techniques
used for measurements of nonlinear-optical properties
of opaque materials, such as transient pump-probe
reflectivity,*® reflective harmonic generation,*® and
polarization-sensitive reflective second-harmonic gen-
eration in magnetized media,>'® because it provides
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—w)| ~ 1078 esu has been observed in bulk gold at 1260 nm by use of a

information about combinations of the y® tensor that
are not accessible by use of these traditional methods.
If 1 + iey = |elexp(iB) = n? is the complex dielectric co-
efficient of a strongly absorbing medium, the incoher-
ent contribution to the pump-induced alteration of the
probe wave polarization azimuth «, owing to the SIFE
is

Sa. — 3271
@ cll + n|?
® (0, 0, 0, —w) — x¥ (0, 0, 0, —®
< Im Dxay ( ) = Xy N 1
n(l — n2)

Thus measurement of Sa, yields the value of
[Xg)yy(w, 0, 0w, —w) — Xfc%x(a), w, v, —w)]. Equation (1)
has been obtained from a generalization of the ap-
proach of Ref. 7 in the case of strong absorption. It is
valid within the scope of metallo-optics for |y®|I < c|e],
where I is the pump intensity.

We studied mirrorlike 180—200-nm-thick gold lay-
ers deposited upon glass substrates in a vacuum of
3 X 1078 Torr by evaporation of a 99.99%-pure gold
sample. The thickness of our samples exceeded the
depth of the optical skin layer (12 nm) by more than 1
order of magnitude. The reflectivity of the samples at
A =1260 nm was 97.7 = 0.3%. A polarization-sensitive
technique was used as described elsewhere.!’ A
femtosecond Cr:forsterite laser (A = 1260 nm; Ref. 12)
pumped by a Nd3*:YAG laser was used as the op-
tical source. The probe and pump pulses had a
typical intensity ratio of 1:5 and were focused to a
spot 35 um in diameter. The temporal resolution of
the measurements was 90 fs, which was determined
by the duration of the laser pulses 7,. Reflected
probe polarization azimuth rotation was observed
on the scale of 107°-~107° rad in the pump intensity
range 0.1-1 GW em~2. The direction of the change
in rotation is reversed for a pump wave of the op-
posite handedness. The nonlinear-optical response
was instantaneous within the time resolution avail-
able, and no transient dynamics were observed [see
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Fig. 1. Schematic of the arrangement to measure the
SIFE in gold.

Fig. 2(a)l. A huge value for the material’s dielectric
constant in the infrared region [the Fresnel factor
1+ n2n(1 — n%) ~ |&|?>® = 3.8 X 10* in Eq. (1) for gold
at 1260 nm] dramatically reduces the observable
magnitudes of the reflective nonlinear phenomena,
although the nonlinearity of the material is quite
large. For the observed specific induced polarization
azimuth rotation d(8a,)/0l = 1.1 X 107 W~! ¢m?
[see Fig. 2(b)], the corresponding nonlinear-
ity is [,\/g)yy(w, 0,0, —w) — ,\/Slvx(w, w, 0w, —w)] =
1.5 X 1078 esu.

The incoherent SIFE may be treated by use of a
conventional metallo-optics approach. The light re-
flected from a metallic surface gains a phase retarda-
tion @ = tan"![2«/(n? — 1 + «2)], where 2nk = Im(e) and
n? — k2 = Re(s). The polarization rotation of the re-
flected probe occurs as the result of the pump-induced

circular differential retardation 6, = @, — a_. Inthe
infrared region, where || > |nl,
S a, = -9 M . (2)

K2

In the SIFE, circular dichroism is induced by a circu-
larly polarized pump. Stimulation with an intensity
of 500 MW e¢m~2 yields a (k+ — «x-)/« of approximately
2 %X 1075,

In the infrared (1260 nm, Zw; ~ 0.98 €V) the pump
quantum energy is not sufficient to promote interband
transitions. Consequently interband nonlinearities™®
and, in particular, the Fermi-smearing nonlinearity
owing to the resonant optical transitions from the
d states to the s—p conduction band in the vicin-
ity of the Fermi level, are not relevant to our case.
All the nonlinearity shall be attributed to the free
electrons. Multipole contributions to the free-electron
nonlinearity'® are very small; from classical consid-
erations that ignore spin-related phenomena we esti-
mate them to be 107'* esu, which cannot explain the
observed SIFE. However, nonlinearity of optical ori-
entation of the free electrons’ spins is sufficient to ex-
plain the effect, and here we produce an estimate of this
contribution.

From conservation of momentum and energy, free-
electron absorption occurs when an electron in the con-
ductivity band absorbs a photon and simultaneously
emits or absorbs a phonon or scatters on an impurity,
defect, or boundary. To conserve angular momentum,
the electron must change its spin orientation when a
quantum from the circularly polarized pump wave is
absorbed. In the SIFE, right- and left-handed circu-
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larly polarized light of the pump is absorbed by elec-
trons with opposite spin-projection quantum numbers
m, = 1/2 and m, = —1/2. Here the quantization axis
is in the direction of the light-wave vector. Thus the
absorption of circularly polarized light effectively gives
rise to an imbalance in the different spin occupancies
f+(e, mg = 1/2) and f (e, my; = —1/2) at the electron en-
ergy level . In the infrared the optical quantum en-
ergy is much less than the Fermi energy of degenerate
electrons, e ~ 5.5 €V, and the circular dichroism may
be treated by use of the standard quantum approach
to free-carrier absorption,'* which we have modified to
account for the spin-dependent processes:

Ky — K-

K

_ ﬁ_iL [ ds{[f-(e) — f+(e)]

—[f-(e + howr) — f+(e + hor)]
—2f (e)f+(e + hwr) — fr(e)f-(e¢ + hwr)]}. (3)

As a result of the pump absorption the initial station-
ary Fermi—Dirac distribution f. « 1 — 6(s — &p) is
modified (¢ is a step function): the electron occupan-
cies f- homogeneously diminish below the Fermi level
(er — fiwr, = & < ep) while £, increase above the Fermi
level (er = & = ep + hwr).*® In gold the electron—
phonon collisions do not significantly smooth this
multistep distribution function within the time inter-
val of interest (<90 fs); that is, the electron distribution
is nonequilibrium. Indeed, following Ref. 16, even
taking into account phonons with a maximum energy of
fwp ~ 14 meV and a typical collision time of
Te-p ~ 20 fs, the smoothing that is due to elec-
tron—phonon collisions during 90 fs spreads over only
70 meV, i.e., much less than the entire spectral width
of the step (980 meV). Also, with a characteristic
electron—electron collision time of 7, ~ 3 fs,” electron—
electron collisions in the spectral region of interest
(le — er| < hwy) are quite rare, with a characteristic
time 7., ~ 7o(ep/le — erl)? ~ 90 fs. We neglected
this process in this first-order estimate. Since the
pump-induced change in occupancy of the electrons is
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Fig. 2. SIFE rotation in gold (A = 1260 nm, room temper-

ature) versus (a) pump—probe delay (I ~ 1 GW cm™2) and

(b) pump pulse intensity (zero pump—probe delay).
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small (~1074-1072 in our experiments), Eq. (3) may be
linearized:

N, _N+
-9 . 4
K plep)hor @

Here p(er) is the density of states; N. are the con-
centrations of electrons with the energies e, where
le — er| = hwy and spin projections m, = *1/2 corre-
spondingly. For 6N = N_ — N, at the irradiated sur-
face we have derived the following balance equation:

S sN) =2 EA-R)(,
52 ON) = == (3N) + =5 (2

i)l, (5)

7S

which accounts for fractional absorption of the pump
with intensity I and for spin relaxation. Here
& = L' = 2w«/c is the light absorption coefficient, R is
reflectivity, and 7, is a characteristic spin relaxation
time that is due to electron collisions with photons, dis-
locations, etc. In Eq. (5), 7 is the relaxation time for
electron momentum transfer that accounts for both
spin-flipping (7,) and spin-preserving (7,) scatter-
ing: 7! = 771 + 771 Equation (5) neglects the
influence of diffusion on the dynamics of §N. This
is a justifiable assumption since the characteris-
tic time of electron diffusion 7p through the skin
layer of thickness L ~ 12 nm significantly exceeds
7. Indeed, with the Fermi velocity of electrons in
gold Vp = 1.4 X 108 cm s™! and the electron diffu-
sivity D ~ (1/3)V#7, the electron diffusion time is
p ~ L?/D ~ 95fs. To derive the final formulas we
use the relationship between the reflectivity of light
and the plasmon frequency, 1 — R = 2/(rw,), where
w, = (4me’N/m™*)¥2, and m* and N denote the effective
free-electron mass and concentration:

5N:“(1h_—af)“(1—i)1. (6)

From Egs. (2) and (4)—(6), taking into account the
inhomogeneity of excitation, we obtain

8 (T—S - l). )

theor2 chw,yp(ep)hor \ 7 2

Sa,

o1

With w, ~ 14 X 10%s71, N = 59 x 1022 cm™3, and
m™ being close to the free-electron mass m,, we get
fiw, =9 eV and p(er) = 3N/(4dep) = 8 X 102! eV ! cm 3.
Relation (7) agrees with the experimentally observed
magnitude of the rotation for (75/7)exp = 1; i.e., nearly
every electron momentum relaxation collision causes
spin flipping. The value of 75/7 found is in good agree-
ment with theoretical estimates for the acoustic-type
large-angle electron scattering by elastic strain fields
ingold: 7g/7 = (1/2)(Ageo/d) 2 = 3.6.1" Here d is the
electron—phonon deformation potential d = (2/3)er, €
is the characteristic atomic energy sy = mge*/2%2, and
Ag = 0.1 is the shift of the electron g factor in gold.
We attribute some discrepancy between the experimen-

OPTICS LETTERS / Vol. 20, No. 12 / June 15, 1995

tal value of 7g/7 and the above estimate to other non-
acoustic-type scattering mechanisms; taking these into
account should scale down the theoretically estimated
values of 7g/r. We have not resolved the relaxation
time for this spin-flipping nonlinearity, but the above
analysis predicts it to be equal the spin relaxation time,
i.e., to be on the scale of 1074 s.

In summary, we have observed significant incoher-
ent infrared optical nonlinearities in bulk gold that
we attribute to saturation of a light-stimulated spin-
flipping process.
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