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ABSTRACT

A  set of coupled-mode equations for  Thelical fibres are
formulated. These . equations are then used to analyse the
helical single-mode fibres with intrinsic linear bire-fringence.
The eigen-modes and the resultant birefringence of the whole
wavegqguides are obtained. The effect of the external

perturbation on these wageguide are also considered.
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I. INTRODUCTION

The fact that the polarisation state of the 1light is
rotated if the light advances along a helical fibre path [1,2]
was successfully applied to making circular-birefringence fibres
by using a helical core in the fibre [3,4]. Theoretical work on
the helical fibre was done by Fang et al (5] to prove the axiom
presented in Ref.[2]. Although the linear birefringence in the
helical fibre was mentioned in these papers, but no detail has
been given. Although the formula for the beat-length of the

fibres with helical cores was given (3], but it has not been

derived figorously, and the influence of the linear birefringence
on the resulting birefringence of the helical-core fibres is
still not well known.

In this paper, starting from the Maxwell equations in
Tang's coordinate system [6), we transform them to a set of
coupled-mode equations which are able to describe the behaviour
of all modes in a helical fibre clearly and precisely.

The fields 1in the helical fibres are expressed by
superposition of a set of local normal modes, which are normal in
a straight fibre, but are coupled to each other in the helical
fibres. If only two orthogonal fundamental modes are considered
in the coupled-mode equations (as in the single-mode case), it is
simple to obtain the eigen-modes in the helical fibres and the
resultant birefringence of the whole wavequides. The intrinsic
and external perturbations of the fibres can be taken into

consideraton easily in these equations.



II. FORMULATION

The geometry of a helical optical fibre is shown in
Fig.1. It is not only for the helically wound optical fibres,
but also for the helical-core fibres [3] or the spiral fibres
{7]}. In the latter case only the core is in a helical form, the
cladding surrounding the helical core forms a uniform cylindrical
fibre. If the cladding layers are much thicker than the core
diameters, there are no differences between them optically.

Before fomulation we have to distinguish two different

axes, the core axis s and the helix axis z - In the coupled-mode
analysis usually we use the s-axis as the reference axis, along
which the 1light propagates. However, it is not convenient to
use s-axis in practical use, when the helical fibre is taken as a
whole waveguide (see Sec.IV). Thus we prefer ;-axis as the
reference axis and the whole waveguide will be called dielectric
helical waveguide.

Thus when different titles, the helical fibre and the
dielectric helical waveguide are used below, it implies that
different axes, s- and ;—axis are being used, respectively.
Propagation constant of a mode will be changed for different
reference axes.

The coordinate system (n, b, s) shown in Fig.1 is the
Serret-Frenet frame, which is non-orthogonal so far as the
torsion is not equal to zero. To form an orthogonal coordinate
system (m, p, s), Tang (6] rotated the Serret-Frenet frame with
an angle y:-rs in the plane transverse to the s-axis, where T

is the torsion, which is positive in case of right-handed helical




system and is given by
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where P is the pitch, Ry is the radius of the helix, S is the arc

length for one turn.

Tang also gives the metric coefficients for the new

coordinate system

n
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By changing from the transverse coordinate (m,p) to the

polar coordinates ([, ¢ ), we have

m= o5 P="r4n0 )

the corresponding metric coefficients become
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where
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Maxwell's equation in (m, p, s) coordinate system can be

rewritten as
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where E., H and E_, H  are the field components in the plane
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transverse to s-axis and along the s-axis, respectively, is is
the unit vector in the s directions. ¢ = n2£; and n is the
refractive index of the fibres and is a function of coordinates
(p, n), but does not vary along the s-axis. Since we assume a
lossless fibre, the n is a real number.

Any transverse fields E, and H, along the helical fibres
can be represented by a superposition of a set of local normal

modes of a reference fibre, which is straight and has the same

direction as the local point on the helical fibre (see Fig.1).
The refractive index profile N, for the reference fibre 1is
circularly symmetrical. Usually we choose the step-index
profile, so it is easy to find the modal fields of the normal

modes for the reference fibre. Thus we have
Et = ZJ Ac €(r.j
K =
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where ey and hti denote the transverse components of the modal
fields"which wére described in details elsewhere [8]. The
summations in (8) are over both the guided modes and the
radiation modes. The latter are so discretised that we can
consider them as guided modes (9]. The total modal fields can
be expressed as
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where iz is the unit vector in the z-direction, which coincides

-
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with the s-direction only at local points on the helical fibre.



Thus the z-direction is not changed along a certain reference
fibre, but is changed periodically from one reference fibre to
another, as the local points move along the helical fibre. The

modal fields are orthonormallyized as follows:-
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where é;Li is the kronecker delta and A_, 1is the infinite

(10)

cross-sectional area.

The normal modes in the reference fibre which is a

straight fibre tangent to the helical fibre at a local point are

local normal modes and they are coupled to each other in the

helical fibre. Now we proceed to formulate the coupled-mode
equations for those local normal modes in the helical fibres.

We first dot-multiply (7a) and (7b) by ( h“ x ,é and

X 6;: ), respectively, and then integrate them over the

entire cross-section, obtaining
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where ﬁ is the propagatlon constant of the kth mode in reference

fibre.



Adding (11a) to (11b) and then using (8) and (10), it is
ready to have the following coupled-mode equations for all modes

including discretized radiation modes:
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where the coupling coefficient can be expressed as
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Equation (13)-also can be used for backward-propagating

(12)

modes, in that case, ﬁlk = —(2k<0 and their modal fields have
simple relations with those of.forward (8]. We have four terms
in the right-hand side of (13), which imply different mechanisms
resulting in couplings between modes. The first term in the
right-hand side denote the coupling caused by the change of modal
fields. Since we use the same reference fibre for all local
points along the helical fibre, it wvanishes. The coupling
expressed by the second and third terms is resulted from bending.
Since in the weakly gquiding step fibres the z-components of the
modal fields for quided modes are small of an order (Ajg compared
to the transverse components, the third term can be neglected.
The last term is the coupling caused by the difference of the
refractive indices between the reference fibre and the helical
fibre, it has the same form as for a straight fibre (10]. The

refractive index difference may result from geometrical



deformation and/or induced stress, which have been studied in

more detail elsewhere [11].

It is noted that the torsion of the helix does not result

in coupling between the modes defined in Tang's coordinate

system.

ITT. EIGEN-MODES IN SINGLE-MODE HELICAL FIBRE.

For a single-mode helical fibre, only the two

orthogonally linearly-polarized fundamental modes e, and ep are

taken into account in (12), we have
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where A, and A_ are the amplitudes of the modes e and ep,

p
respectively, (3 is the propagation constant of the mode in

reference fibre.

Since V; = —X(imCOS(f— wipf'Wf’), im and ,i.P being unit vectors
in m- and p-directions, respectively, the second and third terms
on the right-hand side of (13) are equal to zero. This implies
that bending does not result in linear birefringence and coupling
between the two modes geometrically. However bending causes
lateral internal stress, which modifies the refractive index of
the fibre material {12]. Consequently, the bending-induced
birefringence can be described by the last term in the (13), by
which the linear  birefringence resulted from elliptical

deformation of the cores is also obtained.

These two linear birefringences caused by the




induced-stress and geometrical deformation usually do not change
along the helical fibre. They are intrinsic 1linear
birefringences. However, their principal axes are, in general,
rotated following the (n, b, s) system and not Tang's coordinate
system. It 1is therefore convenient to start from the
coupled-mode equations in the (n, b, s) system. To do this, we
make following transformation:
(A cosp -sng| | A

A, smp cos@ ) Ay (15)

and (14) can be rewritten as
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(16)
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where A and A, are amplitudes of the two linearly polarised
modes defined in (n,b,s) system, Aﬁ is the total intrinsic
birefringence. For simplicity we assume that the fast axis of
the birefringence coincide with the n-axis without 1losing the

popularity of the description.

Using the following matrix transformation [13]
A. _ (,05’%' jff"w At
e 17
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it is found that (16) is converted to:
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and where A_ and A, are the amplitudes of the eigen-modes in the

(20)

helical fibre, both modes are elliptically polarized with
ellipticity (minor/major axis) equal to ﬁ%i%’ {13]. It is not
difficult to find from (17) that Ar and A, are corresponding to
right-rotated and left-rotated elliptically polarized modes, the
electric field vectors of which rotate around the s-axis
according to the right-hand and the left-hand rule, respectively.

Equation (18) implies that the two eigen-modes in the helical

fibre with linear birefringence have their propagation constant

equal to (F—g) and (F+g) in the (n, b, s) system.

Iv BIREFRINGENCE OF DIELECTRIC HELICAL WAVEGUIDES

It is apparent from Fig.1 that (n, b, s) system is always
rotated around the helix axis ; with the rotation rate (d=2Kﬂ5)
per unit length of the helical fibre. Relative to the fixed
coordinate system, the propagation constant (F;g) for both
elliptically polarized mode are therefores modifiea. As we are
here considering a right-handed system, the right elliptically
polarized mode propagates faster, i.e. its propagation constant
is (P-g+d) and the left one advances slower, i.e. its propagation
constant 1is (F+g—J) than in the original system. Thus the
resulting elliptical birefringence of the whole dielectric
helical waveguide formed by the helical fibre is 2(g-&)(S/P),
where the factor (S/P) is due to the fact that the helix axis is

taken as the reference axis. Then we have the corresponding



normalized beat-length.
/
L, _ L /p
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where 0  is the pitch angle (¢ = arcsinP/S), L, = 2“&? .

For the helical fibre without intrinsic linear

birefringence, i.e. AP:O, then from (21), we have

/ L
L/P =7 (=i (22)
this is the special case for an isotropic helical fibre [14], and
the whole waveguide is pure birefringent.
The case of (=90° corresponds to spinning a fibre with
intrinsic birefringence AP, then from (21)
A L/p

P J 1+(z[,/p)2’21r//9 (23)

this is the same result derived in Ref.[13].

It is interesting to note that the dielectric helical
waveguides may have zero birefringence when the denominator in
(21) equal to zero, namely

L, /

P Simc (24)

Thus in this case, the two eigen-modes propagating along the
;-axis (not the s-axis) are degenerate, the propagation constant
difference resulted from the intrinsic birefringence and the
torsion is cancelled out by that caused by the opposite rotation
direction around the ;-axis.

However, since the mode degeneracy or low-birefringence

~associates with packing problems, the geometrical parameters



usually have to be chosen to avoid the relation (24) to be
satisfied.

Equation (21) is plotted and the normalized beat-length
of the wavegquides is shown as a function of 2Lp/p, The
degeneracies can also be seen when the values of l&/P approach
infinity.

Now we study the effect of external perturbations on the
helical waveguides. External perturbation such as bending,
winding and applied stress usually induce external linear
birefringence, the principal axes of which are fixed, not
following the helix. Then the same method can be used as we
study the external effect on the spun fibres (13].

When the piteh angle of the helix is near 909, the

results obtained in Ref.[13)]) are also valid, i.e.

(,+§m¢)
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where b is the external linear birefringence, Q is the coupling
capacity, which is a measure of the power transfer between the
two eigen-modes in helical waveguide.

It is clear from (25), that the beat-length of a
dielectric helical waveguide is still an important parameter to
govern the resistence to external effect. Special care has to
be taken when using the cut-back method or observing the Rayleigh
scatter to measure the beat-length. However, if the circular
birefrengence 1is predominant in the wavegquides, the cut-back

method is still valid.



v CONCLUSION

The propagation of a coherent light in a helical fibre
can be described by coupled-mode equations. A dielectric
helical wavegquide formed by a helical single-mode fibre is in
general elliptically birefringent. The linear part of the
birefringence comes from the intrinsic linear birefringence of
the helical fibre; the circular part is from the torsion of the
helix and the rotation of the axes of the linear birefringence.
A waveguide with 1isotropic helical fibre 1is pure circularly
birefringent, and the birefringence is only from the torsion.

Theory predicts that a new degeneracy or zero
birefringence case may appear, if the helical waveguide is

specially designed.
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Fiqure Captions

Figure 1. The geometry of a helical optical fibre and one
of the reference fibres.
Figure 2. The normalized beat-length of the dielectric

helical wavegquide.
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