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By invoking Debye potentials, we formulate exact eigenvalue equations and the corresponding field distributions
for general, three-layered, radially stratified, dielectric, and nonferromagnetic metal, optical fibers. By using cross
products of Bessel functions, which may be regarded as the basic functional elements of the eigenvalue equations, a
comparison is made between the properties of a three-layer structure and a simple step-index profile, and a simple
graphical solution is obtained. The technique is applied to several practical structures, including two-layer fibers
having a central index depression in the core, ring-core fibers, W fibers, and progressively stepped three-layered
structures. The mathematical procedure is simple, and the results are of interest to optical fiber designers.

1. INTRODUCTION

An optical fiber consisting of a core and surrounding clad-
ding may be modeled conveniently by a single step-index
profile, from which the modal propagation characteristics,
dispersion properties, and power flow distributions can easi-
ly be described. In the continual search for a better fiber
design, the multilayered structure has become increasingly
popular.I-'® To analyze this structure the simple step mod-
el should be replaced by a more appropriate multistep mod-
el, known as the radially stratified model.3

In addition to precise multilayered models, there are sev-
eral well-developed approximations. These include the
equivalent-step-index model and its improved version,
known as the moment-equivalence model*'5; mode coupling
between a core and claddings®; the index integral over the
innermost layers!®; and a variety of numerical approxima-
tions based on the weak-guidance assumption.l46-13  A]-
though approximate analyses have obvious advantages, they
have limitations and can cause errors if they are not used
wisely.

The objective of this paper is to develop an ad hoc three-
layered analysis technique that is exact for all-dielectric
and/or nonferromagnetic metallic optical fibers and by
which the propagation characteristics may be found graphi-
cally as for the simple step profile. Although the three-
layered structure (TLS) involves only two discrete index
steps, an understanding of its behavior may well be useful
for analyzing a waveguiding structure that has more steps.

In particular, by invoking the well-known Debye poten-
tials, in this paper it is shown how the exact eigenvalue
equation (EVE) may be formulated for various TE, TM, HE,
and EH modes. A brief summary is included of the major
attributes of the cross products of Bessel functions, which
may be regarded as the basic functional elements of the so-
formed EVE. The use of the cross product not only enables
one to compare directly a TLS with a typical single-step
profile (SSP) but also permits a quick graphical solution. It
is, of course, important to apply theoretical modelings to
practical fibers such as typical monomode fibers with a cen-
tral dip, ring fibers, W fibers, and progressively stepped
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three-layer fibers. As a result, a better physical under-
standing of the waveguide mechanism in various structures
is provided, and some new empirical formulas concerning
mode cutoff and dispersive properties are obtained.

2. EIGENVALUE EQUATION AND FIELD
DISTRIBUTION

Figure 1(a) shows the cross section of a typical three-layered
stratified fiber (i.e., a TLS) that has a core of radius r; and
surrounding dielectric claddings of dividing radius ro. The
refractive indices of the three regions are n;, ns, and ns,
respectively; Figs. 1(b)-1(e) illustrate some selected index
profiles. The first step is to establish the electromagnetic
fields and then to formulate an analytic EVE for this fiber
waveguide.

Assume that an electromagnetic wave is propagating along
the 2z axis in a cylindrical coordinate system with a time—
distance factor exp[—j(wt — Bz)]. Here w is the circular
frequency of the light and 8 is the propagation constant,
which becomes complex for leaky modes. From the Debye
potentials 2y¥e/fz and 2,Pe/f?, associated with electric and
magnetic fields E = ee/# and H = he/f?, time-harmonic
fields in the above radially stratified waveguide are well
known to be!?

e = (0¥/rop — BOD/wedr)fy + (—0¥/dr — Bo®/werdd)d,
— (k*n? — D) ®z/jwe, (1)

h = (3®/rd¢ + 8OV /wudr)F, + (—39/dr + BOV/wurde)d,
+ (k*n? — BOV5/jwp. (2)

Here #, ¢q, and 2, are the unit radial, tangential, and axial
vectors, respectively; ¢ and ¢ are the magnetic permeability
and the electric permittivity, which are region dependent.

Formidable as Egs. (1) and (2) may look at first sight, they
offer a straightforward way of depicting the fields for numer-
ous modes, because Debye potentials satisfy the following
Helmholtz equations!®:
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Fig. 1. Fiber cross section and index profiles for a three-layered
radially stratified structure. (a) Cross section, (b) stepped three-
layer fiber, (¢) W fiber, (d) fiber with a central index dip, and (e)
ring-core fiber.

(A, + (B2n2 - 89)]¥,; =0 3)
and
(A, + (B2n2 — 89)]®; =0 4)

(with the subscript i denoting the layer), of which the solu-
tion is already known. After ¥ and & are obtained, simple
substitution into Egs. (1) and (2) can be used to derive all the
field components and therefore the EVE. This approach
requires no special mathematical skills, but the formalism
remains accurate and sufficiently concise. The TE mode is
taken as an example to show how this is done.

By introducing f,(¢) = e*? (v is an integer), Ug? =
r2(kng® — §7), Ug? = ri2 (k2ng? — B%), and Wy? = ry?(6% —
k2ns?), we find that the ¥;’s are

¥, = AJ(Ur/rf (ve), (5a)
¥, = {Axd (Uyr/ry) + ByY (Upr/rif (ve), (5b)
V3 = AK (Wyr/rof,(ve), (5¢)

where J,, Y,, and K, are Bessel functions, Neumann (or
Weber) functions, and modified Bessel functions of the sec-
ond kind, respectively; and Uj, U, and Wj are the layer
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phase parameters. For a TE mode, $; = 0 may be assumed,
which, together with Egs. (1), (2), and (5), gives the following
transverse electric and axial magnetic field components:

eq = —Ay(Uy/r)d, (Uyr/ry), (6a)
€4 = —(Up/r)[Agd, (Uyr/ry) + ByY, (Uyr/ry)), (6b)
ess = —As(Wy/r) K, (Wyrlry), (60
hyy = —(U2/rjor) A (Ur/ry), (6d)

hay = =(U/ri%ju|Ag) (Uyr/r) + ByY (Upr/r)),  (6e)
hey = (Welry2jeom) AgK (Wyr/ry). (6f)

The four coefficients A;, Ag, A3, and Bs are chosen here to
weight the field, but they are interdependent. They may be
eliminated to produce the EVE, by applying boundary con-
ditions such as those involving e; and h,. For the structure
depicted in Fig. 1 there are only two boundaries dividing the
core and the inner and outer claddings; application of the
continuity condition yields a 4 X 4 matrix whose determi-
nant must be zero. Thus we have the following equations.
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Fig. 2. Cross products of Bessel functions p,, g,, , and s, (a = 1.5)
for (a) v=0and (b) » = 1.
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TE Mode
J(r,JaU, + Kp,) = (Kq,/U, + s,/JaUy%). (M

Here a = ry/r; is the ratio of the two radii, J = J,/(U;)/
Ud(U) and K = K/ (W3)/W3K,(W3); and p, =
JAaU Y, (U} = J(Us)Ya(aUs), q, = J,(aU)Y,(U) —
J/(Ua)Y,(alUs),r,=d,/(aUs) Y (Uy) —J,(Ug) Y, (aUy), and s,
= J, (aUs) Y, (Us) — J,/(U) Y, (aUs) are the cross products
of Bessel and Neumann functions.2%2! These Bessel prod-
ucts were studied thoroughly in Refs. 20 and 21. Their basic
features are plotted in Figs. 2, and some asymptotic approxi-
mations are listed in Appendix A.

This routine is repeatable for the TM mode (¥; = 0) and
the hybrid mode (® = 0, ¥ % 0), and the final EVE’s take
the form of Egs. (8) and (9).

TM Mode
J(sgqr,/alU, + Kp,) = 55, (Kq,/Uy + sg58,/aUs%). (8)

HE or EH Mode

P, + 2x,x,(ny2/n ny) (2/wal,?)?
+ 1,22 2[J(r JaU, + Kp,) — (Kq,/U, + s,/aU,%)]
X [J(sgqr,/aUs + Kp,) — $5,(Kq,/Usy + s958,/aU,H)]
= 2,°(Jp, = 8219,/Us)(Ip, = q,/U,)
+ x,2(Kp, + $o57,/aU) (KD, + so57,/aU,). 9

Here 591 = ns?/n;2, s93 = no?/ns2, x12 = k2n2U4U4/v282V 04,
x22 = k2n32a4U24W34/u262V234, V122 = kzrlz(n12 - n22), and
Vas? = k2ry?(ng? — nj?); and k represents the free-space wave
number. Inthe weak-guidance limit, s3; ~ 1 and so3 > 1 may
be assumed in Egs. (7)-(9), and the first term p,2 in Eq. (9)
may virtually be neglected. In general, however, the EVE’s
expressed in Egs. (7)-(9) must be considered, since they are
exact for all kinds of all-dielectric and metallic fibers.

3. GRAPHICAL SOLUTION OF THE
EIGENVALUE EQUATION

As with the EVE of the SSP, the EVE of the TLS can be
solved graphically. The graphical method offers an alterna-
tive approach to determining the solutions of transcendental
equations such as Eqgs. (7)-(9). Equation (7) is taken as an
example to show why this is possible and how it can be done.

In order for the graphical method to be viable, all func-
tions appearing in Eq. (7) must be real and capable of being
plotted as a function of a single variable such as Uy, U,, or
the equivalent index n, = 8/k. Itis convenient, for example,
to plot J(r,/aUs + Kp,) as the left-hand curve and Kq,/aU,
+ s,/aU,? as the right-hand curve on the same diagram (see
Fig. 3). The crossings of these curves correspond to the
solutions: a single crossing represents a single TE » mode,
and the absence of a crossing indicates a cutoff.

Some care is required with this simple graphical method
because the U parameter may become purely imaginary
whenever n, exceeds n; or ny. Should this be the case, the U
parameter must be replaced by the relevant W parameter,
namely, U = jW. Two distinct cases are now examined
individually.
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Fig. 3. Graphical method of solving Eq. (7): n; =147, no = 1.462,
n3=1.458,r, = 3.0 um, ry = 5.0 um, and v = 0. rhs, Right-hand side;
lhs, left-hand side; sol 1 and sol 2, solutions for cases 1 and 2,
respectively.

Casel: n.>m

Case 1 is that of a fiber having a central index dip or that of a
ring-core fiber [Figs. 1(d) and 1(e})]. In this case, U; = jW;
and W2 = k?r;2(n.2 — n?), giving J = J,/(GW)/jWJ,(GW))
= =[(W)/W[,(W1) (I, is the modified Bessel function of
the first kind), which is real. Since K and all cross products
remain real, Eq. (7) is still defined in terms of real-valued
functions, which is amenable to the graphical method.

Case 2: n.> n,

Case 2 represents a matched or depressed W-fiber profile,
for which U; = jWy and Wy2 = k2r12(n.2 — ny?). It follows
that p, = —(2/m)[[,(a W2)K,(Wy) = [(W2)K,(aWy)], q,/Usy =
(2/mW)[I(aWK, (Wy) — I/ (Wo)K,(aW))], r/aUs = (2/
raWo)[I,'(aWo)K,(Wo) — [(W2)K, (aW,)], and s,/als? =
—(2/maW)[I,(aWo)K,/(W3) — I (WK, (aWy)], in view of
J,(GWy) = exp(jon/2)I,(W3) and Y,(jWs) = explj(v + 1)n/
211(Wsy) — (2/m)exp(—jva/2)K,(W,) (see Appendix A). All
these expressions, coupled with real values of J and K, make
Eq. (7) a real function for which the graphical approach is
possible.

The accuracy of the graphical solution depends on the
scale of the drawing, of course. For most practical purposes,
it may be sufficient to calculate 320 points for each frame in
order to achieve an accuracy of 1074 at the cost of a few
seconds of computation time on an IBM personal computer.

4. THREE-LAYERED STRUCTURE AND
SINGLE STEP PROFILE

The TLS comprises two single index steps (i.e., SSP’s); it can
also reduce to a two-layered structure. In this case Egs. (7)-
(9) can be reworked to yield the EVE’s of single-step wave-
guides. Here the TE mode is taken as an example to explain
how the exact EVE’s summarized in this paper can be re-
duced easily to ordinary two-layer ones.

Iy~ ®©,0r ;/r — ®
When the inner cladding is thick enough, the TLS obviously
reduces to the SSP with core and cladding indices n; and n.,
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respectively, and a core radius r;. The condition @ —
implies that r,/aU? « Kp,, s,/JaUs? « Kgq,, and q,/Usp, =
—K'(W2)/WoK(Ws) (see Appendix A), and ultimately Eq.
(7) becomes

J(UD/U (U, = —K'(Wy)/W,K(W,), (7a)
which is the TE-mode EVE of the specified SSP.22

Ip—r,orr/rp—1+dd—0)

The relation r, — r; depicts an SSP with core and cladding
indices ny and n3 and a core radius r;. It can easily be shown
that p, = —(2/m)d = 0, q, = 2/wUs, r, = —2/wals, and s, =
(2d/m)(»%/Us2 — 1) — 0 for a — 1 (see Appendix A), indicat-
ing that

JUNUJ (U, = =K, WK (W5) (7b)

for Eq. (7), as is expected.??

m =1,

The TLS with n; = ny is the SSP fiber with a core radius ro.
For such a profile, V52 = 0,and so U; = Uy, J,/(Uy)/ U, (U1)
= J,(Uy)/UsJ ,(Us). Substitution into Eq. (7) gives

K = —=(1/aUplr, — s,J,(U/J,(Ul/[p, — 4, LU/ (Uy)),
or, more precisely, after a little straightforward algebra,

K,/ (W)/W,K (W;) = —J /(aUy)/aUyJ,(aU,). (7¢)
This is the TE-mode EVE for the SSP of radius r.22

m=1n

The TLS is once again reduced to an SSP but with a core
radius r;. It would now be more convenient to refer to U; =
jWy, and aWy; = W3 in view of Vy3?2 = 0. Proceeding as
above, we may first rewrite Eq. (7) as

J = (q,/Uy +5,/KaU,)/(p, + r,/KaU,)
and then obtain straightaway the SSP TE-mode EVE,??
J,/(UD/UY,(Uy) = =K, (Wy)/ WK (Wy). (7d)

5. THREE-LAYERED STRUCTURE OF A
TYPICAL MONOMODE FIBER WITH A
CENTRAL INDEX DIP

The index profile of a typical monomode fiber often has a
central dip in the core and many random ripples in the
cladding as shown in Fig. 4(a).* As far as the modeling is
concerned, it is a common practice to smooth out those
ripples. The existence of a central dip, as the TLS analysis
tends to suggest, may not be important if it is sufficiently
narrow. This is verified by numerous experimental obser-
vations, but one may ask, How wide may the dip be before it
affects noticeably the modal characteristics?

Two important cases are investigated: a deep dip and a
shallow dip. In either case it is found that 1/a% « 1 is the
only precondition that limits the effects of the central dip
regardless of its actual index. In other words, since ry = (3-
5)A (A is the wavelength) is true for most monomode fibers,
the radius of its central dip must satisfy rj <A,

Tsao et al.
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Fig. 4. (a) Measured refractive-index profile, showing a central

index dip; (b) equivalent index n. of the fundamental mode as a
function of the radius of the index dip.

(2 — n3) & (ny — m) and < r;

Asr; —0, Uy — 0 and W; — 0; accordingly J,/(U,)/ U/ (U))
= -]/ (W)/W,(W;) « 1. Now Eq. (7) may be rearranged
as (for v 2 1)

—K,(W3)/W,K (Wy) = [J,/(aUy)/aUyd,(aUy)]

X (1 —a 2/l +a™?).
(10)

The condition that a=2* <« 1 makes Eq. (10) practically
identical to Eq. (7c), which is the EVE without the dip.

(Hz - H]) < (nz - Il3) and n«<n

Since r; — 0 and n; > ny, it is possible to observe a real U,
although it is small. U; — 0 implies that JJ,/(U)/Ud(U})
— o (for v = 1), which, in association with U, — 0, would
change Eq. (7) to

=K, (W)/WK,(W,) = [J,/(aUy/aU,d (aU,)]
X (1+a 2)/(1—-a?). (11)

Like Eq. (10), Eq. (11) may be treated as Eq. (7¢) under the
condition that a2 « 1.

Figure 4(b) demonstrates how n, of the fundamental mode
varies as the dip widens from 0 to r, as computed from Eq.
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(9). It is evident that n, is not affected while a2 « 1; this
result agrees quite well with the above analyses.

6. RING FIBER WAVEGUIDE

The ring fiber waveguide (RFW) is a waveguide in which the
high-index core is in the form of a thin-walled tube, with
inner and outer lower-index claddings; it is sometimes re-
ferred to as the tubular or annular waveguide. This tubular
fiber waveguide, which has a typical diameter of (50-100)X,
can produce single or multiple images of one endface on the
opposite one; and this “self-imaging” may permit applica-
tions as monomode fiber-optic 3 dB-directional couplers.!4

Self-Imaging and Interference

Figure 5 schematically illustrates how the self-imaging ef-
fects are obtained. The TEMg, radiation from a tunable
dye laser is focused as a diffraction-limited spot onto a point
(e.g., # = 0) on the input end face of the core. By means of
Fourier-Fresnel representation,'* this input radiation may
be decomposed into a superposition of numerous TE,
modes; » ranges from 0 to an arbitrarily large integer. With
no loss of generality, let us plot two lower-order modes (» = 1,
2) against a ¢ axis, describing a single light spot at ¢ = 0 [Fig.
6(a)]. Because of the phase difference of the two modes,
they will interfere with each other as they propagate down
the tubular fiber. It is evident that, when the phase differ-
ence is 7/2 or =, two separate light spots at ¢ = 0, +7 or a
single inverted light spot at ¢ = = is produced [Figs. 6(b) and
6(c)]. For the ring core fibers reported in Ref. 14, of which
ny=n3=1458,n,=1.462,r, ~ro~ 325 um,ro —r;~ 2 um,
and A = 0.59 um, the interference length is calculated to be
110 mm according to Eq. (7), a value that agrees reasonably
well with the measured experimental result (101 mm).

Diameter of the Ring Fiber Waveguide

It must be stressed that, for satisfactory self-imaging effects
to be achieved, the tubular core must be sufficiently large in
diameter and sufficiently thin, as both experiment and the-
ory suggest. A fiber having a small tubular core is no differ-
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Fig.6. Lightspotsas a function of ¢ are superposed to include sin ¢
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shift in sin ¢ over L/2, and (c) = phase shift in sin ¢ at L.
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Fig. 5. Self-imaging effects in a ring-core fiber with (a) a single light spot at the input end face, (b) two light spots at the end face after a half in-
terference length L/2, and (c) an inverted light spot at the end face after the interference length L.
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ent from an ordinary monomode fiber having a moderate
central index dip, which cannot support many modes as
required by the Fourier—Fresnel expansion. OQur analyses
show that r; > 50\ or more is necessary to permit sufficient
modes for self-imaging to be produced, a result that agrees
well with experiments.

Thickness of the Ring Core

In order for the RFW to be treated as a wrapped-up single-
mode slab waveguide, its wall should not be thick. The
mathematical translation of this thin-wall requirement is to
have a single »-mode operation in a RFW, implying the
existence of a unique, single mode for a selected integer ».
This is possible only for the RFW, and we shall establish it
by using the graphics method introduced in Section 3.

Note that r; = ro > (ro — r1) and n; = nzand therefore that
Wi» 1L, Us»1,J~K,r,~ —q, and s, ~ p, must apply in a
RFW. When these relations are combined Eq. (7) is then
simplified to

K[(a + 1)/aU,)q, = (K? — 1/aU,)p,. (12)

Here p, and ¢, may be approximated accurately by their
asymptotic formulas (refer to Appendix A) so that

p, ~ —[2/x(aUy)"¥sin(a — 1)U,,
g, ~ [2/7(aUy)Y?]cos(a — 1)U,

It is obvious that the condition Va3 < w/{a — 1) is necessary
in order for a single crossing to be obtained between the
right-hand and left-hand sides of Eq. (12) (see Fig. 7). In-
troducing a new parameter V, = k(ry — ri)(ng? — nz?)l2,
which is more convenient in this case, we deduce V, < = to be
the single v-mode operation condition for a RFW. This
formula has slightly relaxed the condition that V < 2.405,
the single-mode condition for an ordinary SSP.

7. W-FIBER WAVEGUIDE

The W fiber [Fig. 1(c)] represents another large class of
promising monomode fibers because it possesses a bigger
core, a better field confinement (and therefore less vulnera-
bility to bending loss), and, best of all, desirable dispersive
properties.’2 Our analysis shows that any practical W fiber
can be modeled by the n;/n; SSP, formed between the core
and the inner cladding, plus an additional mode supressor to
cut off or, more precisely, to leak away any modes of which
the equivalent refractive index is below the outer cladding
index ns. The validity of this remarkably simple yet accu-
rate model hinges on a single criterion, i.e., (ro — ri)/ri>0.17,
that is met automatically by almost all monomode fiber
designs. The question of how fast the higher-order modes
are attenuated away by the outer cladding is not discussed
here, but, within the objective of this paper, it is sufficient to
note that a smaller r; produces a higher attenuation and,
under most practical circumstances, a micrometer incre-
ment in r, may make a significant difference.

A W fiber can be treated as a form of TLS. Its waveguide
parameter lies between those of two SSP’s: the inner step
(IS) (n1/ns SSP) or the outer step (OS) (n;/n3 SSP). The
SSP that most closely resembles the W fiber depends entire-
ly on the thickness of the inner cladding because, when (ry —
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ri)/ri — 0 or », the TLS reduces to the OS or the IS,
respectively.

Now define Vi3 = kri(ni2 — ng®)2 (Vi3 > Vi3) and mark it
and U;13 (HE,,U value of the OS) on the Y axis at X = (rg —
ri)/ri = 0 (Fig. 8). For X = = similar points may be marked
for the IS. Because Vi > Vi3 (because ny < ng for a W
fiber), U;!2 > U;13. When ry lies between ry and «, its U,
value must lie between U;13 and U{!2. The exact results are,
of course, calculable from Egs. (7)-(9), and they are plotted
in Fig. 8 for some common monomode W-fiber designs. The
condition that (ro — r;) > A, or (rg — r1)/ry > 0.17, is sufficient
to ensure that U; = U2, almost irrespective of the index no.
On the other hand, U; becomes approximately equal® to U,
only for extremely small (r; — r1), namely, (ro — r1) <0.01A,
or (rs — r1)/r1 < 0.0017, which is interesting. It must be
noted that the core usually is shielded completely by a rela-
tively thick lower-index cladding in most designs in order to
take full advantage of a W fiber. In other words, (ro —r) >
A is usually true, so the U parameters, together with the
modal propagation constants, are determined by the IS SSP.
This fact simplifies the W-fiber cutoff analyses tremendous-
ly: amode experiences cutoff as soon as its U value of the IS

0.1e

sol. 1 21.3

rhe

2

-0.1e”

(a)

0.1e

o " 31.5

315
s01.1 s0l.2 \\ aty

-2
-0.1e

(b)
Fig. 7. Number of v modes m are determined by (m — )7 < V, <
mx. (a) Single-r-mode operation (m = 1) for n; = ng = 1.458, ny =
1.461, r; = 20 pm, ry = 23 um; (b) double-r-mode operation (m = 2)
for ny = n3 = 1.458, np = 1.464, r; = 20 um, ro = 24 ym. rhc, Right-
hand core; the, left-hand core.
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Fig.8. The parameter U as a function of r, in a W fiber for which n; = 1.46, ny = 1.44, and r; = 3.0 um: (a) ng = 1.45, no cutoff for HE;;-TEy
mode; (b) ng = 1.4558, TEq;-mode cutoff; (c) ng = 1.4585, both TEy;- and HE;;-mode cutoffs.

exceeds V3. However U > V3 means simply that n. < ng,
and the cutoff results are well anticipated.

Bearing this in mind, one may quickly predict a funda-
mental mode cutoff if the U parameter evaluated for the
core-inner-cladding step is greater than V3; and monomode
operation is possible if the TEg -mode U value is greater
than Vi3 (Fig. 8). It can be seen that it is not the condition
Vis < 2.405, but Vi3 < U2 of TEy,, that leads to monomode
operation of a W fiber, which can be at a wavelength as much
as 50% larger than for any ordinary SSP.12 This is the key
factor to all desired waveguide characteristics.

8. STEPPED THREE-LAYER STRUCTURE

Surprisingly, perhaps, the stepped TLS (STL) [Fig. 1(b)]
appears to be more difficult to analyze precisely than does
the W-fiber waveguide. This is due to the wide range of
waveguide characteristics that are possible, as may become
clear from the following examples. As a simple but useful
approximation, a STL may be treated as the SSP formed
between n; and ns, plus a high-order mode adder. To be
more precise, we can state this equivalence as follows: if ny
> ne > ngy, then the n, is determined by the ni/n, SSP. On
the other hand, if n, < ng, then the n, is mainly characteristic
of the SSP formed between ny and ns, as is discussed below.

Effects of n,

The behavior of a STL is strongly dependent on ny, particu-
larly when n; is close to nj and (ro — r1) > A, as is expected
intuitively. A typical n, dependence of the equivalent index
n. is given in Fig. 9(a) for the TEy mode of a fiber having

typical practical values of n; and ng; here every parameter is
fixed except ng, which varies from ns to n;. Itis clearly seen
that, when (ro — r;) < A, this relation is nearly linear, which
may provide some ground for a perturbation approximation
or a linear interpolation. The dependence does, however,
become highly nonlinear for (r; — r;) » X\ n, becomes
saturated for ny < ny, signifying an n;/ns SSP guidance, but
rapidly approaches n; as ng — n;.

Effect of ry

By maintaining all parameters constant except r;, we may
determine its effect on the equivalent index of the TEy
mode. A typical result is illustrated in Fig. 9(b). Not sur-
prisingly, n. decreases as r; decreases, indicating that the
light is guided by the n,/ny SSP, gradually to the point at
which n, = no. Below this point the majority of light is
guided only by the no/ngstep. As a result, further decreases
in r; make n, flatten out, as shown in Fig. 9(b). This phe-
nomenon is particularly important for coupler design.

Effect of r,

The radius r, like ng, plays a vital part in determining the
degree of modal adder that a STL exhibits. A typical ry
dependence is demonstrated in Fig. 9(c), in which high-order
TE, modes are also inserted. There is only one mode for
which n; > n, > ny, namely, the TEj; mode for ny = 1.461,
and its n, is seen to be dominated by the nj/n, SSP guidance
mechanism. For all other added high-order modes, of which
the number increases as r; increases, n, < n, showing clearly
the influence of the no/n3 SSP.
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9. CONCLUDING REMARKS

The exact EVE’s have been formulated for a general three-
layered, all-dielectric or nonferromagnetic metallic, fiber
waveguide. The simple formalism presented here involves
only the Bessel functions and their cross products. As a
result, the EVE’s can be solved graphically. The method
can be applied easily to many practical waveguide struc-
tures, such as single-mode fibers showing a central index dip,
large-diameter ring-core fibers, W fibers, and progressively
stepped three-layer fibers.

APPENDIX A: p,, q,, ,, AND s,
1. Theasymptotic formulas of p, ¢,r,and s whena — 1+
d (d — 0) are

p, =~ (2/=z)d,

q, ~ 2/xU,,

r,~ =2/wU,,

s, ~ (2d/m)(*/Uy% - 1).

2. The asymptotic formulas of p, g, r, and s for Uy — =
and U, real are

p, =s, = —(2/7U,a"¥sin(a — 1)U,,
q, = —r, = (2/xU,a"?*costa — DU,

3. The alternative formulas of p, q, r, and s for Uy = jW;
are

—@2/m) I (@WK (Wy) — I (WK (aW,)]

q, = Jj2/m)[[ (@WK, (W,) — I (WyK (aW,)],
r, = j@/m) @WK, (Wy) — L (WK, (aW,)],
s, = (/)1 @WK, (W) — L/ (W)K, (aW,)].

p,

4. The asymptotic formulas of p, ¢, r, and s, when Us =
JWs, Wy is real, and Wy — @ or a — «, are

p, = —(2/m) (a WK (W,),
g, = J@/ML(aW)K, (W),
r, = j(2/m)1, (@WK (Wy),
s, = /0, (@WK, (W,).
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