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Modal propagation characteristics of radially stratified and

D-shaped metallic optical fibers

Charles Y. H. Tsao, David N. Payne, and Luksun Li

The eigenvalue equation is formulated for a general three-layered radially stratified metallic optical fiber
waveguide and solved numerically using the zoom search method. The result is shown to be applicable to the
common D-shaped fiber, which bears no similarity to a concentric stratum but may be converted as such
through the Mobius conformal representation. The theoretical prediction agrees well with our experimental
measurements, and the method should be proved valuable for optimizing metallic fiber design relationships.

l. Introduction

Intentional inclusion of a metal layer near or along a
light propagation path has become increasingly fashion-
able in optical fiber designs and integrated optics.!-17
It produces highly desirable asymmetric effects on TM
and TE electromagnetic waves, which are inspired by
numerous optical devices; and as a result the polarizer,
for example, with an extinction ratio as high as 60 dB is
recently reported.!-3 To improve further the perfor-
mance of these devices the propagation characteristics
of guided waves must be thoroughly understood so
their design relations may be optimized.

Regarding the analysis treatment, the prevailing
technique is to model metallic waveguides as a type of
stratified planar structure, otherwise known as the
slab model, which poses the least daunting mathemati-
cal complications and with which various waveguide
problems can be solved analytically and computation-
ally.11-14

Too often this 1-D slab model is taken for granted
and referred to without questioning how much similar-
ity to a slab the specific waveguide geometry bears.
Surely there must be a limit beyond which the credibil-
ity (orlack of it) of a simplistic slab needs to be reexam-
ined. Whenever necessary an alternative should be
tried.

The primary objective of this paper is dedicated to
this purpose. In particular, using the vector field anal-
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ysis this paper provides a set of eigenvalue equations
(EVES) for various modes for a three-layered radially
stratified metallic waveguide which is theoretically ac-
curate and applicable to both weak or strong fiber
waveguides and with which the glass/metal fibers
structured as such a genuine stratum may be charac-
terized. For the other large class of so-called D-
shaped fiber—a circular dielectric core faces against an
additional plane-limited metal clad—the application
of the suggested model does not seem to be so straight-
forward unless the geometry is converted to be radially
stratified using the well-known conformal mapping
method. This procedure is demonstrated in some de-
tail, and the result is compared with the experimental
data.

Il. Radially Stratified Metallic Fiber Waveguide

Figure 1 shows the cross section of a typical three-
layered stratified fiber which has a core with radius r;
and surrounding dielectric and metallic cladding of
radius ro. The refractive indices for these three re-
gions are, respectively, n, ny, and ns, where n; is the
core index, n; is the cladding index, both real but n; >
ng, ng is the complex refractive index for the metal,
namely, ng = na, + jnsi. (The parameter nsr alone is
sometimes referred toas the index of refraction and nsi
the extinction coefficient.) Our task now is to estab-
lish the electromagnetic fields first and then to formu-
late analytic eigenvalue equations for TE and TM
modes separately because they are no longer degener-
ate.

If we assume that electromagnetic waves are propa-
gating along the z axis in a cylindrical coordinate, the
time-distance factor exp[~j(wt — 82)] must be includ-
ed in the field description. Here w is the light circular
frequency and 8 = 8, + jB; is the propagation constant
which is necessarily complex because of the complex



cladding

Fig. 1. Typical three-layered radially stratified fiber.

ns. Using Debye potentials zo¥ exp(j8z) and z®
exp(jBz), associated with electric and magnetic fields
E = e exp(jfz) and H = h exp(jB2), time harmonic
electromagnetic fields in the above radially stratified
waveguide are well known as!8

e = (3%/rop — Bd®/wedr)r, + (~3W/0r — B0®/werdd)d,

- (k’n® = 1) ®zy/jwe, 0]
h = (3®/rdp + BOW/wudr)ry + (—3%/3r + SOV /wurdd)d,

+ (k%n? — B)Vzo/jwop. @)

Here rg, ¢o, and z; are the unit radial, tangential, and
axial vectors, respectively; u and ¢ are the magnetic
permeability and electric permittivity which is obvi-
ously region dependent.

Formidable as Egs. (1) and (2) may look at first, they
offer a straightforward way to depict fields for any
modes, because Debye potentials satisfy the following
Helmholtz equations,

(A, + (k2n? - 9)]¥, =0, 3
(A, + (k*n? - 89)]®; =0 )

(with subscription i denoting the layer), of which the
solution is already known. Having obtained ¥ and ¥,
simple substitution into Eqs. (1) and (2) enables one to
derive field components and, therefore, the EVE as
one wishes. The status quo of this approach requires
no special mathematical skills while the formalism
remains accurate and sufficiently concise. Here we
shall take the TE mode as an example to illustrate how
this can be done.

Introducmg fo(@) = exp(]uqbg (vis gn 1nteger) U=

(2k2n - 2), U2 = ri(k2ni - B?), and

= r2(ﬂ2 kzn 5), the ¥; terms are easxly envisaged to
1 - AlJu(Ulr/rl)fu(”¢)v (5&)

W, = [AJ,(Uyr/ry) + ByY,(Ugr/rlf,(ve), (6b)

¥, m AK (War/ro)f,(v9), (b¢c)

where J,, Y,, and K, are Bessel, Neumann (or Weber),
and Hankel functions, respectively, and U, Us, and
W3 are the layer phase parameters. [Note that Uz may
be replaced by W, (Uz = jW;), and so J and Y in Eq.

(6b) may be replaced by I (Basset function) and K, but
the final EVEs and their solutions will be 1dent1ca1]
For a TE mode, ®; = 0 may be assumed, which, togeth-

er with Eqgs. (1), (2), and (5), would give rise to

ey = =AU /r)d(Uyr/ry), (6a)

ega = —(Ua/r)[A(Uyr/ry) + ByY,(Uyr/ry)], (6b)
eos = ~As(Wy/r)K,(WyrIry), (6c)
hyy = —(Ui/rijen) A (Uyr/ry), (60
hyy = ~(Udrdiep)[Agd (Uyr/r)) + BY,(Ugr/ry)],  (6e)
hag = (Walriomw) AgK,(Wr/ry). (66)

Four coefficients A;, Ay, As, and B; are arbitrarily
selected to scale the field, yet they are not totally
independent of each other in a sense that they may be
defaulted to produce the EVE through boundary con-
tinuities such as those involving e, and h,. For the
structure depicted in Fig. 1 there are only two bound-
aries dividing the core, dielectric, and metal cladding,
and application of the continuity of transverse fields
yields a 4 X 4 matrix of which the determinant must be
zero to ensure this coefficient independency. So we
have

TE mode:

[J,(U)p,/UJ,(Uy) = g,/ UMK (W3)p,/ WK (W)

+r,/aU,y)| — 2/zaU3)? =

where p, = J,(aUy)Y,(Us) — J,(Uy)Y,(aly), ¢, =
J(aU)Y,(Uy) — J(Un)Y(aUy), and r, = J,(aUs)-
Y, (Us) = J(Up)Y, (aUy) are the cross products ‘of Bes-
sel and Neumann functlons19 and a = ro/r; is the ratio
of the tworadii. This routine is repeatable for the TM
mode for which ¥; = 0 may be adopted, and the final
EVE takes the form of Eq. (8).

TM mode:
[=fy(U1)Pv/U1Ju(U1) -

0, (M

niq,/niU,) (K (W;)p,/W K, (W;)
+ n¥r,/nfaU,] = (2n¥/xn,naU2? =0. (8)

Here ny = ng and v = 0 may be assumed if only weakly
guided TM, or TE; modes are of interest. In general,
it is Eqs. (7) and (8) which characterize precisely all
transverse modes.

The presence of both ®; and ¥; in Egs. (1) and (2)
leads to a similar EVE for a hybrid HE/EH mode;
details are described in Ref. 17.

. Comparison with the Two-Layered Stratified
Wavegulde

A three-layered stratified waveguide can easily be
degraded as a two-layered one. For example, in Fig. 1
where the dielectric cladding layer isso thin that ra =r;
holds, the structure could represent a two-layered
glass/metal (n; = ng) or hollow metallic (n, = 1) wave-
guide. The other extreme is to thicken the dielectric
cladding to such an extent that the fiber is apparently
of the step-index profile (n; — ny). Equations (7) and
(8) have to be reducible to be in more familiar forms.

For the purpose of examining the step-index proflle
we ought to redefine the phase parameter Wi=r3(p2-
k2n?) or Uy = jW,. In view of J,(jW;) = exp(jvn/
)L (Wy), Y,(W2) = expli(v + 1)x/2]L(W3) — (2/7)
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exp(—jrm/2) K,(W2) (provided that —» < argW; <
7/2),19 etc., the cross products are alternatively de-
fined as

p, = —(2/m)[L@W)K (W) - I(W))K (aW))], (9a)
q, = jQIMIL@WYK,(W,) — L(WyK,(aWy))/W,

- [L@W)K,,,(W,) + I, (WK, (W)}, (9b)
r, = j@/mWWL (@WK, (W,) — L(Wo)K (aW,)]/aW,
+ [L(WoK, 1 (aWy) + 1, (aWpK (W)} 9c)

Here W, may be simply denoted as W if only two layers
are considered. Aninfinitely large a meansan,(aWs)
dominance in Eqgs. (9), i.e,, p, ~ —(2/m)[(a W) K (W5),
g, ~ j(2/m)[,(aW3)K,(W2), and r, = j(2/7)-
I (aW9)K,(W,), which in turn makes the last terms in
Egs. (7) and (8) absolutely negligible. Thus we may
deduce

TE mode:
JAUN/UWJAUY) = q,/iWap, =0, (10)

TM mode:
J(UN/UJ AU, — ndq,/nijWop, = 0. (11)

Here q,/p, ~ —jK,(W2)/K,(W;). By lettingv = 0, Egs.
(10) and (11) are exactly the EVE for the step-profiled
all-dielectric fiber.20

As far as the hollow metallic waveguide,?! or its like,
is concerned, the dielectric cladding may be treated as
an extension of the core, i.e.,ng =ny,ro=ry + éry,and é
—0. Itfollowsthata =1+ 38, p, = —28/x,q,=2/xU;,
and r, = —=2/7Uj, since Uy = U;. All these relations
explain why Egs. (7) and (8) are reduced to Egs. (12)
and (13), which is nothing but the hollow metallic
waveguide EVE (n; = 1):2

TE mode:
JUNIUWJ Uy + K,(Wo)/ WoK,(W,) =0, (12)

TM mode:
J(UN/UJ (U + nIK,(W3)/n2WoK,(W,) = 0. (13)

The fact that the EVE of a three-layered waveguide is
more general and reducible to cover various two-lay-
ered ones is no guide to feelings that it indiscriminately
applies to all metallic fibers. Extreme care is required
when applied because the result proposed here is,
strictly speaking, irrelevant to some fibers unless they
are genuinely three-layered concentric or convertible
to be such.

V. D-Shaped Metallic Fibers

Some metallic fibers are D-shaped where the metal
sector forms a letter D while the core remains circular
[Fig. 2(a)].1® Experience shows that the performance
of this fiber does not render it to be D-shape dependent
as long as it is reasonably thick. Using a slab wave-
guide model the criterion of the so-called thick metal
has been investigated for most common metals, but as
a rule of thumb a few microns are often sufficient.!
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Fig.2. (a) Fiber cross section of a typical D-shaped fiber. (b) The
D-shaped fiber is modeled as having a circular core and an additional
plane-limited metal cladding.

(b)

Although this slab model is different from the D-
shaped fiber, electromagnetic waves should not pene-
trate to a great depth in metal in either case due to the
skin effects; and so most D-shaped fibers may be ac-
cordingly modeled as having a circular core and a pla-
nar metal cladding [see Fig. 2(b)]. The problem now is
to seek a simple solution for this ill-fitted waveguide
geometry.

The answer may lie in the conformal representation
(or mapping) through which the ill-fitted irregular
geometry on the z-plane—a circle accompanied by a
straight line in this case—may be regulated to be all
straight lines or concentric circles on a new {-plane so
that the difficulty in finding a solution may be palliat-
ed. This mapping technique could be plausible if the
following problems can be solved.

First, although the geometry is seemingly simplified
on the new plane, the Helmholtz wave equation could
easily become harder to solve because it is now in2?

[A, + (&*n2 = 82/t (2)P)(¥ or &) = 0. (14)

Here {(z) is the conformal representation, {'(2) = d¢/dz
remains continuous and analytic defined in the
Cauchy-Riemann sense, and {7 = 0 supposedly holds
foranyz. Itisseenthattheregulation of the geometry
is achieved at the price of complicating the wave equa-
tion. As it may be clearer later that |{*(z)|2 can be too
tricky, Eq. (14) may not lend itself to an easy solution.

Second, we must decide what our mapping function
is. But how? The answer is to consult the literature
(e.g., Refs. 22-24) hoping to come across something
relevant. A little caution is needed, however, since we
may pick up many options, and chances are some func-
tions may be more suitable than others. For example,
the Mobius representation2324 {(2) = ro(z = x1)/(z = x2)



may be considered appropriate for the problem in Fig.
2, because it requires no edge effect correction and still
converts two discrete circles to a pair of concentric ones
(Figs. 3and 4). Here rqis real, Ry and R; are the radii
of the z-plane, and x; and x; are also real and satisfy

X -x, = R, (15)
(Ry+Ry,+d—=x))-(R+Ry+d—=x,) = R (16)

So far so good, except Fig. 3 is not yet Fig. 2 unless R
becomes infinitive. Letting it be so gives rise to

x,=R,+d-\R?+2R/d, 17
xg=ry=R,+d+ R+ 2R/, (18)
r =R, (19)

where d is the surface-to-surface separation between
the core and metal, r; and rq are, respectively, the inner
and outer radius after the mapping, and x; « xs is
usually true.

How about Eq. (14) then? Differentiating { we get
[ (2)12 = |ro(xg — x1)/(ro — 2)2I2, which is expectedly,
perhaps disappointingly, z-dependent.

Let us remind ourselves that all we wish to derive is
the detailed field distribution in the waveguide out-
lined in Fig. 2. But we may have already realized that
in spite of the unknown distribution function varying
among modes, yet for the lower-order ones the field
must be confined within the core. This indicates that
only small |2|, or small |t in |¢], will more decisively
affect the waveguide character. By taking up the
point further, let us quote z = ro(¢ — x1)/(¢ — r9) and
rewrite 1/|¢| = (ry — x1)/Iro(1 = 2r cosg/rs + r2/r3)l,
using ¢ = r exp(j¢). Since only small |{ primaril
matters, it would not be unthinkable to expand 1//¢ F;
into a series of power (r/ro), namely, 1/I¢l2 = (1 —
x1/r9)2(1 + 4r cosg/ry) + .... Now a perturbation
method may be invoked for solving Eq. (14). It can be
shown that the correction due to the term 4r cos¢/rs is
absolutely negligible (<1%),?® and the following zero-
order version of Eq. (14) is adequate:

(A, + Q1 = x,/r)XE2n? ~ D)](¥ or &) = 0. (20)

It can be readily seen that for Eq. (20) the solution in
Eq. (5) is applicable if all phase parameters are scaled
by a factor of (1 — x1/ro). It is interesting to note that
even this minor scale alteration may easily become
superfluous in certain circumstances when x,/r; << 1 is
satisfied.

V. TM and TE Fields in a D-Shaped Fiber

So far we have only proved one thing, that is,
through the Mobius conformal representation the D-
fiber is mapped to be radially stratified with its phase
parameters scaled on the new plane. It follows that
the wave solutions together with their EVEs proposed
at the beginning of this paper are applicable if refer-
enced tothe {-plane. This means that for any given D-
shaped fiber design, it is always possible to work out
the equivalent concentric structure using the Mobius
transformation formulas [Eqgs. (17)-(19)]. Having es-

Fig. 3. Two discrete circles on a z-plane with z = x + jy.

Z-plane

Fig. 4. Two discrete circles on the z-plane are mapped to be two
concentric ones on the {-plane, where { = £ + jn.
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Fig. 5. Electric fields for the TE (broken lines) or TM (solid line)
mode in a D-shaped fiber.

tablished the size of these circles, one should be able to
form a new phase parameter such as Uy, Uj, and W5 to
solve the EVEs. Nevertheless, it is worth noting that
the electromagnetic field on the original plane bears
little similarity with those for bona fide radially strati-
fied fibers (see Fig. 5).
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Fig. 6. Equivalent index of the propagation constant for various
modes.

VI. Computational Scheme for Solving EVEs

We wish to calculate attenuations for the various
TM and TE modes, and this requires solving transcen-
dental EVEs in Eqs. (7) and (8). For these equations
there is no other known method apart from the nu-
merical computation.

From our computer experience it is felt that the
zoom search, or numerical zoom analysis, is quite effi-
cient. It shows great advantage in solving a multilay-
ered slab metallic waveguide.!* Let us agree that the
search routine would have been even more straightfor-
ward if none of those arctangent functions were multi-
ple-valued. This is now the case, however, in the
radially stratified model.

In a nutshell, what the zoom search requires is to
calculate the left-hand side (Ifs) of Eqgs. (7) and (8) to
make sure it is a complex zero for an estimated 82. Ifit
is, or more precisely, if the magnitude of the lhs is
sufficiently small (e.g., 107 as chosen here for our
purpose), the solution is found; if not, search again.
More specifically, the zoom search encourages one to
minimize the magnitude of the lhs while Re(8?) is
scanned downward from n?. Assoon as the first mini-
mum is tangible a similar scan is exercized with respect
toIm(B2%). Tosavetime and cost, the fine resolution of
the first round search must be avoided because of its
large area of coverage, although it will progressively
improve as the minimization is iterated and the focus
of the search is quickly zoomed on a very tiny spot.

It is not a difficult method, despite the fact that we
are dealing with a wide range of cylindrical functions of
the integer order and complex argument. Nowadays,
booming algorithms for computing Bessel and modi-
fied Bessel functions are widely available with whatev-
er accuracy is demanded.2?6-22 Based on these algo-
rithms we developed our programs on an IBM PC with
relatively weak accuracy (i.e., 1076), but we believe it is
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“Fig. 7. Attenuations of various modes as a function of the core-

metal separation d.

probably what we needed at the moment although it
can be improved on a PDP-11 and VAX-750.

VII. Numerical Results

To allay anxieties let us now present some interim
results with regard to the general behavior of a radially
stratified or D-shaped fiber. More specifically, let us
plot the equivalent index and the attenuation rate in
terms of decibels for the propagation constant 8 as a
function against the separation d. The results are
shown in Figs. 6 and 7. Here everything else is fixed,
eg.nm = 1.47, ng = 1.46, R1 =15 um, ngr = 2.245, ng; =
8.85 (gallium). A higher attenuation (arym,oTE) is Ob-
served for a higher-order » mode or when the metal is
placed closer to the core, meaning more metal effects.
This tendency is also evident from the computed
equivalent indices ny and nrg, which take lower val-
ues for higher-order » modes and drop steadily while d
- (. In all cases, nTg > nrm and atm > arg always
remain true, which is the key feature of this kind of
metallic fiber.

VIl. Experimental Results and Comparison with Other
Methods

The model and its solution presented here work very
well for real D-shaped fibers when the measured atten-
uation is compared with predicted values. For exam-
ple, a high-performance gallium/glass fiber polarizer
has recently been made with the parameters chosen as
follows: N.A.=0.20,n, =1.4585,r; = 2.0 um,d = 1.0
um. Measured attenuations arym and aTg at wave-
length A = 0.83 um are 1.5 and 0.012 dB/cm, respective-
ly. The theoretical calculation for this very fiber gives
atm = 1.57 dB/cm and atg = 0.0118 dB/cm. They are
indeed rather close to each other.

The D-shaped fiber has been analyzed previously,!®
and attenuations of the two so-called LPy; modes are
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Fig. 8. Waveguide performance in terms of propagation speed and

attenuation as a function of the core radius A; (n, = 1.47,n,=1.46,d
= 0.8 um, A = 0.83 um, gallium).

observed very close to those for (armo; + arm11)/2 and
(oo + oTE11)/2, the terms defined and computed
through conformal mapping method. (The subscripts
01 and 11 stand for the lowest-order modes for » = 0
and » = 1.) This is interesting, although it might be as
important to point out that the LPg; mode makes sense
for the two-layered dielectric fibers, which is no longer
the mode after the metal is inserted. This new mode is
not discussed in Ref. 15; instead, it is approximated by
a Bessel-Fourier expansion. In essence this represen-
tation differs little from what is regarded as having
broken the field down to include various weighted
higher-order modes. With the participation of high-
er-order modes, the attenuation must have been con-
taminated as well.

Like the slab waveguide model and its recursive
EVEs the radially stratified model explored here is
analytic and has been proved a favorite for optimizing
a fiber design. As an example, the phenomenal wave-
guide characteristics vs a relative refractive-index dif-
ference between the core and cladding A and the core
radius (A;) are illustrated in Figs. 8 and 9. Itisnota
surprise to learn from these figures that a smaller V
value (a smaller 4, or A) of a single-mode fiber placed
in the vicinity of a metal D receives more metal effects
simply because the field is more spread out. Never-
theless while A increases further neither the TE nor
TM mode will suffer any substantial loss owing to the
field confinement which underlies a tuning effect in
terms of the attenuation ratio, which has already been
observed in a slab metallic waveguide.l4

IX. Concluding Remarks

The three-layered radially stratified metallic fiber
waveguide has been analytically solved with its EVEs
for TE and TM modes formulated. These EVEs are
applicable even to common D-shaped fibers since they
may be converted as genuine concentric ones. Al-
though these EVEs are transcendental they can be
easily computed because of available algorithms for all
Bessel, modified Bessel functions, and their cross

™, (d8/m) |4

"TE
1,510 -

1,500 -

1.490 T

1,480

1.470

1.460 —
- 0.01

1.450 —

1 1 1 1
1 H 3 4o m

Fig.9. Waveguide performance as a function of the relative refrac-
tive-index difference A = (n; — no)/ny,(ny = 1.4585,d = 0.8 um, r; =
1.5 um, gallium at A = 0.83 um).

products. The results in this paper predict measure-
ments satisfactorily, and the method could prove valu-
able for optimizing metallic fiber designs.
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