ENHANCED ES!I FOR PREDICTION OF
WAVEGUIDE DISPERSION IN SINGLE-MODE
OPTICAL FIBRES

Indexing terms: Optical fibres, Single-mode fibres

We provide an enhanced equivalent step index (EESI)
approximation for the accurate prediction of waveguide dis-
persion on monomode optical fibres. Using a quadratic
‘enhancement function’ the waveguide dispersion even for the
triangular core profile fibre can be predicted to be between
92 and 100% of its exact value in the single-mode region.

Introduction: The accurate prediction of waveguide dispersion
in single-mode fibres is the severest test to which any model or
approximation can be subjected. The ESI which has proved to
be the most useful model for predicting other fibre character-
istics has been criticised for its failure to predict accurately
waveguide dispersion for all monomode fibres.! As a conse-
quence, other models, particularly those which are based on
spot-size measurements, are currently receiving active con-
sideration.”"*

In this letter we seek to reinstate the ESI by showing that it
can be readily enhanced for the accurate prediction of wave-
guide dispersion. We propose therefore to keep the ESI for
those parameters for which it is useful and to use an
‘enhanced’ ESI (EES]) for the dispersion parameters.

The model we use is based on the moments of the refractive
index shape function and is much easier to use than a similar
model proposed in Reference 5.

We use the power-law profiles as a test of our model
because these profiles are reasonably familiar and also because
the triangular core profile has recently been proposed as being
very suitable for shifting the zero of total dispersion to higher
wavelengths.®

ESI approximation: The ESI which is based on the moments
requires that the first two even moments (€, Q,) of both the
actual profile and the equivalent step profile be equal. This
condition renders an equivalent step with a core radius of

pe = J(2,) (1a)
and a profile height of
h, = Qu/Q, (1b)
where Q, = Q,/Q,. B
The average waveguide parameter, V, is related to the usual
waveguide parameter V by

7 = JQ)V (2)

Using the average waveguide parameter and the ESI defined
by eqn. 1 the dispersion expressions take the following form:

BV) = WV > (Qo/Q)b (V) (3a)
b (V)= d(VhYdV =~ (Qy/Q,)b, (V) (3h)
by(V) = Vd(b,)dV = (Qu/Q3)b, (V) (3¢)

where b, (V) is evaluated for the step index fibre at V = V.
Remark: Waveguide dispersion is proportional to the par-
ameter b,{V) which relies on the second derivative of the
eigenvalue W. It is for this reason that waveguide dispersion
provides such a strict test on any model or approximation
used in determining W.

Philosophy of method: The ESI is a two-parameter model
which in our case requires the first two moments Q, and Q,
for its specification. Any error introduced in using this ESI is
caused by neglecting the difference between the higher
moments of the profile Q,, and the higher moments of ESI,
Q. . We define the normalised difference as follows:

AQm = (Qm - an)/ﬁmsi (4)

where m > 4 and m is even and

o = (25‘22)"‘/2/(—';'— + 1> (5)

I~
In extending the model we will seek:

(i) to keep the ESI intact so that its advantages for other fibre
parameters are not lost in the enhanced model

(i) to introduce only one extra parameter i.c. AQ,

(iii) to provide a model which is both simple to use and is
readily accessible.

We therefore adopt the following functional form for the dis-
persion parameter b(V):*

Q _ _ _

b(V) ~ (Q—> b (VX1 +1AQ,| f(7) (6)
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Fig. 1 Comparison of ESI and EESI in predicting exact dispersion
parameters for power-law profiles
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This is an enhancement of the simpler expression of eqn. 34,
where (V) is our ‘enhancement function’. We will refer to eqn.
6 as the ‘enhanced’ ESI (EESI) approximation for (V). Unlike
the model proposed in Reference 5, eqn. 6 holds for all fibres,
i.e. AQ, can be positive or negative.

In line with our aims, we will seek the lowest-order poly-
nomial as a ‘best fit’ approximation for f(¥) rather than follow
rigorously the methods of Reference 5. It will then be straight-
forward to derive the enhanced expressions for b,(V) and
by(V).

The EESI and its prediction of dispersion: From the exact
calculation of h(V) for a range of profiles we found the lowest-
order polynomial for f(V) to be the quadratic

S(V)y=0-313V — 0-01312 (7

It is now necessary to see how this enhancement function
improves the prediction of the dispersion parameters
(particularly the waveguide dispersion parameter b,) over the
simple ESI. The power-law profiles with exponant ¢ are
chosen for the following examples.
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Profiles with q > 2: For profiles which range from the clad
parabola (g = 2) to the step (g = o) index, the error in using
our enhanced model of eqns. 6 and 7 in predicting the disper-
sion parameters is negligible in the single-mode region.

We illustrate the clad parabola case in Fig. 1a, where we
show that, while the ESI breaks down completely for this
profile, the the EESI is extremely accurate.

Profiles with q < 2: For these very extreme profiles we find
that the EESI provides the bulk of the correction term for
waveguide dispersion in the range of V-value for which the
ESI breaks down.

In the case of the triangular core profile, as illustrated in
Fig. 1b, the EESI provides an estimate of the waveguide dis-
persion parameter b,(V) of 92% of its exact value at the cutoff
of the second mode, and improves rapidly for smaller V-
values. In this case the estimates for b and b, are complete.

The EESI, when applied to the ¢ = 4 profile, provides an
estimate of the waveguide dispersion of 80% at the second
mode cutoff while the overall behaviour for the other par-
ameters is similar to the triangular core case. The results for
this profile are shown in Fig. 1c.

Table 1 VALUE OF PARAMETER AQ, FOR THE
POWER-LAW PROFILES

q 8 4 2

1 1
1 3 3

AQ, 0.028 0.067 0.125 0.190 0.246 0-285

Discussion: We have provided a very simple enhancement to
the ESI model which allows us to predict waveguide disper-
sion accurately even for extreme profiles like the g = 1 and the
q = 7 power-law profiles. The extent of the correction term is
found to be directly proportional to a new parameter AQ,.

Table 1 shows that AQ, decreases as we approach the step-
index fibre; the correction term decreases accordingly. The
size of AQ, can therefore be used to decide whether or not the
enhancement function is required. However, such a decision
must also take into account the operating wavelength and, of
course, the accuracy required.
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