THREE-DIMENSIONAL FIBRE PREFORM
PROFILING

Indexing terms: Optical fibres, Data processing

Results are reported of three-dimensional profiling of fibre
preforms from deflection function measurements. We demon-
strate the importance of performing the integration involved
with a sufficient number of points and show how the systema-
tic use of interpolation allows this number of points to be
obtained from a few preform projections.

Introduction: Three-dimensional profiles of optical fibre
preforms may be obtained from deflection function measure-
ments by a procedure described recently by Chu.! This letter
considers some aspects of the practical implementation of the
reconstruction with emphasis on the data processing. We show
that the systematic use of interpolation between the deflection
angles corresponding to different preform orientations allows
accurate three-dimensional profiles to be obtained from a rela-
tively modest number of azimuthal projections. The usefulness
of interpolation is illustrated with both simulated and
measured profiles.

Measurement : The deflection data were obtained by the spatial
filtering technique,? in which a parallel beam of light illumin-
ates the preform, immersed in an index-matching fluid; a rotat-
ing chopper allows the deflection angles to be measured with
high accuracy in the time domain. The influence of the optical
and electronic characteristics of the set-up on the resolution
are reported elsewhere.® The two external parameters of the
procedure are the scan increment ¢ and the number of projec-
tions N,. In practice, ¢ is chosen in the range 4-10 um, while N,
depends on the azimuthal index variations in the preform.

Data processing: From Chu’s results’ and under the assump-
tion of small numerical aperture, the basic reconstruction
equation for the normalised index difference can be expressed
as follows:
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o(p, 0) is the deflection angle for the scan position p and the

scan direction 6, and (r, ) are the polar co-ordinates of the
preform cross-section.

If the preform is perfectly circular, the deflection measure-

ment does not depend on the preform orientation and the

Fig. 1 Wave distribution arising for too small a number N , of integration
points in egn. 1

Preform core radius = 1 mm, A =001

explicit 8-dependence in ¢{p, 8) and g(z, 6) disappears; in this
ideal case, it can be shown* that eqn. 1 reduces to Marcuse’s
equation:’

n(r) —n 1f dp
—no_ 1 _dp
e KOy ()
where ¢(p) =0 for p > a.

From a numerical point of view, the integration of eqn. 3 is
usually performed with a p-increment equal to the scan incre-
ment ¢. If eqn. 1 is used instead of eqn. 3, and if likewise we take
a z-increment equal to ¢, then the number N, of increments in 8
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Fig. 2 Effect of increasing, by interpolation, number N, of integration
points in eqn 1

Preform core radius = 0-4 mm, A = 0-005

a No interpolation, N, = 13

b Interpolation, N, = 13 x 3 =139

¢ N, =13 x 9 = 117; all wave effects disappear
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in the interval (—nr/2, n/2), can be evaluated from
=az=|r| 0= |r| @)
Ee=Q_Azz=\r = N,

For example, if ¢ = 10 um and |r| = 1 mm, N, ~ 314. Practi-
cal values of N, range from 50 to 500.

Actual preforms are never perfectly circular, and the use of
eqn. 3 sometimes gives rise to an unacceptable error.* In these
cases, the explicit 8-dependence of g(z, 8) in eqn. 1 must be
retained, and each value of & now corresponds to a different
preform orientation. As the azimuthal profile variations are
smooth, we have used interpolation: the N, necessary values of
g(z, 0) are obtained from a number of projections N, which
can be reduced to three in the case of nearly circular preforms.
For a parabolic profile having a core ellipticity of 169, the
reconstruction with only three projections was found* to give a
maximum index error, normalised to the total index difference,
of 48%,. Even in the case of highly asymmetrical preforms, the
azimuthal profile variations remain smooth, and the systema-
tic use of interpolation considerably reduces the number of
projections to be mmasured; for example,* only about 20
projections are required in the case of a 75% ellipticity.

Results: A complete study of the influence on the reconstruc-
tion quality of the scan increment ¢, the number N, of integra-
tion points in eqn. 1 and the number of projections actually
measured is reported elsewhere.* We consider here the effect of
choosing too small a value of N, and stress the improvement
obtained by the systematic use of interpolation. Fig. 1 shows
the simulated reconstruction of a perfectly circular preform
with a parabolic index profile. N; was equal to only 13, and we
observe in Fig. 1 the typical wave distributiont which arises
when N, is too small. With N; = 13 x 2 = 26, the waves are no
longer observed. For variations in the profile shape more pron-
ounced than in the parabolic case, the minimum value of N,
giving an acceptable reconstruction of the cladding is in-
creased. We now consider this effect in the case of a real
preform which was measured with 13 projections (i.e. 13 scan
directions in the interval (—90° 90°)]. In Fig. 2a, N, = 13, and
we observe waves along 13 diameters corresponding to the 13
equally spaced preform orientations of the deflection measure-
ment. The same effect is present in Fig. 1 but is perhaps more
difficult to recognise. In Fig. 2b and Fig. 2c, we have increased
N, by interpolation: in Fig. 2b, with N; =13 x 3 =39, the
radial waves are only present in the substrate region, while, in
Fig. 2c, with N,;=13x9=117, they have entirely
disappeared.

Conclusion: The importance of using a sufficient number of
points for the integration involved in preform profile recon-
struction has been demonstrated with both simulated and
measured profiles. The systematic use of interpolation enables
the optimum number of integration points to be obtained from
the data corresponding to a few preform projections. This
procedure reduces both the measurement time and the data
storage requirements.
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t An analogous wave distribution has also been observed by other
authors®



