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The optical consequences of the violation of thermodynamic equilibrium in a crystal are investigated.
If this violation occurs it may lead to breaking of time reversibility. As a result of this the internal sym-
metry of the optical susceptibility tensors changes and new “forbidden” tensor components arise. This
gives way to some forbidden specular polarization phenomena in optics, observation of which may be
used for diagnostics of the crystal equilibrium. The wave theory of normal reflection from a crystal in-
terface including consideration of the role of the forbidden components is developed. Two mechanisms
for forbidden specular polarization effects are identified, one due to the appearance of a contribution to
the dielectric tensor which is antisymmetric under interchange of tensor indices, and another associated
with the symmetric contribution to the nonlocal optical response. Crystal point group analysis shows
that, depending on crystal class, forbidden specular polarization effects may be seen with or without a
background of “‘conventional” optical activity. The physical conditions for their observation are dis-
cussed and recent polarization-sensitive experiments in optically excited GaAs crystals are explained in
terms of the developed theory. It is also shown how this approach may be used for the description of
time-reversal-symmetry-breaking specular optical activity in the superconducting phase of high-T, cu-

prate materials.

I. INTRODUCTION

Optical polarization-sensitive detection has already
been recognized as a unique and direct tool for the
analysis of symmetry-breaking phenomena in physics.
For example, breaking of the CPT-invariance resulting
from the weak interaction of an optical electron with a
nucleus manifests itself as a very small (=~ 107% rad) rota-
tion of the plane of polarization of a light beam resonant-
ly interacting with the atomic vapor.! Specular
polarization-sensitive experiments were suggested as a
crucial test for the ‘“anyon” superconductivity model,
predicting the breaking of time-reversal and possibly par-
ity invariance in cuprate materials.>” % An optical test
based on polarization-sensitive spectroscopy was suggest-
ed and undertaken to search for broken time-reversal in-
variance in atoms leading to the appearance of per-
manent electric dipole momentum in the ground state of
an alkali atom.> It was also found that polarization-
sensitive detection may be used in the observation of
light-induced symmetry breaking in nonlinear optical
resonators, anisotropic crystals and fibers, optically ac-
tive liquids, and various other nonlinear systems where
an intensive electromagnetic wave may provoke violation
of a system’s spatial symmetry.5

In this paper we will show how a polarization-sensitive
detection technique may be used for analysis of the
breaking of time-reversal symmetry resulting from the
loss of thermodynamic equilibrium in a system. The fact
that the system, interacting with external forces, meets
time-reversibility requirements, leads to some additional
internal symmetry arising from the so-called principle of
the symmetry of kinetic coefficients (SKC principle),
which itself results from the fluctuation-dissipation
theorem.”® The interaction of a light wave with matter
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may be considered as an example of such a system, where
the presence of this internal symmetry may be formulated
in terms of optical susceptibilities. Loss of the thermo-
dynamic equilibrium of the system may lead to breaking
of time reversibility and to the appearance of normally
forbidden components of the susceptibility tensors which
may be identified by specular polarization-sensitive detec-
tion experiments. Below we will show which particular
symmetry requirements arise from the SKC principle,’
how this is reflected in the optical susceptibilities, and
how the lifting of thermodynamic equilibrium may be
detected by polarization-sensitive detection.

II. THE PRINCIPLE OF THE SYMMETRY
OF THE KINETIC COEFFICIENTS

Let us consider a system affected by N external forces
fs(t) (s=1,2,...,N). Energy variation resulting from
this excitation may be presented in the form

V=xf(t), (1)

where x, are the internal coordinates corresponding to
the external forces f,(z). The general form of the linear
solutions to the corresponding dynamic problem in spec-
tral presentation has the following structure:
x,(w)=ay,(0)f,(0). The so-called kinetic coefficients,
ag(w) (s,p=1,2,...,N) should obey the following rela-
tionship: a,(w)=*a,(w). Here, the + sign is ap-
propriate if both the force f (w) and the corresponding
coordinate x,(w) have the same symmetry with respect to
time inversion (# = —t), and the — sign if they have op-
posite symmetry. This is the SKC principle.®

In order to apply this concept to optics we adopt the
following light-molecule interaction Hamiltonian:’
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V=—dE—m-B—Q;V (2)

‘]1

Here d, m, and Q;; are respectively the electric dipole,
magnetic dipole, and quadrupole momenta of the mole-
cule. The last two terms here are essential in the con-
sideration of spatial dispersion effects such as optical ac-
tivity which will be of special interest below. Below we
will consider only nonmagnetic material presuming the
absence of any external magnetic fields except the fields
of the light wave. In such a case the electric dipole and
quadrupole momenta are even functions of time, i.e.,
d(r)=d(—1) and Q;(r)=Q;;(—1), while the magnetic
moment is an odd function: m(t)— —m(—1z).1°

From (1) and (2) we can see that, with respect to the
SKC principle, the Cartesian projections of the electric
field strength E;, of the magnetic induction B;, and of the
derivative V,E; act in optics with respect to the material
system as the external excitation forces, while the Carte-
sian projections of the electric, magnetic, and the quadru-
pole momenta play the role of the internal coordinates of
the molecule:

d(@) =X\ (@)E;(0)+a;(0)B;(0)+¢,;(0)V,E (o)
(3)
+ ¢\ (0)V,E;(0) ,
@)

il

m(0)=B;(0)E;(0)+u;(0)B;(w)

Ji@)=iox|(0)E;(0)+ioa,
+ce,~1jV1[/.ij(a))Bk

ij

The last two contributions, i.e., those which are propor-
tional to VB and VVE, are in fact related to second-order
spatial dispersion phenomena which may be ignored at
this stage if attention is concentrated on the phenomenon
of optical activity. From the Maxwell equation
B(w)=i(c/w)ey;V,E;(w), we finally get the current den-
sity in a form suitable for the treatment of propagation
phenomena in homogeneous materials:

J(w)—zco[x,] (w)E; (a))+U,j, o)V, E ()], 9)

where

5111) ¢ul(ﬂ’) '/’;1,((0 )+i— [0‘ ik €klj +Bk]eklz] . (10)
If (6) is introduced into (1), one can see that the applica-
tion of the SKC principle to nonlocal optics results in

02}1)(w)=—0§},)(w) . (11)

More often in optics, instead of using the material equa-
tion (9), a treatment based on the electric induction D is
used:

D(r,0)=E(r,0)+4r [ dt'J(r,t"), (12)

(@)B(w)+cey;By(0)V,Ex(w
+¢Jk)(w)V E (0)]+ioV,[¢ ij ™(w)B; (@)K (@)Y, E(0)] .
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04(0)=1(0)E;(0)+ Y (0)B; +Kyjj (0)V,, E; () .

(5)

Correspondmgly the parameters Xu y Qijs bt Bu’ Kij»
¢le » Yy ¢,,J » Kitjm are kinetic coefficients which, in ac-
cordance with the SKC principle, must obey the follow-
ing relations:

X =xP) , pylo)=w (o),

diil0)=¢;)(w), ¢ij1(w):¢jil(a)) ’ ©)
Kiljm( )= K]md ¢1]I _d}jil(w)’
aj(0)=—B;w), ¢M(w)=—y¢(w).

Here, the different time-reversal symmetry of the forces is
taken into account according to the rules stated above.

Considering a wave propagation problem we shall find
how (6) affects the current density, J(w), induced by an
electromagnetic wave of frequency w:

Ji(w)=iwd;+cey Vim(0)—ioV,;0N o) , @)

where c is the speed of light. Using (3)—(5) we can rear-
range the equation above:

and correspondingly the following material equation in
homogeneous materials is exploited:

Dj(0)=€;(0)E,(0)+7 (0)V,E;(w) , (13)

where €;;(0)=0;; +47TXU (), vijlw)=4mo (@), and
the last term in (13) describes nonlocal phenomena such
as optical activity. Consequently from (9) and (11), the
tensors describing thermodynamical-equilibrium interac-
tions should obey the following remarkable symmetry re-
lations:

Eij(a)):eji(w) ’ (14)

y,ﬂ(w)z

The restrictions above supplement the symmetry restric-
tions on the €; and ¥, tensors appearing from the point
group of the crystal that they are destined to describe.
The existence of the restrictions (14) and (15) leads to the
forbiddance of some optical phenomena and below we
will show how they affect specular polarization effects.
Since the SKC principle reflects the fact that successive
states of the system are time-reversed conjugate and
derives ultimately from the fluctuation-dissipation
theorem, it may not hold for nonequilibrium conditions,

—vul@) . (15)
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TABLE 1. Symmetry restrictions, nonvanishing optical susceptibility components, and corresponding optical phenomena. The +
sign indicates here the existence of the corresponding symmetry or tensor component, while — means that the symmetry is broken or

the component is forbidden.

Phenomena Specular phenomena
T + + - - in transmission Imes, <<|Re(1—¢€,)
P + — + -
Reg;j; Linear birefringence Elliptization of polarization
+ + + +
Imej; Linear dichroism n/a
Rey i Circular birefringence Elliptization of polarization
- + — +
Imy Circular dichroism Polarization rotation
Ree; Gyrotropic circular birefringence Polarization rotation
- — + +
Ime; Gyrotropic circular dichroism Elliptization of polarization P;ig?(ﬁiﬁa
Reyiu Gyrotropic linear birefringence Elliptization of polarization by t'he ,SKC
— — — + principle
Imy iy Gyrotropic linear dichroism Polarization rotation

say if the system is exposed to a strong transient excita-
tion or is undergoing a phase transition. In such cir-
cumstances, the relationships (14) and (15) may be broken
and the dielectric tensor €;; and the optical nonlocality
tensor y;; may have nonvanishing antisymmetric,
€;; = —€};, and symmetric, yj; =7 j;, components, respec-
tively.

As stated above, violation of the SKC principle ap-
pears when external forces lead to a response with time-
reversal symmetry different from the symmetry of an
equilibrium response. In this sense the violation of the
SKC principle may be seen as a violation of the time-
reversal symmetry (7 symmetry). However, Neumann’s
principle still remains valid here and in calculating non-
vanishing tensor components one should take into ac-
count also the crystal’s whole point group symmetry.
However, the presence or absence of P symmetry (space-
reversal symmetry) as an element of the point group is
the most important factor since the existence of an inver-
sion center in a crystal leads to the forbiddance of any
odd-rank material tensor, including the nonlocality ten-
SOT ¥ -

Correspondingly, Table I presents the allowed nonvan-
ishing components which may appear under basic types
of symmetry restrictions.

III. MATERIAL EQUATION AND
BOUNDARY CONDITIONS IN THE
PROBLEM OF REFLECTION

Now we are in a position to consider the role of these
“forbidden” tensor components in the specular optical
activity phenomenon. We will develop further the ap-
proach first used by Bokut’ and Serdukov!! and recently
extended towards absorbing media in our publication.'?
In order to consider the interface between a vacuum and
an optically nonlocal medium we shall first of all improve
the material equation describing homogeneous media

(13), making it suitable for the boundary problem, where
dramatic variation of material parameters at the interface
must be described. We shall start from the general form
of the material equation which takes into account the
response nonlocality and the causality principle:” 12

D,(r,1)= fdpf dreip,r—p,7)E;(r—p,t — 1),
(16)

where efj” is the linear optical response function. The

time-domain Fourier transformation of (16) results in
(r, w)—fdpe“)(p,r p,0)E;(r—p,0), 17

where
e (p,r— p,w)—_f dre;(p,r—p,T)explioT)

(18)

The electromagnetic wave E;(r—p,») and the optical
response function may now be expanded to consider the
first-order spatial dispersion effects only:

E(r—p,0)=E{(r,0)—p,[0E(r,0)/0r;]+ - -+ , (19)
eﬁ-}’(p,r—p,a))* ‘”(p, ,0)
—pi[3eP(p,x,0) /3, ]+ -+ - . (20)

If we now introduce

€;(r,0)= [dpelp,r,0),
(21)
Yi(f,o)= fdpp1€ (p,1,0)

and substitute (19) and (20) into (17), we finally get the
material equation in a form more precise than (13):
Di(r,w)ZGij(r,a))Ej(r,w)+Vl[yiﬂ(r,a))Ej(r,w)] .

(22)
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The last term here may be rearranged:
Vl[YijI(ryw)Ej(r,(l))]
=[Viyiu(n0)E;(ro)+yy(ne)lV,Eire)] . (23)

In order to describe propagation phenomena such as nat-
ural optical activity we can neglect the first part in the
right-hand side of (23). This results in the material equa-
tion (13). The above simplification is acceptable only
when the characteristic length of the variation of
v (1,®) is sufficiently longer than the light wavelength
A, |Vy(r,w)| <<|y(r,0)/A| and therefore not acceptable
in the theory of reflection. We will be keeping this term
in our treatment below. However, this additional term
does not affect the time-reversal properties of the optical
response of the medium.

In order to proceed with the consideration of specular
optical activity, we shall, for simplicity, assume steplike
behavior of €; and y,; near the interface plane which
corresponds to z =0. That is €;;=§,; and y,; =0 at z <0
and €;;73;; and y,;70 at z >0 where §;; is the Kroneck-
er delta symbol. From the Maxwell equation VXB
=(1/¢)oD /9t following Ref. 13, by integration over the
area of a loop enclosing the border we get the boundary
condition for the magnetic induction of the light wave:

[nX(B“)—B‘Z))],.=%%75}2E}2) , (24)
where n is the unit vector normal to the interface and the
indices (1) and (2) label the vacuum and gyrotropic medi-
um, respectively. The right-hand side of this boundary
condition is associated with the induced surface current
leading to the effect of specular optical activity. It arises
only if the term (V;y,;)E;, in (23) is taken into considera-
tion. Similarly from the Maxwell equation VXE
= —(1/c)oB/at the second boundary condition for the
electric field may be derived:

[nX(EV—E?)]=0. (25)

1IV. “FORBIDDEN” SPECULAR
POLARIZATION PHENOMENA

From this point we will consider two specific cases of
specular polarization phenomena, clearly reflecting the
roles of the “forbidden” components of the material ten-
sors €;; and yj;. We will examine reflection of light
along the direction of the optic axis of uniaxial crystals or
the fourth-order symmetry axis of a cubic crystal and
consequently only relevant tensor components will be
taken into consideration. For the tensors €; and y
these are only components with i,j=x or y, and k =z.
We shall point out here that optical phenomena “in
transmission” due to €;; and yj; are known in magnetic
materials!*!> as gyrotropic circular and linear
birefringence “in transmission” (see Table I and Ref.
[14]). As we have mentioned above, here we consider
specular phenomena only in nonmagnetic materials.

First, the crystal classes where €;; is not allowed by the
crystal point group, but y;;, (either symmetric or an-
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tisymmetric part) is permitted, will be considered. These
are 32, 3m, 422, 622, 4mm, 42m, 6mm, 43m, 23, 432.
From the crystals in this list v}, is allowed by the point
group only in the following classes: 3m, 4mm, 42m,
6mm, 43m, 23 while y?jz may be found in 32, 422, 622,
23, 432. We mention here that it is only possible for both
symmetric and antisymmetric parts of the nonlocality
tensor to exist in the 23 crystal point group.

Second, the case where €f; is allowed by the crystal
point group will be considered. We will show that even
in the direction of the optic axis of a birefringent crystal
the existence of €]; leads to specular polarization effects.
This may happen in the following crystal classes: 3, 3, 4,
4,4/m, 6,6, 6/m. Correspondingly higher-order contri-
butions to the optical response coming from the nonlocal-
ity tensor y;;, may be ignored here in first approximation.

A. Specular polarization effects in 32, 3m, 422, 622, 4mm,
42mm, 6mm, 43m, 23, 432 classes due to circular
and gyrotropic linear birefringence and dichroism

We introduce the Cartesian coordinate frame where
the light beam propagates and reflects along the z direc-
tion and the reflecting x-y plane {001) is the surface of
the crystal, acting as a mirror, i.e., the normal incidence
condition is considered. The electric field in a vacuum
E'V is given by

E'V=E, exp(—iwt +ikz)+E, exp( —iot —ikz)+c.c. ,
(26)

where E; and E, are the magnitudes of the incident and
the reflected waves and k =w/c. The wave equations for
the Cartesian components of the transmitted wave E'®
are

E!+k*€E, +v, E;+v,,.E)=0, 27
E)+k*€eE,+v,,E, +v,,E;)=0. (28)

Here the prime sign refers to the derivative over the
direction of wave propagation, i.e., z direction. The form
of the Eqgs. (27) and (28) is suitable for the description of
light propagation in a cubic crystal having the dielectric
constant €, or along the optic axis of a uniaxial crystal
with €,,=¢€,,=€. We define here the parameters
Vs,a = ‘;,‘k [nyzinyz ] and Vi= %k [Vxxziyyyz ] which
determine corrections to the dielectric constant caused by
the symmetric and the antisymmetric parts of the nonlo-
cality tensor, respectively. The eigenvectors g, , =kn, ,
and the corresponding eigen polarization states e, , of the
light wave propagating through the medium may now be
found from (27) and (28):

ni =V et+(iv,tv?+(iv tv), (29)

v, v,

Viv_ziv*+ v, +v |2 ’
a s

(30)

€x1,2

—v_Fiv

e, 2=
y1,2 . ’
Viv_Livi2+|v, +v, |2

(31)
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where
v=1v2 =y 32 (32)
and the reflected, transmitted, and incident waves are
E,,=e 4, ,te,4,,, (33)
EP=e, 4, exp(—iot+iq,z)
+e,A4,,exp(—iwt+ig,z)+c.c. (34)

Note here that if v,=v_=v . =0 and v,70, the
eigenwaves are right- and left-circularly polarized as in
the simple case of optically active isotropic media. If
v,=v_=v,=0 and v,70, the eigenwaves are linearly
polarized. In the general case the eigenwaves are ellipti-
cal. Correspondingly, if v, =v_=0, y{, leads to circu-
lar birefringence and circular dichroism in transmission,
while v}, causes gyrotropic linear birefringence and di-
chroism (see Table I, where we partially adopted the ter-
minology of Ref. [14] and extended for absorbing media).

The boundary conditions (24) and (25) may now be
rewritten in terms of the magnitudes of the eigenwaves
A5

Aj T 4,,= A4, (35)

Ajyy—A2=81240,2 » (36)
where

§1,=ny,—20iv tv) . (37)

Thus, from (35) and (36) the magnitudes of the reflected
waves are equal to

_ 1“.5'1,2

Arl,2_ 1+§112 Ai1,2 (38)

representing the normal incidence Fresnel law where no
assumption concerning the validity of the SKC principle
is made. Now the polarization state of the reflected wave
may be presented in terms of the ellipticity angle
n=(L1)sin"!(s;/so) and the angle of rotation of the po-
larization azimuth a=(Ltan" (s, /s,), where
Sy, (m=0,...,3) are the Stokes parameters:
so=E,Ef+EE}, s,=E,Ef—E,E}, s,=2Re(E,E}),
53=2Im(E,E}).

The most clear specular polarization effect may be seen
when the incident wave is linearly polarized (n;=0). If
lel >> v, tivl|:

vV, — v, cos(2¢)+v_ sin(2¢)

41
S, tan2 + 1—e
=tan
A cos®2¢
(39)
S v, — v, cos(2¢)+v_sin(2¢)
2r =4Re a s ¢ ¢ (40)
S, 1—e
Correspondingly, if the polarization change of the

reflected waves is small (7, <<w, 8a, <<7) and this is
certainly the case for the most experimental situations,
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(a)

FIG. 1. Specular polarization phenomena in a polar coordi-
nate system. The wave vector of the reflected light is directed
towards the observer. (a) Polarization azimuth rotation due to
gyrotropic birefringence (Reef;70) and circular birefringence
(Rey{,#0). (b) The simplest case of gyrotropic linear
birefringence (only Rey3,, #0).

then
Sa, Im v, — v, cos2¢+v_sin2¢
7, Re 1—e

As a particular case, the formulas (39) and (40) describe
the phenomenon of ‘“conventional” specular optical ac-
tivity along an isotropic direction'? in crystals of the fol-
lowing classes: 32, 422, 622, 432, where v}, =0 because
of the point group restrictions, and violation of the SKC
principle does not lead to any ‘forbidden” specular
effects. Here v, =v_ =0 and since cosine and sine contri-
butions are equal to zero, there is no dependence on the
initial polarization plane direction [see Fig. 1(a)]. Here in
low-absorbing crystals the polarization plane rotation in
reflected light is purely proportional to the imaginary
part of the nonlocality tensor v, .

In crystals of 3m, 4mm, 42m, 6mm, 43m, no “conven-
tional” specular optical activity is allowed by the point
groups and y7;, =0 and correspondingly v,=0. At the
same time when the conditions for violation of the SKC
principle are met, the nonzero components of yj,, appear
and “forbidden” specular polarization phenomena due to
gyrotropic linear birefringence and dichroism are possi-
ble. Here the polarization state of the reflected wave
dramatically depends on the initial orientation of the po-
larization plane with respect to the crystal axis [see Fig.
1(b)]. As we have mentioned above, in the 23 point group
both “‘conventional” (circular) and “forbidden” (gyrotro-
pic linear) birefringence and dichroism are possible.

We note here that the brief results on phenomenologi-
cal consideration of specular polarization effects in mag-
netic materials obtained in Ref. 15 were partially wrong
because of the use of incorrect material equations in
which spatial derivatives of third-rank material tensors
were ignored [see formula (23) and our publication'?].

B. Specular polarization effects in crystals of
3,3,4,4,4/m, 6, 6, 6/m classes
due to gyrotropic circular birefringence and dichroism

In the classes listed above, violation of the SKC princi-
ple may lead to the appearance of an antisymmetric com-
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ponent of the dielectric tensor €;;. In this case, there is
no need to include the higher-order phenomena related to
v (the nonlocality tensor). The specular polarization
effects here may be considered using the same coordinate
system as above, i.e., light propagates in the z direction
with the surface of the crystal lying in the x-y plane
(001), acting as a mirror. Here we presume that the
coordinate frame is set in a way that the dielectric tensor
€,, is diagonal if the SKC principle holds.

The electric field in a vacuum, E'), is given by Eq. (26),
but the wave equations for the Cartesian components of
the transmitted wave E? are different:

E;+k*€E, +€},E,)=0, (42)

" 2 . —
E,)/+k“(€E,—€3,E,)=0. (43)
Here €5, = —¢, is the antisymmetric part of the dielec-

tric tensor resulting in the violation of the SKC principle.
The eigen polarization states are right- and left-circularly
polarized waves, e, =e,tie,, the corresponding eigen-
vectors g =kn . are equal to

n.=Ve¥Fiel, . (44)

In accordance with Table I the optical effect due to the
difference between n . and n _ is referred to as gyrotropic
circular birefringence and dichroism. Because we are
neglecting the y,; contribution here, the right-hand side
of the boundary condition (24) becomes zero, which leads
to the following form of the Fresnel law for the normal
incidence condition:

_ l_nj:

rt it o
l+ni

(45)

If the incident wave is linearly polarized and le| >> |e§y
(.e., n, <<, 8a, << ), then

a
xy

Ve(l—e)

Sa,

-

Re €

—Im

(46)

The specular polarization phenomenon described by this
formula does not depend on the incident light polariza-
tion plane direction with respect to the crystallographic
axes [see Fig. 1(a)].

V. DISCUSSION

Table I presents a summary of the effects which may be
seen on reflection from a crystal where no reservation
concerning validity of the SKC principle is presumed. In
a low-absorbing media (Ime® << |Re{1—¢€}|) specular po-
larization phenomena manifest themselves as reflected
light polarization azimuthal rotation (Reef;#O0,
Imyj,#0, or Imy{,#0) or elliptization of polarization
of incident linearly polarized light (Ime{;70, Rey;, 70,
or Rey{;,70). In an absorbing medium specular polar-
ization azimuth rotation and elliptical polarization
should be expected to happen simultaneously.

In fact there is already at least one experimental obser-
vation which may be explained in terms of the violation
of the SKC principle.!® Excitation-induced polarization
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azimuth rotation has been detected on normal reflection
from GaAs, belonging to the 43m point group. In zinc-
blende crystals (43m) the third-rank tensor has the fol-
lowing nonzero components Y., =V, =Yy =V s
=Y 2yx =7V xz» @ result of the symmetry group. “Conven-
tional” optical activity does not exist here, but due to the
breakage of the SKC principle y};, may appear and, con-
sequently, specular polarization effects due to gyrotropic
linear dichroism with a cos(2¢) dependence on the initial
polarization orientation is predicted by (41):

K
xyz

8a, =2k Im cos2¢ . (47)

In the experiment in question the crystal was excited by a
60-ps pulse of green (A=532 nm) radiation creating a
dense electron-hole plasma in the sample. The rotation
of polarization of the reflected light was detected in a
separate probe light pulse and was in the scale of 10-100
urad monotonously, increasing with the excitation which
was in the range of 10-200 MW/cm?. The rotation ap-
peared immediately with the excitation and disappeared
steadily in 300 ps, after the excitation pulse had gone.
The dependence of the induced effect on the initial polar-
ization orientation was measured with good accuracy and
was found to be exactly as predicted by the formula (47).

We explain the observed result in the following way.

(a) The nonequilibrium state is created by fast transient
excitation and absorption of the energy of the light pulse.
The excitation relaxation time is longer than the duration
of the pump pulse and the time-reversal symmetry is bro-
ken even after the end of the excitation pulse.

(b) The SKC principle forbidden component of the
nonlocality tensor y3,, appears as the result of lifting the
conditions of the applicability of the SKC principle [see
formula (15)]. In accordance with (39)—(41) this leads to
the rotation of the polarization azimuth “on reflection”
for a delayed probe pulse. The value of the component of
the nonlocality tensor corresponding to a specular probe
pulse polarization rotation of 2.5X 107> rad may be es-
timated via formula (47) as y3,,=2X10"° cm™'. Here
we point out that if the antisymmetric part of y,; had
this value, the corresponding optical rotatory power in
transmission would be about 90°/mm, which is a quite
typical value for gyrotropic crystals such as a-SiO,,
Bi;,Si0,,.!7 For strongly optically active crystals such as
TeO,, a-HgS, or LilOs,!7 specific rotation in the visible
range is typically 500°-300°/mm and the value of y*
would be about 1078 cm ™!, i.e., one order of magnitude
higher than the above-mentioned induced component.

(c) It is most likely that the generation of the dense
electron-hole plasma, i.e., excitation of the free carriers,
is the main reason for breaking the SKC principle in the
optical response. Recombination of the carriers results in
the observed disappearance of the nonequilibrium state,
the symmetric component of the nonlocality tensor, and
the specular rotation of the probe beam.

We believe that the above example is the first demon-
stration of the violation of the SKC principle in optics
due to transient excitation but certainly this kind of “for-
bidden” phenomena may be found in different crystals.
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They should be particularly important in media with
strongly nonlocal optical response and appropriate crys-
talline symmetry. The response nonlocality is very pro-
nounced in organic crystals (especially with weakly
bound valence electrons), liquid crystals (especially
cholesterics), layered materials with a structure period
shorter than the wavelength (semiconductor multiple
quantum wells would be an evident but far from unique
example), excitonic crystals with bound and free excitons,
and semiconductors where optical response is due to the
electron-hole plasma. Moreover, any system having mi-
croscopic spiral structure and consequently strong polar-
ization rotation power shall evidently be attributed as
sufficiently nonlocal. It should be mentioned here that a
nonlocal, weakly bound optical electron is a very non-
linear object and consequently optical nonlocality may
very often be found side by side with pronounced non-
linearity of the media.

The approach developed above may also be used for
describing specular optical polarization phenomena in
crystals when time-reversal symmetry is broken due to
any reason different than the loss of the thermodynamic
equilibrium. This turns us to the problem of the contro-
versial discussion on the existence of optical activity on
reflection from some high-7, materials!® 2! where the
formulas (41) and (46) may be used for the description of
specular rotation from the superconducting phase. In ac-
cordance with the “anyon” superconductivity model cu-
prate high-7, materials should have simultaneously bro-
ken spatial inversion symmetry P and time inversion sym-
metry T in the superconducting phase (but PT remains a
“good” symmetry*?!). In the “PT state” in accordance
with Table I [T=(—), P=(—)], the antisymmetric part
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of €;; and the symmetric part of y; are allowed and, cor-
respondingly, specular polarization plane rotation and
light elliptical polarization may be expected. However,
corresponding tensor components should also be allowed
by crystalline symmetry. One specific example of where
the crystalline symmetry forbids these tensor components
in nonmagnetic materials is the 4/mmm crystal class, to
which the well known high-T, material YBa,Cu;0,_; is
attributed. Consequently, if magnetic properties are not
taken into account, no specular polarization phenomena
due to homogeneous bulk contribution, resulting in bro-
ken time reversibility may be expected here.
Summarizing, using the nonlocal light-molecule in-
teraction Hamiltonian we have found the limitation on
the linear optical susceptibility of nonmagnetic materials
resulting from the principle of the symmetry of the kinet-
ic coefficients. We have also developed the theory of
specular optical activity in crystals along nonbirefringent
directions, taking into account the role of the com-
ponents of the dielectric and nonlocality tensor, forbid-
den by the SKC principle. Recent specular polarization-
sensitive time-resolved experiments with an optically ex-
cited GaAs crystal are explained using the developed
theory. We also point out how the above approach may
be used for the problem of specular polarization phenom-
ena in the superconducting phase of cuprate materials.
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