CIRCULAR BIREFRINGENCE IN
HELICAL-CORE FIBRE

Indexing terms: Optical fibres, Polarisation, Birefringence

Circular birefringence in an isotropic helical fibre is studied
usirg coupled-mode analysis. The formulas derived here can
be used to explain the existing paradox in calculating circular
birefringence.

Introduction: The fact that the polarisation state of light is
rotated if the light advances along a helical fibre path!-? has
been successfully applied to making circularly birefringent
fibres.> However, the formulas for the rotation (angle) of the
plane of polarisation per turn of the helix in References 2 and
3 are different. The angle difference between the two formulas
is 2n, which is usually not detectable in measurements, but it
causes difficulty in calculating the birefringence.

The difference arises in determining the rotation of polarisa-
tion, which in Reference 3 is relative to the helix axis while in
Reference 2 it is relative to the fibre axis.

In this letter we show that if we use the helix axis as the
reference axis, i.e. we consider the whole helix as a waveguide,
then the formula of Varnham et al.® is valid. On the other
hand, if the helical fibre axis is the reference axis, in this case
the helical fibre is itself considered as the waveguide, and the
Ross formula? is valid provided that the pitch angle is less
than 45° and a slight change to the formula of Varnham et
al.? applies for pitch angles between 45° and 90°.

Our theory puts the formula in Reference 3, which seems to
have been intuitively derived, on a rigorous theoretical basis.
The theory can now be used for helical fibre design.

Formulation: We start from the following coupled-mode
equations®* describing the coupling caused by the geometric
torsion in a helical fibre:
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where A4, and A, are the amplitudes of the two orthogonally
linearly polarised modes, and 7 is the torsion which is positive
in the case of a right-handed helical system and is given by
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where P is the pitch, R, is the radius of the helix and § is the
arc length for one turn. These equations ignore the coupling
caused by other properties of the waveguide structure.” The
co-ordinate system (n, b, s) is the Serret-Frenet frame;* the n,
b and s are the principal normal, binormal and tangent co-
ordinates, respectively. These co-ordinates are shown for the
helix in Fig. 1a.

To simplify the analysis, we assume no linear birefringence
in the fibre. Then the propagation constants of the two lin-
early polarised modes are equal; namely
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To transform the two linearly polarised modes to two circu-

larly polarised modes, we use
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where A, and A, are the amplitudes of the right and left circu-
larly polarised modes, the electric field vectors of which rotate
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Fig. 1 Helical fibre (a) showing (n, b, s) co-ordinate system and vibra-
tion of directions of three co-ordinates as the point (n, b, s) moves along
the helix (b) when 45° < 6 < 90° and (c) when 0 < ¢ < 45°
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around the s-axis according to the right-hand and left-hand
rules, respectively.

Substituting A, and A, and A4, in eqn. 1 by using eqn. 1, it
can be shown that
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These equations imply that the two circularly polarised modes
are eigenmodes on an ideal isotropic helical fibre, and that
their propagation constants are (§ — 7) and (§ + 1) in the (n, b,
§) system.

Circular birefringence: When the pitch angle ¢ (6 = sin”! P/S)
is greater than 45° it is obvious from Fig. 1b that the (n, b)
co-ordinates are rotated in the plane transverse to the s-axis
and around the s-axis with the rotation rate « (¢ = 2n/S) per
unit length of the helical fibre. Relative to the fixed co-
ordinate system in which the input and output straight fibres
are located, the propagation constants (f F 7) for both circu-
larly polarised modes are therefore modified. As we are here
considering a right-handed system, the right circularly pol-
arised mode propagates faster, i.e. its propagation constant is
(B — © + «), and the left one advances slower, i.e. its propaga-
tion constant is (§ + t — ), than in the original system.

When the pitch angle is less than 45°, then from Fig. 1¢ we
find that the co-ordinates (n, b)) do not rotate around the
s-axis but still rotate around the helix axis, i.e. the z-axis in
Fig. 1. Consequently, the propagation constants are still
(B ¥ © F o) if we take the helix axis as the reference axis, and
they are (8 F 1) if the fibre axis is the reference axis. Since a is
always greater than 7, there is an abrupt change in the sign of
the propagation constant difference at ¢ = 45° for the case
where the fibre axis is the reference axis. Thus, for any pitch
angle, the circular birefringence of the waveguide formed by
the helical fibre is
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The factor (S/P) in eqn. 6 is due to the fact that the helix axis
is taken as the reference axis. From eqn. 6 we have the beat
length
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This is the same equation as mentioned in Reference 3.

However, relative to the fibre axis, the circular birefrin-
gences of the helically wound fibres are different for different
ranges of 0. When o > 45°, then
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which can be derived from eqn. 7 by deleting the factor S/P.
When ¢ < 45°, then

L,=5/2 (9)

Eqns. 7, 8 and 9 are plotted in Fig. 2; the experimental points
are cited from References 2, 3 and 6. Even though the L,/S is
small in the region 45° > ¢ > 0, it may not have practical use
for circularly birefringence in fibres unless the large bend loss
can be reduced.
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Fig. 2 Beat length of helical fibre against pitch angle o
Solid line corresponds to using the helix axis as reference and
broken line corresponds to using the fibre axis as reference. Points
are calculated by L, = nP/0, where 0 is the rotation angle of the
plane of polarisation per unit and the value of the ¢ are from
Ross.2 Crossed points are from Varnham et al.>

Conclusion: The inconsistency of the formulas for the rotation
angle in helical fibres, as presented in previous papers, arises
from using a different co-ordinate reference frame, and has
been resolved here using coupled-mode analysis. Different for-
mulas are shown to apply for the different references axes. The
formulas also provide a theoretical base for helical fibre
design.
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