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Expanded-beam connector design study

J. C. Baker and D. N. Payne

A theoretical analysis of an expanded-beam connector is presented, and it is shown that considerable scope
exists for optimization of the design. A ray-tracing technique is used to quantify the importance of various
parameters in determining the insertion loss. The design guidelines are presented in graphical form, and
their usefulness is demonstrated in several examples of practical interest.

. Introduction

A number of demountable-connector designs for use
with multimode optical fibers have been reported in
recent years.]"> These may be classified into two types:
(1) those in which the fibers are directly butted together
and (2) those which incorporate an optical lensing sys-
tem?3 to project an image of the emitting fiber onto the
face of the receiving fiber (expanded-beam connectors).
In the case of a butt connector, a lateral alignment tol-
erance of no greater than 10% of the core radius must
be maintained to avoid losses exceeding 0.3 dB.* This
degree of precision can prove difficult to achieve re-
peatably, particularly in dirty or hostile environments.
The expanded-beam connector, on the other hand, has
a potential advantage, since the fiber termination in-
corporates a lens which serves both to protect the fiber
end and to enlarge the emitting area which is presented
to the atmosphere. The connector is then more robust
and less sensitive to ingress of dust and other forms of
contamination. Moreover, it has an insertion loss which
is less sensitive to the effect of lateral misalignment of
the fiber-lens assemblies, although this is obtained at
the expense of an increased sensitivity to the effect of
angular misalignment. Fortunately, the latter is rela-
tively easy to avoid mechanically. However, in the
expanded-beam connector, the alignment of the fibers
to the axes of the lenses must be as accurate as that of
the fibers in a butt connector. Whereas this can prove
troublesome when using conventional lenses, it is pos-
sible to exploit the natural symmetry of a sphere lens
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to achieve a self-centering action. One of the first de-
signs® to utilize the principle is shown in Fig. 1 where the
fiber is terminated by a sphere and shell assembly to
form one half of a connector. The region between the
fiber and sphere is filled with an index-matching ma-
terial. The fiber is centered with respect to the sphere
lens and is precisely positioned at the lens focal point
so that the output beam is collimated. The beam is
then refocused by a second identical termination (not
shown) which houses the receiving fiber.

Despite their obvious attractions, expanded-beam
connectors have not seen widespread adoption largely
because of their high insertion loss in comparison with
that of butt-type connectors. The difference is ac-
counted for by aberrations in the lensing system, which
degrade the quality of the image that is presented to the
receiving fiber. We have carried out an analysis of a
class of expanded-beam connectors with two objectives
in mind: first, to estimate the importance of various
parameters in determining the insertion loss and, sec-
ond, to provide a set of criteria for optimization of the
design. It is shown that the intuitive results of thin lens
theory are in qualitative agreement with our results;
thus, for example, the lenses should in general be spaced
at twice their focal length to ensure that off-axis rays
pass through the connector symmetrically. For an
optimum design and a realistic fiber excitation condi-
tion we compute that the effect of aberrations on con-
nector loss amount to 0.4 dB for a fiber N.A. of 0.2.
This contribution increases to 0.6 dB for a fiber N.A. of
0.3. Thus with careful design sphere-lens connectors
can have a loss comparable with that of a butt con-
nector.

Il. Ray-Tracing Theory

The model used in the analysis is shown in Fig. 2.
Each identical termination is assumed to have a single
refracting surface with radius of curvature R, the region
between this surface and the fiber having a uniform
isotropic refractive index n. This is the configuration,
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fiber to lens spacing do not in general correspond to the
focal length f, in glass for paraxial rays [f, = nR/(n —
D].

Consider a wave vector k; of length n representing a
ray originating from fiber 1. The components of k;
are

k; = n(z sinfl; cos¢; + ¥ sinf; sing; + 2 cost), (1)

where £, ¥, and 2 are the unit vectors along the x, v, and
z axes, respectively, and 81, ¢, and n are the spherical
coordinates.

The point at which the ray exits the fiber can be ref-
erenced to the center of the radius of curvature of lens
1 as follows:

a; = ir cos¢ + yrsing — 2(

R
—+ Af), @

Refractive
index = 1

Lens 2

Refractive
index = n

Fibre 2

Schematic diagram of expanded-beam connector showing the vector quantities employed in the analysis. ¢ is the radial angular

coordinate of the origin of a ray on the end face of fiber 1. ¢, is the radial angular coordinate of the direction of the ray.

for example, in the design shown in Fig. 1, where the
spherical lens is closely index-matched to the fiber.
The model is also applicable to connectors incorporating
rod lenses? which likewise rely on a single refracting
surface for collimation. Six parameters were consid-
ered, namely, the lens radius of curvature/fiber core
radius (R/F), the fiber N.A,, the lens refractive index
n, the relative tilt and spacing between the lenses (v and
s, respectively), and the axial position of the fiber rel-
ative to the focal point for paraxial rays (Af).

The last parameter is relevant because marginal rays,
i.e., those rays with a large azimuthal angle 0, will be
brought to a focus in a region slightly closer to lens 2
than the focal point for paraxial rays, for which §; ~0.
This is the well-known phenomenon of spherical aber-
ration, which gives rise to a circle of least image confu-
sion. Since marginal rays form the majority of those
traced, the circle of least confusion and the optimum
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where ¢ is the radial angle in the plane of the fiber
end-face (see Fig. 2).

To trace the ray through lens 1 we must find the
vector coordinates of the point at which the ray is re-
fracted (a]) and the unit length wave vector after re-
fraction (kg).6

Two scale factors ({; and p1) are introduced:

al=a; + kg (3)
ko =k, — piaj; 4)

where Eq. (4) is a vector statement of Snell’s law. We
adopt the convention that the radius of curvature of lens
Lis positive, and that of lens 2 is negative. To solve Egs.
(3) and (4) for [, and py, respectively, we take the dot
product of Eq. (3) by k; and Eq. (4) by a; to obtain

n?ly=a;-k; —a -k, (5)



R2p1=ai-k1—al-k0. (6)
We now introduce the invariant J;:
J1=a1><k1=a§><k1=a{><k0, (7)

where X denotes the cross product. The equality of the
last two terms is also a vector statement of Snell’s
law.

By use of the vector identity

(axk)2=a?.k?- (a-k)? 8)
we obtain from Egs. (5), (6), and (7)
1
l] Z;E[R\/ n2—(J1/R)2—a1-k1], (9)
1
P1=E[\/n2—(J1/R)2—\/1 - (J1/R)Y, (10)

where the value of J? is obtained from the first term in
Eq. (7). The values of ki and a} are now obtained di-
rectly from Eqgs. (3) and (4).

The coordinate system is now referred to the center
of curvature of lens 2 by means of the transformation

az = aj — (2R + s)(J sinv + £ cosv). (11)

The procedure of Egs. (2)-(10) is repeated to find the
values of a5 and k», where

aé =ag + lgk(), (12)
k2 = k() + pzaé. (13)

For l; and psy we find

lo==RvV1— (Jo/RZ—ko-ay, (14)
pz=— 1% VAT = /R - VI =R, (15)

where
Jo = as X kg = a3 X ky = ap X k. (16)

To complete the tracing of the ray we must find out
whether it is captured (both in position and angle) by
fiber 2. A scale factor L is therefore introduced:

C+H-=Lky+ a3, (17)
where
C=y‘(L+ Af)sinv+z‘( R +Af)cosu. (18)
n-—1 n-1

Now C*H = 0 and thus (19)

2 _ g2,
p=-EoaiC (20)

ky-C

The position of the ray is now obtained by calculating
H from Eq. (17), while the corresponding azimuthal
angle is the angle between C and k..

We are now in a position to trace through the con-
nector a set of rays representative of a given excitation
condition of fiber 1. The loss is computed by counting
the fraction which are accepted by fiber 2. It was found
necessary to trace 104 rays per loss calculation to keep
the scatter between estimates to an acceptable level.
Note that to isolate the effect of optical aberrations,
Fresnel reflection losses have not been included in the
present calculations.

In the case where the terminations are tilted (v > 0),
the connector no longer possesses an axis of cylindrical
symmetry. It was thus necessary to consider carefully
how the distribution of rays was to be generated. Care
was taken to ensure that the rays launched were ran-
domly distributed in position and angle. If a regular
pattern were generated, it would possess an orientation
with respect to the tilt plane, and this might bias the
result of the loss calculation.

Since the expanded-beam connector has an insertion
loss dominated by spherical aberration, the loss will vary
according to the angular and spatial distribution of the
light presented by the emitting fiber. The greater the
proportion of paraxial rays, i.e., lower-order modes, the
lower will be the loss. It is thus important to consider
the excitation of the emitting fiber, since this will di-
rectly influence the computed loss. We have chosen to
study a step-index fiber under two excitation conditions:
(1) under excited and (2) fully excited. The former
should be representative of the majority of fibers met
in practice, whereas the latter represents the worst case.
The results for these two conditions should thus provide
an indication of the range of loss values likely to be
found.

lll. Partially Excited Fiber

We first consider a fiber excitation condition in which
power is predominantly contained in lower-order
modes. A number of possible models could be taken to
represent the angular and spatial distribution of power
likely to be met in practice. For the sake of simplicity
we consider here a step-index fiber having a distribution
in which rays originate from an equal number of points
on each of a series of equispaced concentric circles on
the end face. While the spacing of a set of points
around a circumference was regular, each set was ran-
domly orientated with respect to its neighbors. Simi-
larly, at a given point the number of rays traced per unit
radial angle ¢, at a given azimuthal angle 6, was kept
constant (i.e., independent of ;). Once again, while the
spacing of a set of rays having a given 6, was regular,
each set was orientated randomly with respect to its
neighbors.

The problem of optimizing a design in the face of so
many interdependent variables is that it is strictly
necessary to vary them all continuously until the opti-
mum is found. Obviously this is a very time-consuming
approach, and we are thus guided by the predictions of
thin-lens theory and consider first the lens spacing s,
since we expect to find a single optimum value, equal
to twice the lens focal length in air [f, = R/(n — 1)}.

At this spacing all rays pass through the optical sys-
tem symmetrically and thus form an image which
faithfully reproduces the distribution of light from the
emitting fiber angularly as well as spatially. For all
other lens spacings the angular content of the image
does not correspond to that of the emitting fiber, and
therefore some rays may fall outside the N.A. of the
receiving fiber. Thus the optimum value of lens spacing
should not be strongly dependent on the other vari-
ables.
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Fig. 3. Loss as a function of (lens separation)/(focal length of lens

in air) (s/f,) in the case of a partially excited fiber. Lenses are untilted

(v =0). Foreach figure a different lens refractive index n is consid-

ered: (a)n =1.5; (b) n = 1.78; (c) n = 2.0. In each case, the curves

are drawn for three values of (lens radius of curvature)/(fiber radius)
(R/F).
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The relationship between loss and lens spacing is
plotted in Fig. 3. For the moment we assume that the
fibers are placed at the lens focal points, i.e., Af = 0.
We see that a single optimum does indeed exist at the
predicted separation. The effect is small for R/F = 20,
since, for sufficiently large values of R/F, all rays orig-
inate from points close to the axis and thus are highly
collimated. Henceforth, for this launch condition we
present our results with the lenses spaced at 2f,. In
addition we see that the loss curve for n = 1.5 and R/F
= 100 is relatively high. To explain this, we note that
spherical aberration increases with increasing beam
expansion h. In our particular case, the fibers are al-
ways placed at the focal length f, so that

h:1+(ﬁ)[ !
Flln —1

where 1y = asn(N.A./n) and is related to the angle Y
(Fig. 1). While an examination of this equation reveals
that & and hence the effect of spherical aberration in-
crease with decreasing n, it is perhaps better to visualize
the constraints at work: as we decrease n, both the focal
length [f; = nR/(n — 1)] and the half angle of the cone
of rays emitted by fiber 1 [= asn(N.A./n)] increase;
hence h and the effect of spherical aberration also in-
crease. Furthermore, a large value of R/F means a
relatively small cross section for capture of rays by fiber
2, so that a given spherical aberration has a greater ef-
fect on insertion loss.

Having decided upon the optimum lens separation,
the relationship between loss and (R/F) is plotted as a
function of tilt v in Fig. 4. The upper horizontal scale
gives the approximate beam expansion obtained from
Eq. (21). As we should expect from the foregoing dis-
cussion, for a given value of R/F a high refractive-index
lens is not so effective in expanding the output beam.
The curves confirm that the loss is much more suscep-
tible to tilt than in the case of butt-type connectors.
The effect of optimally spacing the lenses can also be
seen, in that quite small values of R/F (~5) can be tol-
erated without incurring a serious loss penalty.

We now turn to the question of mitigating the effect
of spherical aberration in the case where high N.A. fibers
are specified, and therefore the image aberrations are
more troublesome. As outlined earlier, we might expect
an improvement in the loss by moving the fibers slightly
closer to the lenses, i.e., toward the circle of least con-
fusion, and this prediction is confirmed in Fig. 5 where
the relationship between loss and Af is plotted for R/F
= 20. We see that the minima for various values of N.A.
and sphere index are within 0.2 dB of each other, so that
a large degree of compensation is possible. In partic-
ular, it is possible to reduce the losses from 1.6 to 0.6 dB
for the n = 1.5, N.A. = 0.3 case.

Examples: Suppose we wish to terminate a 100-um
core diam, N.A. = 0.2, step-index fiber using a spherical
glass (n = 1.5) ball as a lens, the space between the ball
and the fiber being filled with an index-matching ma-
terial. As afurther constraint, suppose the ball is to fit
into a standard connector shell so that its diameter is
fixed at, say, 2 mm. Then R/F = 20, and we see from
Fig. 3(a) that, while a small benefit is to be obtained by

+ cosy/| tanfly, (21)
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spacing the balls at 2f,, this parameter is not critical.
A beam expansion of ~9 times will be obtained, and the
loss is therefore determined by the tilt tolerance; <1 dB
might be expected if this tolerance could be kept below
0.5°. By choosing Af = —180 um this might be reduced
to 0.8 dB. To this figure must be added the Fresnel
reflection loss for two surfaces, unless antireflection
coatings are used.

By way of comparison, suppose we now wish to simply
protect the end of a 400 um core diam step-index fiber
having an N.A. of 0.3. With such a large core size, there
is little point in expanding the beam by having a large
value of R/F, since this will increase the susceptibility
of the insertion loss to tilt. Thus we take the same value
of lens curvature as in the previous example. In this
case we might choose sapphire (n ~ 1.78) as the lens
material because of its hardness. R/F = 5, and we infer
from Fig. 3(b) that a definite advantage is obtained by
spacing the lenses by 2f,. Figure 4(b) indicates that the
beam expansion is small (~3 times), and the depen-
dence of insertion loss upon tilt is correspondingly re-
laxed; a tilt of 0.5° can be tolerated without significant
increase in loss. Furthermore, we can infer from Fig.
5 that there would be little benefit in placing the fiber
at other than the focus for paraxial rays (i.e., Af = 0).

IV. Fully Excited Fiber

We now turn to consider the fully excited step-index
fiber condition which is characterized by the require-
ment that the number of rays emitted per unit area per
unit solid angle is constant. As before, ray coordinates
were randomized by a procedure similar to that applied
in the case of the partially excited launch. This case is
little more complicated because there is a relatively
large number of marginal rays, so the effect of spherical
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case of partial excitation; the differences are consistent
with the effect of launching a larger proportion of
marginal rays. Thus the minimum loss is higher, and
it is found that for an N.A. of 0.2 the contribution made
by aberrations is close to 1 dB, increasing to ~1.5 dB for
an N.A. of 0.3.

V. Conclusions

We have carried out a theoretical design study of an
expanded-beam connector to quantify the importance
of several parameters and obtain a set of design criteria.
By careful choice of the design parameters we find that
for a step-index fiber having an N.A. of 0.2 the contri-
bution of spherical aberration to the total loss falls in
the 0.4-1.1-dB range for partially and fully excited
launch conditions, respectively. The range becomes
0.6-1.65 dB upon increasing the fiber N.A. to 0.3.
Among the important design parameters to emerge
are:

5

Loss (dB)

41 NA=03
S = Optimum

o

v=20

n=178

1 b n=20

0 1 n 1 n 1 -l n " I
0 5 10 15 20 25 30 35 40 45 S0
Lens radius/ Fibre radius (R/F)

(b)

Loss as a function of (lens radius of curvature)/(fiber radius) (R/F) in the case of a fully excited fiber. Lenses are untilted (v = 0)

and are optimally spaced. For each figure a different N.A. is considered: (a) N.A. = 0.2; (b) N.A. = 0.3. In each case, the curves are drawn
for various values of the lens refractive index n.

aberration is greater. In Fig. 6 the relationship between
loss and lens separation (s/f,) is plotted, and we find
that a lens separation of 2f, is not so universally ap-
propriate, a value of 1.5 f, being a better choice for n =
1.5. We see from Figs. 7 that the dependence of loss on
R/F is more pronounced, particularly for n = 1.5, and
we would therefore expect the effect of varying Af to be
more important. This is confirmed in Fig. 8 where we
find a significant benefit is obtained even for n =
1.78.

In general, the curves obtained for the fully excited
fiber are qualitatively similar to those obtained in the
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(1) Lens spacing. This parameter is effective in
bringing off-axis rays to a focus in the receiving fiber
image plane and should in general be twice the lens focal
length in air.

(2) Displacement of the fiber relative to the focus for
paraxial rays. Varying this parameter is effective in
mitigating the effect of spherical aberration and ensures
that the receiving fiber captures a larger proportion of
the marginal rays. The optimum value is a strong
function of N.A. and amounts to a displacement of as
much as 5% of the lens focal length in a direction toward
the lens.
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(3) Lens radius of curvature/fiber radius. This pa-
rameter determines the beam expansion and conse-
quently the susceptibility of the loss to angular mis-
alignment. The exact choice depends upon the char-

acteristics of the fiber and the trade-off that exists be-
tween the angular and lateral misalignment toler-
ance.

We believe that the conclusions of this design study
establish the expanded-beam connector as an attractive
alternative to the butt-connector, particularly in hostile
environments or where a long active service life is en-
visaged. Furthermore, if the added complication of a
lens doublet can be tolerated it is possible to envisage
a considerable reduction in spherical aberrations and,
consequently, lower losses.
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