ANISOTROPY IN SPUN SINGLE-MODE
FIBRES

Indexing terms: Optical fibres, Birefringence

It is shown that the dominant process for the reduction of
birefringence in a spun fibre is the averaging of the local fibre
anisotropy by the rapid procession of the axes of asymmetry
along the fibre. No significant change in cross-sectional
geometry occurs.

Introduction: Single-mode optical fibres which exhibit very
low polarisation birefringence are essential for optimal
sensitivity of the Faraday current monitor! and other
polarimetric sensor devices.? Furthermore, the low-
polarisation mode dispersion present in such fibres is advan-
tageous for high-bandwidth long-distance communications.?

Birefringence arises intrinsically within a fibre from the
combined effects of core ellipticity (shape birefringence) and
asymmetric thermal stress-birefringence.* Two methods exist
for the fabrication of fibres with negligible levels of
birefringence. In the conventional approach, attempts to
carefully maintain the circular geometry and match the
thermal expansion within the preform during fabrication have
yielded a fibre with a birefringence of only 2:6 deg/m,*
although this level is difficult to achieve reproducibly. A new
approach,>® is to spin the preform during fibre drawing with
the result that dramatically low birefringence fibres can be
consistently produced.

It is thought that the preform spinning process produces a
simple frozen-in twist of the axes of asymmetry of the fibre,
and this can be shown theoretically” to produce low
birefringence on a macroscopic scale by averaging the
propagation constants of the two orthogonally-polarised fibre
modes. Thus the fibre may still have high local birefringence.
However, it has been suggested that spinning the preform may
also serve to smooth out and reduce the asymmetry in the
molten preform tip during drawing. This would give rise to a
low birefringence, not only on a macroscopic scale but also on
a local scale within the fibre.

In this letter, we show conclusively that there is insignificant
modification of the local anisotropy, and that it is indeed the
rapid precession of the axes of asymmetry which is the
dominant mechanism for producing low overall birefringence
in a spun fibre. We do this by untwisting the fibre after
drawing, and demonstrate that the linear birefringence
reappears at a point when the applied twist cancels that
frozen-in during drawing. Furthermore, by this technique it is
possible to determine the intrinsic birefringence 68 present
before spinning, as well as the spin pitch of the fibre.

Theory: The variation of macroscopic retardation with
additional applied twist in a spun fibre can be calculated by
first representing the spun fibre as a twisted fibre with zero
induced photoelastic rotation.” This is valid, as at typical
fibre-drawing temperatures the hot zone is fluid and cannot
support significant torsional stresses; thus the twist is
permanently frozen in. The twist applied after drawing then
acts as an additional twist but, in contrast, has an associated
photo-elastic rotation given by g'¢,® where ¢’ ~ 0-073,” and ¢
is the applied twist rate (deg/m). We obtain the retardation
R(z) in a fibre of length z from Reference 7 as
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R(z) = 2 sin~! {W sin yz} (1)
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Here, 6f is the intrinsic birefringence in the unspun fibre and
¢, the fibre spin rate in deg/m. Qur sign convention is such
that &, is negative.
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Fig. 1 shows the macroscopic retardation, predicted by eqn.
1 as a function of the applied twist for a fibre of length 1-262
m, 6f (633 nm) = 14-42 deg/m and a spin pitch P = 2n/¢, =
524 cm. We see that when the twist counteracts the spin, the
spin-averaging effect is progressively reduced, and the intrinsic
local birefringence consequently becomes more apparent. The
overall birefringence rises and peaks at a twist rate £ given by

1 -g)=-¢ @

At this point the applied twist is such that the induced
rotation is equal to the remaining twist (¢ + &,)z in the fibre.
Thus the plane of polarisation of the light rotates to follow the
residual twist; light polarised along the local principal axes at
the input remains oriented parallel to the (rotating) local axes
along the entire fibre length. Effectively, then, the local axes
are ‘aligned’ to the linearly-polarised light and the fibre
exhibits the full retardation Jf, with, in addition, a net
rotation of g'z. Increasing the twist beyond this birefringence
peak results in a return to negligible levels of retardation, as in
a highly-twisted fibre. Note that when the twist acts in the
same sense as the spin (i.e. ¢ negative), the retardation remains
negligibly small for all applied twist rates.

Experiment and discussion: The linear birefringence in a
silicone-coated spun fibre was measured at 633 nm as a
function of applied twist using a polariser and analyser. The
fibre had a nominal spin pitch of ~ 5 ¢cm, a length of 1-262 m
and was hung vertically to ensure elimination of residual twist
and a uniform applied twist rate. The results are superimposed
on Fig. 1, and are seen to be in excellent agreement with the
prediction of eqn. 1, when appropriate values for 88 and &,
are chosen.
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Fig. 1 Measured retardation at 633 nm as function of applied twist rate
Jor 1:262 m length of spun fibre with nominal spin pitch of ~5cm

Solid line is theoretical prediction of egn. 1, with 2r/¢, = 5-24 cm
and 6f = 1442 °/m

The peak measured retardation of 14-42 deg/m corresponds
to the local birefringence 38 in the spun fibre, and compares
well with the value of 68 = 32 deg/m measured in an unspun
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Fig. 2 Comparison of transverse sections of highly elliptical fibre
a Unspun
b Spun with a spin pitch of ~ 1-2 mm, showing spiralling elliptical
core and cladding
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section 100 m down the fibre. The agreement is within the
normally expected variation of intrinsic birefringence along
the fibre length.

From the twist required to achieve peak retardation we can
estimate the spin pitch using eqn. 4. In the example shown
in Fig. 1 the spin pitch P of the fibre was calculated to be
5-24 ¢cm. This value compares well with the nominal value of
50 cm, and is within the calibration error of the
preform-spinning-motor speed control. For this experiment a

‘knowledge of the nominal spin pitch of the fibre in question is
essential, since the range of twist over which the retardation
reappears is very narrow (Fig. 1).

The close agreement between the nominal and measured
spin pitches suggests that the viscosity of the glass in the
drawing-furnace hot zone is sufficiently low to allow complete
relaxation of torsion by viscous flow. This was verified by
using an as-drawn 10 m length of spun fibre which had been
constrained from untwisting after drawing by winding directly
onto a drum. No significant untwisting of a marker on the end
of the fibre was observed when the fibre was paid off the drum
and allowed to hang free vertically.

The reappearance of the birefringence with applied twist
confirms that a spun fibre retains a large local anisotropy with
a value approximately equal to the intrinsic fibre birefringence
of before spinning. Thus the spinning process would not
appear to circularise the geometry or reduce the stress
anisotropy significantly. Further confirmation of this is
provided by Figs. 2a and b, where the transverse-sections of
unspun and spun lengths of the same highly-elliptical fibre are
compared.

Fig. 2b clearly shows the elliptical core and cladding
spiralling along the spun fibre. Spinning evidently produces
little change of the cross-sectional geometry of the fibre. The
unspun fibre had a high birefringence (beat length 2r/6f = 19
mm) arising largely from its major: minor axis ratio of ~ 2:5:
1. However, the spun fibre (spin pitch P ~ 1-2 mm) exhibited
birefringence, as expected when the spin rate far exceeds the
initial birefringence.>’8

Conclusion: 1t has been shown that the reduction in
birefringence of a spun fibre can be attributed largely to the
averaging effect of the precession of the fibre axes of
asymmetry and not to changes in cross-sectional geometry or
smoothing of anisotropic stress. By applying a reverse twist,
the spin averaging effect can be reduced. At a twist rate which
compensates for the intrinsic spin the full intrinsic
birefringence 3§ can be made to reappear by effectively
" aligning the local birefringence axes. The effect allows the
determination of both the intrinsic unspun fibre birefringence
df and the fibre spin pitch P from the peak in the spun fibre

retardation against applied reverse twist. The reappearance of
the birefringence with applied twist is an important feature of
a spun fibre and could possibly be exploited in a fibre-angle
sensor.
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