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array of 2N elements with optimum difference pattern
performance’ and with constant sidelobe levels. For certain
sidelobe ratio/element number combinations; the Zolotarev
distribution begins to increase near the array ends; the dis-
advantages of such a behaviour have been pointed out by
Hansen.? Furthermore, in many practical cases a sidelobe
taper is highly desirable. To solve this problem we can follow
a procedure similar to that adopted by Villeneuve® for sum
patterns, and shift the far-out Zolotarev roots so that after the
first (n — 1) roots they are coincident with those of a uniform
sum array of (2N + 1) elements.

Analysis: The space factor of a Zolotarev array of 2N ele-
ments can be written as

N-1

Dis)=(s — D] (s — s, — s¥) (1)
n=1

where s = ¢, y = Bd sin 0, d is the element spacing and 0 is
the pattern angle measured from the broadside direction. The
quantity s, = e, where the , are the Zolotarev pattern
zeros (not counting the null at = 0, which is fixed by the
(s — 1) factor) which, as indicated above, occur in conjugate
pairs.

The zeros of the sum pattern sin [(2N + 1)y/2]/sin [y/2] of
a uniform array of 2N + 1 elements are given by ,, =
n2n/2N + 1], n= +1, +2,..., +N.

We now alter the Zolotarev zeros y,, so that for n > i the
nth Zolotarev zero coincides with the (n 4 1)th zero of the
above uniform sum pattern. In addition to being altered, the
first (n — 1) zeros (excluding that at = 0) are shifted pro-
gressively by multiplying each Zolotarev zero by a dilation
factor o = (7 + 1)272/2N + 1.

Table 1 ARRAY PATTERN ZEROS FOR n =4

Zolotarev Zeros (Yq,) of
Zero array uniform 2N + 1) Shifted
index zeros (Y,) element sum pattern Zeros
0 00 +0-2991993 0-0
1 +0-6160322 +0-5983986 +0-6614926
2 +0-8172512 +0-8975979 +0-8775607
3 +1-0928009 +1:1967972 +1:1734448
4 +1-3931856 +1-4959965 + 1-4959965
5 + 17040309 +1-7951958 +1-7951958
6 +2-0200867 +2:0943951 +2:0943951
7 +2-3389902 +2-3935944 +2-3935944
8 +2-:6599911 +2:6927937 +2:6927937
9 +2-9808065 +2:9919930 +2-9919930

Thus, if the new zeros are ¢, thenforn =1,2, ..., (N — 1),
we have

v = O ¥, n<n )
(n+ 12n/2N + 1 n>n

If these new roots are inserted into eqn. ! and eqn. 1 is multi-
plied out into the usual polynomial form, the new element
excitations can be found.

Design example: Consider a linear Zolotarev array of 20 ele-
ments (therefore a 19th-order polynomial) with a sidelobe
ratio of 25 dB. The pattern zeros of such an array are given in
the second column of Table 1. The zeros of the uniform sum
pattern are given in the third column of Table 1. Suppose now
that we choose a1 = 4, 50 that ¢ = 1-07396. Then the new zero
positions are as given in the fourth column. From the array
polynomial obtained after inserting these new zeros, we can
obtain the new element excitations of the n-distribution. These

Table 2 ELEMENT EXCITATIONS FOR HALF
OF THE ARRAY

n a, n a,
! 0-17775 6 0-94577
2 0-51157 7 0-82207
3 0-78170 8 0-65885
4 095011 9 0-46616
5 1-00000 10 0-24392
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are given in Table 2, numbered from the centre to edge
element. The corresponding array space factor is shown in
Fig. 1.

|
&
[=]

T

relative power ievel, dB

|

wn

(=]
l

-60 ! 1
0 30 60
angle off broadside, degree

Fig. 1 Array space factor

Conclusion: Tt has been shown that a discrete, uniformly
spaced array, equivalent to the Bayliss difference pattern for
continuous line sources, can be developed directly. The corre-
sponding element excitations can be found exactly, without
recourse to any form of sampling of continuous distributions.

D. A. MCNAMARA 26th November 1985

Department of Electronic Engineering University of Pretoria
0002 Pretoria, S. Africa
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GENERALISED COUPLED-MODE
EQUATIONS AND THEIR APPLICATIONS
TO FIBRE COUPLERS

Indexing terms: Optical fibres, Optical connectors and couplers

Generalised coupled-mode equations for two or more
coupled weakly guiding fibres are presented, when the fibres
are not well separated. These equations are applied to study-
ing fibre coupiers. Compared with the results derived from
previous coupled-mode equations, our results are in better
agreement with those calculated rigorously by a numerical
method. .

At present, fibre couplers. including multiplexers, coupler
filters, polarisation splitters etc., are important optical devices
in fibre optics. Usually, the coupling between modes in these
devices can be described by the coupled-mode equations.'"?
However, sometimes one cannot obtain accurate results from
these equations, owing to some approximate assumptions in
deriving the equations. One of these is the orthogonality rela-

tion
Re[fekxh?,i:d9]=6,i (1)
Ay

where A4, is the infinite cross-sectional area, d,; is the Kro-
necker delta and /. is the unit vector in the z-direction. Eqn. 1
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is not true for modes on different fibres and is a reasonable
approximation when the coupled fibres are well separated. In
practice, for example, in polished single-mode couplers*'® the
coupling fibres are touching or nearly touching.

This letter presents a generalised coupled-mode equation
which can be used for any separation. They are then applied
to studying two coupling fibres.

First of all, we assume that the total transverse fields of the
composite waveguide can be approximated by a superposition
of the fields of each weakly guided fibre in isolation from the
others, namely

E(x, y, 2} =Y Al2edx, »)
¢ (2)
Hix, y. 2) = ), A2Mh(x, )

k

where ¢, and A, are the transverse parts of the modal fields for
the kth guided mode. There may be several modes guided on
each fibre in isolation; the summations in eqn. 1 are over all
the guided modes on all coupled fibres. Eqn. 2 has already
been justified by Wijngaard,® when he studied two coupled
weakly guiding optical fibres.

Based on eqn. 2, we can now proceed to formulate the gen-
eralised equations. Using eqn. 1 for modes on the same fibre

and
gu = Re [Jek x h¥i, dQ] )
A

for modes on different fibres, according to the procedure men-
tioned in Reference 1, we have the matrix form of the coupled-
mode equations for the coupled fibres:

d
= (GA) + jBGA = —jKA (4)

where matrix G has its diagonal elements equal to unity and
offdiagonal elements equal to g,;, which is zero if k and i are
modes on the same fibre; A is the amplitude matrix and K is
the coupling matrix with its elements

2
Ky = 'a% J(ni - n2)<e,"" €+ % e:kezi> dQ (5
p
4y
where n, denotes the composite profile and n denotes the
profile of the individual fibre on which the kth mode propa-
gates, e, and e_; are the z-directed components of the modal
fields, the matrix B is a diagonal matrix where its elements f§,
are the propagation constants of the guided modes.
If the composite profile n, for the coupled fibres does not
change along z, eqn. 4 becomes

d
S A+IG'BGA = —jG"'KA 6)
p4

Eqn. 4 or 6 is a generalised coupled-mode matrix equation,
and should be more rigorous in describing the mode coupling
between coupled fibres. This will be justified by studying
double-core fibres.

A double-core fibre may be formed in a coupler when two
fibres are close to each other. If the two cores are circular and
identical as shown in the inset of Fig. 1, and if each individual
one-core fibre is single-mode, then eqn. 6 is reduced to

d
I—Ak=—j(/i+A/f)A,(-—jCA,- k,i=1,2,i#k (7)
dz
where
Nk = YKy
Af = ——F 8
== ®)
_Kli_gKkk

1 —g?
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where g =g, = g1, f =1 = B, K13 = K3y, Kyy =Ky, due
to symmetry.

When the individual one-core fibres have step-index profiles
and are weakly guiding, the normalised coupling coefficients
pK1 1/ (28), prya//(2A) and g can be calculated approx-
imately, and are plotted against the V-value in Fig. 1 in the
case d = 2p, where p is the core radius and A is the relative
index difference between core and cladding.
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Fig. 1 Parameter g and normalised coupling coefficients for d = 2p

It is well known that the coupled modes can be transformed
to the normal modes of the double-core fibre.* The propaga-
tion constants h, and h, for both normal modes are evaluated
and the normalised beat length (p/\/(SA)V/(hl — h,) is shown
in Fig. 2 (solid line). The broken line corresponds to g = 0 and
the points in the Figure are cited from Wijngaard’s numerical
results.® It is obvious that our results are found to be in good
agreement with his. The discrepancy between both curves is
apparent when V is less than 1-7. Usually, polished couplers
work at V =2 — 24, and, within this region, even though
g = 0-2 — 0-25, the nonorthogonality between modes can still
be ignored. However, for couplers working in a wide wave-
length band, such as filters or wavelength-division multi-
plexers, it is necessary to take the nonorthogonality into
account,

The curves in Fig. 2 stop at the cutoff V-value for the
second mode, which can easily be calculated by setting the
propagation constant of the second-order mode equal to kn,,.
Its solution V, = 1-38. This is exactly the same as the recent
result given by Love et al.”

In conclusion, the coupled-mode equations for coupled
fibres are generalised for any separation between fibres. Using
them, we can obtain satisfactory results for double-core fibre.
Compared with the results derived from the previous coupled-
mode equations, it seems that the previous equations are valid
in describing power transfer even in touching fibres provided
that V > 1-7.
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Fig. 2 Normalised beat length calculated by generalised equations (solid
line) and by previous equations (broken line)
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EFFECT OF VARACTOR Q-FACTOR ON
TUNING SENSITIVITY OF MICROWAVE
OSCILLATORS, INCLUDING REVERSE
TUNING

Indexing terms: Microwave devices and components, Micro-
wave oscillators, Varactors

1t is shown how the effect of resistive losses in a varactor
diode can drastically affect the tuning characteristics of
millimetre-wave oscillators and can even cause the oscillator
to tune in the reverse direction.

Varactor diodes are the only tuning devices which can be used
for fast tuning and high-frequency modulation (FM) of micro-
wave solid-state oscillators. At millimetre-wave frequencies the
parasitic effect of device packages plays a large part in deter-
mining the frequency of operation and the electronic tuning
range of a varactor-tuned oscillator. The solid-state power
device and varactor diode are generally mounted in a micro-
wave cavity, and the resulting oscillator circuit consists of a
complex circuit containing lumped and distributed elements.
Aitchison'? showed that, by a suitable choice of packaged
devices and microwave cavity dimensions, the electronic
tuning range could be very large. He argued that if a distrib-
uted element represented an inductance, then the inductive
reactance is WI{w), and he showed that as w changes L(w)
could result in an enhanced tuning range.

However, he ignored the effects of varactor loss resistance.
The varactor loss only becomes significant at the higher
microwave frequencies where the varactor Q-factors are very
low. The varactor Q-factor is inversely proportional to fre-
quency, and at the higher microwave frequencies high Q-
factor GaAs varactors are used in preference to silicon
varactors.

A varactor-tuned millimetre-wave waveguide-mounted
Gunn oscillator is shown in Fig. 1. The Gunn diode is a
Plessey integral heat sink device type TEO 151 and the varac-
tor diode is a Plessey GaAs Schottky barrier diode type
GAV10. The distance between the Gunn and varactor diodes
and the distance from the varactor to the short-circuit can be
changed by inserting suitable spacers as shown in Fig. 1.

306

Increasing either of these distances results in a reduction in
the centre frequency, and decreasing either of these distances
results in an increase in frequency. By increasing one distance
and decreasing the other, the centre frequency can be kept the
same, but the way in which the varactor diode is coupled to
the Gunn diode and cavity is entirely different. This results in
a modification of the frequency/varactor voltage or tuning
characteristic.

varactor  spacerl,
spacer n n

shor\ A) —Lf o
circuit

LT H/vGunn diode

Fig. 1 Varactor-tuned oscillator

The tuning characteristics for four combinations of Gunn to
varactor and varactor to short-circuit spacing are shown in
Fig. 2. It is evident from Fig. 2 that the shape of the tuning
characteristic is very dependent on how the Gunn device and
varactor are coupled and, as is shown in Fig. 3, on the series
resistance or Q-factor of the varactor diode. The spacers were
adjusted to keep the centre frequency constant, and it is
evident that by suitable choice of coupling the shape of the
oscillator tuning characteristic changes completely and the
oscillator can be made to tune backwards for part or even the
whole of its tuning characteristic.
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Fig. 2 Oscillator tuning characteristics

To investigate the effect of varactor Q-factor on the tuning
characteristics of this oscillator, the circuit was modelled using
the microwave circuit analysis program Touchstone. This
enabled the electronic tuning characteristic to be observed as
a function of varactor Q-factor and the results are shown in
Fig. 3. It is evident that the shape of the tuning characteristics
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Fig. 3 Dependence of tuning characteristic on varactor Q-fuctor
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