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The formulas determining the polarization ellipse from a given electric field’s components and vice versa are
summarized. The objective of this paper is then to study the polarization evolution (plane-wave evolution) in a
curvilinear optical fiber with both linear and circular birefringence. As a result, the Jones-matrix—coupled-mode
description has been extended to cover a fiber with distributed principal axes and linear and circular birefringence,
and the plane-wave components of the emerging output light are conveniently quantified in terms of the input light.
The detailed procedure of this extension is discussed through the use of the field’s continuity, and the formulism is
applied exclusively to various fibers such as twisted or spun and helical or spiral fibers of varying twist ratios, which
may already have experienced external optical activity (side pressure, magnetic or electric fields, etc.). The
conclusion drawn through this extended matrix technique is usually in good agreement with a range of the existing
theoretical analyses (for evenly twisted fibers) and experimental results (for helical or spiral fibers, magnetic
sensors, etc.), yet the approach proposed here obviously deals with a more general case and should therefore prove

21¥

useful in practice.

INTRODUCTION

Polarization properties have long been useful in describing
optical devices such as linear or circular retarders and polar-
izers. While the status of a polarization ellipse (ellipticity
and inclined angle) may be conveniently mapped onto the
traditional Poincaré sphere, the vector descriptions (e.g.,
Stokes and Jones vectors) together with the relevant calculi
(Mueller and Jones calculus) have been revised to describe
the field components of polarized light.!-> These calculi are
useful short-cut techniques and have formed the basis for a
more general matrix and/or matrix-operator analysis, which
has already proved useful in paraxial optics.6? Optical fi-
bers may be modeled as a particular type of optical device,
and the polarization properties are often important, al-
though the fiber may not be treated paraxially. For in-
stance, high- and low-birefringence fibers,'0 fiber sen-
sors,!1-1% and spun or twisted fibers!6-18 are of hybrid bire-
fringence in nature, and the polarization fields are obviously
coupled. For these optical fibers there are several tech-
niques available, such as the field coupling approach!6-18
(which is essentially a differentiation description), the ei-
genpolarization mode method,!® the equivalence of the com-
bination of linear retarder R—principal axis $-circular re-
tarder Q@ (R-®-Q equivalence) description,?02! and the
group-theory formalism.?2 The eigenpolarization mode de-
scription (in which no mode coupling is present) usually
relies on the coupled-mode formalism, which is essentially
an extension of the decoupled differentiation approach.
The R-®-Q equivalence method seems quite successful in
handling optical devices that have lumped birefringence but
has not yet been proved efficient in the treatment of fibers
having distributed hybrid birefringence since in this case the
R-$-Q matrix is not always commutative.?! The group-
theory formalism turns out to be a unified method and can
indeed provide much useful insight into the overall behavior
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of the fiber matrix, yet a detailed description of the polariza-
tion carnot be readily obtained without knowledge of the
structure of the individual fiber. The merit of this pure
mathematical formalism is therefore rather restricted. The
coupled-mode approach is the most useful of these tech-
niques for a group of fibers such as spun or twisted fibers and
might be extended to handle fibers that have a varying twist
ratio and/or distributed linear birefringence. In recent
years, however, many novel combinations of linear and cir-
cular birefringence have been common, and practical fibers
such as helical and spiral fibers have exhibited complexity in
terms of optical axes and the polarization couplings.23-28
Besides, a fiber may often be exposed to an environment in
‘which the optical activity or the state of the polarization in
some region of the fiber is under the influence of an external
magnetic or electric field, resulting in Faraday-Kerr effects.

Mechanical handling owing to pressing and bending may
also affect the state of polarization.!1-14.21.2427 {Under these
circumstances birefringence is often hybrid and distributed,
in which case the coupling-differentiation description can
hardly be straightforward. An alternative analysis is obvi-
ously desired. One possibility for such a technique is ex-
plored in this paper.

The method proposed here is the extension of the Jones
calculus in which the importance of the field components is
represented by a Jones vector, for plane waves propagating
in a fiber in which hybrid birefringence is dominant. The
technique adopted in this paper is quite reasonable in that it
can provide sufficient information about the field compo-
nents, which in turn determines uniquely the polarization
properties of the light emerging from the end face of a curvi-
linear fiber. The mathematics using this matrix algorithm
is usually straightforward for twisted or helically wound
fibers that may be also exposed to a magnetic field. Some
applications are presented. This procedure is obviously
useful even for optical devices that may not be paraxial.
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FIELD COMPONENTS AND POLARIZATION
ELLIPSE

Phase and amplitude information of an electric field can be
used to determine uniquely the polarization ellipse. The
eccentricity e, the ratio of the minor axis over the major axis
of the polarization ellipse (see Fig. 1), and the inclined angle
¢ are related to the electric field in the following way:

tan 2¢ = 2 Re(E,E,*)/(EI* - |E]*), (1a)
e = tan{Y, sin™'[2 Im(E *E,)/(E.I* + |E,])]}, (1b)

where E, and E, are the x and y components of the Jones
vector [g;] and the asterisk indicates the complex conjugate.
Strictly speaking, the field must involve the factor e/(wt —
Bs), where w is the circular frequency of the light, B is the
mean propagation constant, and s is the distance along the
light path. This factor is usually irrelevant to the polariza-
tion ellipse and is often neglected. However, the detailed
description of the ellipse given in Eqgs. (1) does not deter-
mine uniquely the field’s components E, and E,, and alter-
natively the normalized electric field components may be
utilized. The normalization Jones vector then takes the
form of [,,] or [{7”) (p = |E,/E,l, ¢ = arg E, — arg E,) for

which the polarization ellipse may be described by Eqs. (2):

p cos(Q,, + ¢€)
tan g = ——" ) (2a)
cos Q,,
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2 .

- 2¢

Q =1 tan~! [ £ SD2E ), (2d)
moe (1 + p? cos 2e

Here the parameter P, defines the degree of the polarization
and is sometimes termed the polarization ellipticity. The
Jones vector normalized in this way can be determined
uniquely from the polarization ellipse (e, ¢) through Eqgs. (3):

p = [(tan? ¢ + €%)/(e? tan® ¢ + 1)]'/?, (3a)
¢ = sin He(tan? ¢ + 1)/[(e? tan® ¢ + 1)(tan® ¢ + 9]V,  (3b)
or

e = cos”'[(1 — ¢?) tan ¢/[(e? tan ¢ + 1)(tan’ ¢ + €A)]V4.  (3¢)

DISCRETE OPTICAL DEVICES

Suppose that light with X and Y components [E;:] is
launched into a discrete optical device possessing linear and
circular birefringence. Then the output [E;Z] may be de-
scribed by using a matrix notation:

el
=M, (4a)

ES E}

y

[Ex n]
= Ml‘Cl'xy
Ey()

or

W ; (4b)
E/|

—

where

[exp(j¥h0,) — exp(—jYp8,)]sin ¥ cos ¢ exp(jY,0)sin® ¢ + exp(—jYy0)cos? ¢

M. {exp(jl/Z(S,)cosZ U + exp(—j¥,8)sin® ¥
r =

[exp(j%8,) — exp(—j%0,)]sin ¥ cos \I/}
(4c)

2 _ tan2¢—p2
e e v

= , (2b)
pltan® ¢ — 1
pol- e? _(1—p)tan® e+ (1+°)/(1 - p2)]1/2,
C 142 (1+ pH)(tan® e + )12
(2¢)
Y
f
a
b
)
X
(o)

Fig. 1. The polarized ellipse in X-Y coordinates.

and where

cos ¥,8., sin 8
Mrcrxy =[ b e * (4d)

—sin 1,8, cos %8,

Here ¢ denotes the angle between the X axis and the fast
axis of the linear retarder, §; and §, are measures of linear and
circular retardation, respectively, and the subscripts Ir and
rer indicate linear retarder and right circular retarder, re-
spectively. The matrices My,*¥ and M, in Eqgs. 4(c) and
4(d) are not necessarily unique, yet the formulation is suffi-
cient to reveal the polarization properties of the light. If
both linear and circular retardation is present within a de-
vice, the matrix representation remains valid, and the out-
put light is described by

_E,vo_ ‘ _E.vl_
or
[E.°] [E,]
L Eya =M™ I E_yi : (4f)

Here MY = Mp® X Moo, and Myg® = Mo*Y X My*>, the
choice of which depends on which retarder goes first, as the
subscripts hcl/hle imply. Care should be taken with this
straightforward representation. Since My~ # Myg*, the
output light of the X-Y components may correspond to
different eigenstates and, therefore, to different polarization
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ellipses even when the input light is identical. There are,
however, cases in which the retardation order may not be so
critical. For instance, if the principal optical axes £ and 7,
say, are taken as the X-Y axes, then

M, = -exp((l)l/zéz) - (le/za,)]’ (5)
Mrcrsn = Mrcrxy, (5b)
M, 6 = [ exp(/"/z.él)cos Y8, exp(jl/2.6,)sin Yode ],

_—exp(—jl/261)sin Yoo, exp(—jYyd)cos Yo,
(5¢)
and
- exp(j¥,8,)cos Ypd, —exp(—jY,8)sin Y3,
hel 7 [exp(jl/Qél)sin 1,5, exp(—jYyd,)cos 3, ]
(5d)

It is obvious from Egs. (5¢) and (5d) that in spite of the
fact that My 5" and My are not equal, they nevertheless
correspond to the same eigenstates and can therefore repre-
sent the same polarization ellipse. In other words, as far as
polarization is concerned, the order in which retardation
occurs is not required to be clearly stated as long as the
principal axes are taken as the field axes.

THE OPTICAL FIBER

Let us now study the polarization behavior of the light prop-
agating in an optical fiber in which linear and circular bire-
fringence is distributed. One method of analysis is to de-
scribe the fiber with parameters distributed in this way as
consisting of many infinitesimal segments, each of which is
treated as an indepenent optical device. The light output
from the last of these is then the light emerging from the
end-face of the given fiber. This makes sense because, as we
saw in the previous section, if the principal axes of each
segment are taken as the field axes, then the order of the
distributed linear and circular retardation in each segment is
not important. Bearing this in mind, we shall first order
these chopped pieces and then write the formula for the
output light emerging from the last segment as
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and where §/ and 6. are the ratios of the linear and circular
retardations and the principal axis (twist, rotate) (i.e. the
derivatives with respect to s: 8/ = dé,/ds, 6. = dé./ds, ¥’ =
dy/ds; s is a measure along the fiber’s length); and [ is the 2 X
2 unit matrix. In the limit as As — 0, £n/nn and E./E,,
became the principal axes and the projected electric field
observed at the endface of the fiber, which may be denoted
as £/n and E%/E,°, respectively. On the other hand,
n

lim H (I + M*As) = M(s)

As—0 4 4
is a 2 X 2 matrix that may be evaluated through the following
relations:

M(s) = AV,
lim S j%5/As, lim > ( + %5,)As
A( ) As—0 = As—0 =1
S) = ’
lim > — @ +%5,)4s, lim S — j%/As
As~>0 = As—0 =
(6e)
or
(s, + Yyb
Als) = T 1a8y(s) 1 ¢(i) 128.(8) - 60
—y¥(s) — ho.(s), —J/b(s)

The procedure for evaluating M(s) from A(s) is well known
(Ref. 29, p. 124; Ref. 30, p. 121) and can easily be applied
since M(s) is the exponential of A(s). According to this
notation, the matrix function F(A) is written as o« + A,
where « and 8 are the coefficients determined by F()\;) = a +
BX;, of which X; (i = 1, 2) are the eigenvalues of the matrix A.
The eigenvalues of A(s) in Eq. (6f) are £j\, where A = [(1,5))?
+ (¢ + %58.)%Y2, so that « = cos A and 8 = sin A/A. This
implies that

EEO =[P(S) _Q*(s)] Egi .
Ef|"lew P | B, @

and

o/ N e l:ej)‘ 0 ] £+ J(I = T+ D)y T
Here the principal axes of the kth piece are £k/nk (£0/n0 being Pls) = N 1.8,
the input field’s components axes), M t*/M, " are ab- (s) = cos Jysn A (7b)
breviated as My*/M,.*, and M;_* is the rotation matrix .
converting the axes from &(k — 1)/n(k — 1) to &k/nk. A Qs) = — (¥ + hd.) sin A (7e)
straightforward calculation leads to A ’
ore k . exp(ihd/As)cos(’ + 3.V As,  exp(ihd/As)sin(y’ + 8, As
er Mrcr Mk—l = -1 , . 1 1 1 (6b)
—exp(—j Ao/ As)sin(y’ + %58, )As, exp(—j'pd/As)cos(y + . )As
or
T(s) = 6,/(2¢ + 5.). (7d)
MM, M, F ~ T+ MFAs, (6¢)
. Here U,% and U,? are the two output eigenstates and &/n
where

’ + 1:5./
vk ] (6d)

.| ey
—(+ %), =itk

are the two unit vectors of the input axes. This is the field
matrix that describes exactly how the state of polarization
evolves along a fiber of hybrid birefringences and what the
eigenstates are for any given length of the fiber. The formu-
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la is remarkably simple and can be invoked to describe
general curvilinear optical fibers such as twisted or spun and
helical or spiral fibers.

TWISTED AND SPUN FIBERS

Equations (7) describe exactly how a plane wave evolves in
an optical fiber of varying hybrid birefringences. We now
show that this extended Jones matrix formalism can be
useful in the analysis of various individual curvilinear fibers.
We begin with twisted or spun fibers of varying twist ratio y’
= 7(s). The only difference between twisted and spun fibers
is the presence of torsional stress in the twisted case. This,
in turn, induces circular birefringence '%6,” = —g7(s), where g
= 0.065 ~ 0.08 is a constant determined by theory. Itisin
close agreement with experimental measurement.!*1517
The minus is due to the fact that the right-hand twist causes
an [-rotary optical activity (left circular retardation). From
the original definitions we obtain

y+ U, = j (1 - g)r(s)ds = (1 — @)7(s)s, (8a)

Yoy = J 1,6/(s)ds = Y3/ (s)s, (8b)

A= N(s)s = [(15)% + (1 — g)%7Xs)] V%, (8¢)

where 7(s), 8/(s), and A’(s) are the averaged twist ratio,
linear retardation, and eigenvalue, respectively. The out-
put field in Egs. (7) is expressed by Egs. (8d) and (8e):

1/ s/

N i =87 . T

EEO = (cos N’s + —%L sin N's)E,' + % sin M'sE !,
(8d)
—a)F . . - o . — »
EEO = - u—xjgll sin A’sE,' + (cos Ns—] ZTI sin )x’s)En‘.
(8e)

In the case when the fiber is modeled by an evenly distrib-
uted linear and circular birefringence/twist ratio, the param-
eters with the overbars in Egs. (8) would be constant, and
the above field appears to be the formulation derived in
Refs. 11, 16, and 17. It is stressed that Eqgs. (8) handle
varying principal axes and hybrid birefringence. They are
therefore more suitable for a range of applications in which
the varying linear birefringence is possibly quenched by a
varying twist. This should also apply to the case when there
is immunity from external effects such as side pressure for a
particular fiber. The basic technique so far is to average the
relevant parameters over the fiber length. The output field
then is still in a familiar matrix form, which seems useful
even when the fiber is partially exposed to random distur-
bances.

HELICAL FIBER

Suppose that a section of fiber is wound, without being
twisted, into a helix of radius R with pitch p (b = p/27) (see
Fig. 2). Suppose further the fiber possesses a negligible
intrinsic linear birefringence relative to a stress-induced bi-
refringence. If this is not the case, or if twist is present, the
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Fig. 2. A right-handed helical optical fiber.

determination of the overall birefringence and the principal
axes is to be carried out before the following matrix-evalua-
tion routine is applied. A typical magnitude of the bending-
induced birefringence is given by 8/ = 1.344 X 108 x2r2 rad/
m, of which the binormal axis is the fast axis, x = R/(R2 + b?%)
is the curvature, and r is the fiber radius.?’ (The parameters
R, r, b, p, and s are given in meters.) From the helical
geometry it is obvious that the normal and binormal axes, as
defined in the Serret-Frenet formulas, rotate around the
tangential vector at the rate of 7, 7 = £b/(R? + b?). If the
sign is positive, then the helix is right-handed, as shown in
Fig. 2; otherwise it is left-handed.?! 1t is also well known
that the polarization (HE;; modes) is observed in Tang’s
torsionless frame, and so the principal axis can be written in
the form y = 7s since 7 is a constant.?32428 Under the
assumption that no external optical activity is present, one
obtains

1/251 = 1/251/3 »

s p R2r2 2 90 1/2
=" |{0672x10 +(1-g?| -
(R + b%) R+ b’

The output field is then easily established from Egs. (7).
We emphasize that if the fiber has low stress-induced bire-
fringence, such as a liquid-core fiber does, then we may
assume that 146/ = 0 and g¢ = 0. Then the output field is

given by
Ego _ | cos7s sinTs Egi ©)
En‘) —sin7s  CoO$ 78 Eni
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This describes a d-rotatory polarization (right circular re-
tarder), as indicated in Refs. 12 and 23. From our experi-
mental work, this d-rotatory activity can also be measured in
a stressed helix when the pitch length/radius ratio of the
helix is reasonably large, such that [0.672 X 108 [R2r2/b(R2 +
b?2)]l « 1 is satisfied. Then the linear birefringence is auto-
matically quenched by the principal axis rotation, again
because of optical activity in Eq. (9), and becomes equal to (1
- g)r.

HELICAL/SPIRAL FIBER WITHOUT EXTERNAL
OPTICAL ACTIVITY

Stress-induced birefringence is usually much more signifi-
cant than geometry-induced birefringence. The latter can
often be neglected whenever the former is present. There
are occasions, though, in which the stress is eliminated by
means of an annealing or drawing process. Then geometry-
induced birefringence may become evident. From an analy-
sis using the vector-wave equation it has been shown that the
amount of birefringence in a helical fiber of step-index pro-
file (Fig. 3) is %o/ = (x2a?B8/8V2(OW2/U? — TU2/W?), of
which the normal axis defined in Tang’s torsionless frame is
the fast axis when V > 1.372, where V = ka(n2 — ng)/2 is
the normalized frequency. Here a is the core radius, k is the
wave number in vacuum, n., and ng are the core/clad refrac-
tive indices, and 8 is the propagation constant. Also, U =
a(kn2 — 8212 and W = a(B2 — k2n2)!/2 are the core and
cladding parameters, respectively.?® Since the principal
axes are the normal and the binormal of Tang’s frame (here
denoted as the X and Y axes), ¢ = 0 and %é. = 0, by
definition. The output field in the X-Y axes exhibits only a
simple linear retardation, which can still be projected onto £
and 7, the normal and binormal axes in the Serret-Frenet
frame, as
Es0 exp(j¥,0/s)cos 75 exp(—jY,0/s)sin 75 Esi
E? —exp(jY,0/s)sin s exp(—jY;3/s)cos 75 Eni

(10)

The spiral fiber used in Ref. 26 is the type of the fiber
discussed in this section. The fiber is characterized by n¢, =
1.46,n4 = 1.45,V =16.9, U = 2.26, W = 16.7, x%a® = 5.71 X
10-8 rad (at the spiral twist rate 116 turns/m), 8 = 1.449 X

REFRACTIVE INDEX
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Fig. 3. The refractive-index profile of a helical fiber.
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107, 7s = 2= rad, and Y%d/s = 2.006 X 1073 rad for each
complete turn. According to Eq. (10) a close match should
be expected between optical rotation and the spiral twist
when a linearly polarized light is injected. This is exactly
what has been measured in Ref. 26, in which the beat length
corresponds to the half-pitch length, certainly for spiral
twist rates no greater than 116 turns/m. This seems to be
the maximum optical rotation measurable in that particular
setup.

HELIX EXPOSED TO AN EXTERNAL
MAGNETIC FIELD

Since helical fiber might be useful as a current sensor, the
evolution of polarization in such a fiber is of interest. There
are probably many ways in which the Faraday effect can
indicate the amount of current present. We shall consider
the fiber geometry to be such that the electric current [ is
parallel to the helical axis (z axis) (Fig. 2). It is convenient
to assume that the unit tangential vector of the right-handed
helix is so. It is obvious that the external optical activity
(Faraday effect in radians) over an infinitesimal fiber seg-
ment ds is df = =B - 89V ds, where Vj stands for the Verdet
constant with units of rad/[m(Whb/m?)] (1/0.291 X 10° min/
Gauss cm) whose positive value corresponds, by convention,
to an [-rotatory optical activity. In addition, B = ul/2R is
the magnetic flux density measured in webers per square
meter (g = 47 X 10~7 H/m in vacuum, I is in amperes, and R
is in meters). Suppose that the coordinates of the fiber
element are (R cos t, R sin ¢, bt) so that s, = 1/JR? + b%(—R
sin t, R cos t, b). On the other hand, the magnetic density
flux vector B is seen to be B = B(—sin t, cos t, ¢). Expres-
sions for optical activity dé = %5./ds = (~—BRV4/yRZ + b%)ds
or 8, = —(2BRV4/JRZ + b?) are obtained. The expression is
altered so that it is now positive for a left-handed helix in the
same magnetic field. Together with a knowledge of the
principal axes and the amount of stress-induced linear bire-
fringence, this formula would imply that the parameters P
and @ in Eqgs. (7) are

_ J0.672 X 10° R*r* i

P=cos\s
N(R? + b?)*

n\’s,

b(1 — g)/(R*+ b%) — RBV/(JR® + b*)
- sin
A/

N's,

v=—L {[b(l — &) — RBV,R® + b%)?

(R? + b?)

4 (0672 X 10° R*r*Y? 172
R* +b?
In particular, for a densely wound helix, b — 0 (in which case
the helix becomes a coil). If the coil is designed so that
0.672 X 10° r?
RZ
then M = BV, P = cos(BVys), and @ = sin(BVys). This
describes a simple I-rotatory polarization with a rotating

angle of BVyS. This is the ideal situation in which the
current sensor works accurately and linearly.!* However, a

« BV, (11)
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practical sensor may suffer from nonlinearity and inaccura-
cy because the light emerging from the sensor tends, in
general, to be elliptically polarized when some linear bire-
fringence is present, as is often the case.!* The technique
developed in this paper can effectively provide much insight
into this problem since the output field is described thor-
oughly and the performance of the fiber sensor may be accu-
rately estimated.

CONCLUDING REMARKS

The polarization ellipse is uniquely determined by its plane-
wave components. If the two transverse field components
are normalized relative to either of these components, then
the magnitude/phase ratio of the other can easily be deter-
mined by measuring the polarization ellipse. The relation-
ship between the polarization ellipse (the ellipticity and
inclined angle ratio) and the normalized field components is
unique and is outlined first. It is the field that is the key
parameter to the plane-wave evolution, even when the fiber
itself suffers from a variation in the principal axes or in the
hybrid birefringence rate along its length; an example is a
general curvilinear fiber, in which polarization evolution has
long been of interest. In this paper, the Jones matrix de-
scribing the electric field components of a plane wave has
been generalized to include optical fibers that have distrib-
uted principal axes and linear and circular birefringence.
The generalization can be made by means of mode coupling
and field continuity. Only the latter approach is discussed
in detail. This technique is obviously applicable to the
popular twisted or spun fibers as well as to helical fibers that
may have been exposed to external processes affecting opti-
cal activity, such as electric or magnetic fields and lateral
pressures. A detailed description of the field of the output
light is formulated individually for those fibers, and the
results obtained are usually in good agreement with the
experimental results and current theoretical analyses. The
proposed matrix method, however, deals with general curvi-
linear fibers, and in this sense the method may be deemed to
be a unified technique that should prove useful in practice.
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