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Core fields in graded fibres
with non-circular index contours
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Fields in the cores of graded non-circular optical fibres are analysed using a new method. It is shown that
the scalar wave equation in elliptical co-ordinates can be separated for many realistic non-circular
profiles, thus allowirg calculation of fields by a double WKB method. The boundaries separating
oscillatory and evanescent regions are found by simple analysis of algebraic equations. This method
supports and further explains previous analysis which used geometric optics.

1. Introduction
Investigations of pulse propagation, measurements of refractive index profiles, and other experiments of
optical fibre communications require a knowledge of light propagation in the fibres. The analysis used
should yield results which are accurate, and yet simple enough to apply to practical situations. Some
degree of ellipticity is often observed in graded-index fibres, so it is important to understand the effect
of the deviation from circularity.

By introducing a new method, we show that for a wide range of non-circular profiles which are
likely to occur, the mode fields in the core can be written in a relatively simple way. These fields provide
an understanding of the ray path projections in non-ircular fibres studied in [1}, and may. be used in
further studies on propagation.

In Section 2 we provide the basic analysis and discuss the general patterns. In Section 3 we consider
a simple casegthe fields of the step-index fibre with an elliptical core-cladding interface. Section 4 gives
limiting cases of the general theory. The modes of a parabolic-profile fibre which has circular refractive
index contours are usually written in terms of functions based on either rectangular or circular polar
co-ordinates. In Section 5, we derive a more general representation of these modes, and show that the
tunnelling leaky modes are only marginally stable on the parabolic fibre, i.e. they can be removed by the
introduction of an infinitestimal ellipticity. In Section 6 we consider how to apply this theory, once the
refractive index profile is given; a typical class is analysed and results are compared with ray theory.
Basic conclusions are given in Section 7.

2. Analysis of core mode fields
Our aim is to use elliptic cylinder (£, ) co-ordinate systems to represent modes in the cores of non-
circular fibres. These co-ordinates are defined by:

x = fcosh§cosn
) ) )

y = fsinh ¢sinn.
Unlike rectangular (x, ) and polar (r, ¥) systems, there are infinitely many elliptical systems, as the
focus parameter f can be varied from zero to infinity.

We consider fibres invariant in the z-direction, thus mode fields vary as exp (ifiz). The exact fields

satisfy Maxwell’s equations, but in practice the refractive index changes very little in a distance of one
wavelength, so the modes obtained by using the scalar wave approximation will be quite accurate [2].
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Each mode E(x, y, z) satisfies the scalar wave equation,
[V +Kn(x, y)IE = 0 )

where n(x, y) is the refractive index and k = 2/, with A being the free-space wavelength.
Taking E(x, y, z) = ®(x, y) exp (ifz) we find,

[V + (n* = 1)} = 0 ®

where

Ta?
Now in elliptical cylinder co-ordinates with focus parameter f
1 ?e %@
W = 5 —grm—— +—
P77 f(sinh? + sin’n) (az’ an’ )
We set & = Q(£)S(n) and attempt to separate Equation 3:
1 1d2Q , 14%s
—_— X 2,2 —_f2
F2(sinb®¢ + sinn) (Q i sap) T Em—F =0 @)
This equation can be separated if we can find a value of f for which

+ A

Thus, given n?(x, y) we seek suitable &(%), h(n) and f. We shall see later that many realistic non-circular
profiles can be written in this way. Then,

n*(,m) = ng—

1 sz 1 d2 2 2 212 s 2 2
oa +Sdn 3+ 2 (n} — G)(sinh E + sin) — K2f? [g(8) + h(m)] =
By letting the separation constant be u, we find
dg +K2GEQE) = 0 ©)
and
ds
am b K*Hm)S(m) = 0 )
2
where G® = r* [ (n% -i—,) sinh? ¢ —g(z)] - ®
2
and Hmy =r* [(n% i;) sin’n — h(n)] R ©)

We obtain an approximate (WKB) solution to Equation 6 by taking
0®) = TR e*v®
and noting that k is large for optical frequencies:
0® ~ G exp [: it [ VIG®] ds}.

Thus the field will be oscillatory when G(§) > 0, and evanescent when G(§) < 0. The boundaries
526



Core fields in graded fibres with non-circular index contours

between the regions (caustics) are found simply from the zeros of G(¢). Thus,

o¢) = [—Gﬁcos[kj G"’d£+¢,]; GE)>0

= c:z)l v {B 16XP [_" f o di] +B, exp[ k f -G)" dz]}; GE)<0 (10)

Il

where Ay, ¢,, By, B, are constants. The caustic position is the reference point in each integral. The
nature of WKB type solutions of differential equations like Equations 6 and 7 has been studied in
connection with quantum mechanics problems, and losses in optical waveguides [3-5]. It has been
shown [6] that WKB solutions for mode fields are accurate everywhere, except close to the caustics.
Clearly Q(¥) - o> when G(£) ~ 0, whereas physically there is a smooth transition from oscillatory to
evanescent behaviour, Suppose £, is a zero of G(£). By linearizing G(§) in the neighbourhood of §, , we
see that the exact solution to Equation 6 in this region is a combination of Airy functions [7]. It shows
the form of the change from oscillatory to evanescent behaviour near a caustic. We can find the con-
stants in Equation 10 by comparing the WKB solutions on each side of the zero with the asymptotic
forms of the exact solution.

Similarly,
S() = [H_E:;FE cos [kfﬂ“’ dn + ¢,] ; H)>0
(oscillatory region)
= [——H(l';)-]_‘—’;‘ {B, exp [—-k f (— dn] + B, exp [k f — 3 dn]} s H <o  (11)

(evanescent region)

where 4,, ¢,, By, B, are constants; they can be found by the method indicated for the constants in
Equation 10.

Thus @ = Q(¥)S(n) is the product of two WKB type solutions. We get a propagating mode (oscillatory
field) when G(£) and H(n) are both positive. For forms of g(£) and h(n) likely to occur, we can picture
the following mode field patterns.

2.1, u <0 {H type)
Here G(0) >0, and G(£) decreases to zero at £ = £,,. H(0) <0, and for propagation we need H(n/2) >0,
1e. 0>u>—f*(k*ng — ).

Then H(n) > 0 for Ny, <7 <w/f2, where H(ny,) = 0. G and H are shown in Figs. 1a and b, respec-
tively. Thus the mode is largely confined to the region

0<§<fy
Nmin <7 <7/2

and the corresponding regions of the other quadrants. A typical pattern is shown in Fig. 1c. Modes like
this will be called ‘hyperbolic’ or H type.

2.2. 4 >0 (E type)

Here G(0) <0, so there is an evanescent field near the centre. Generally, G(¥) will have two zeros in the
core: Emin and &5, H(0) > 0 and H(n) is generally positive for all 5. Thus the field is oscillatory in the
region £, < & < &, Figs. 2a and 2b show typical forms of G and H, and Fig. 2c shows a mode pattern
of this type. This is an ‘elliptic’ or E type mode. Obviously, if f is outside the core, this type is not
possible, as the curve £ = £, must be within the core, to ensure guided propagation.
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\ Figure 1 Forms of the functions G(£) and Hi(n),
e} 2T -Tmn and the mode pattern for a ‘hyperbolic’

{H type) mode.

T+ Nmin

If we let the maximum refractive index be n,, and let the index at the core—cladding interface be n
then bound modes have kn,, < § < kno, whereas leaky modes {5] have § < kn,,.

The convenient feature of this method is that mode patterns can be found by simple analysis of
algebraic equations. Ray path projections in graded non-circular fibres were studied in [1], and it was
found that ‘H’ and ‘E’ types exist. Examples (found numerically) are shown in Figs. 3 and 4. By com-
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{c) Figure 2 Forms of G{£) and H{n) and the mode

pattern for an ‘elliptic’ {E type) mode.
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70 paring Fig. 1c with Fig. 3, and Fig. 2c with Fig. 4, we see that the ray path projection on the cross-
section forms the framework or ‘skeleton’ of the corresponding mode. The ray paths can be found
numerically for any given index distribution.

3. Step-index fibre with elliptical boundary
As a first application, we consider a step-index (n = n,) fibre with a core-cladding interface described
by £ = &, with focus f. This system has been considered previously [8, 9]. It is obtained simply by

taking h(n) = 0; foralln
&t = 0; £<ky,.
For £ > &, g(£) is such that G(¢¥) < 0. Then
G(¥) = f*(n§ — B*/k*) sinh®£ — u/k? (1)
H(n) = f*(n§ —B*[k*) sin®n + p/k*. (13
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3.1. u <0 (H type)
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/,’Q,\ Fioure 3 & e of ‘hyperbotic’ (H) Here G(¢) > 0 for £ <&y, and G(§) <O for £ > £,,. We need H(n/2) >0, so
D igure 3 Example of ‘hyperbolic
{ o type ray path projection on the cross- o>u> —-f"(klng —p? ).

section of a non-circular graded-index Then H(n) >0 for

fibre. The core—cladding interface is also -~

shown; the eccentricity of the fibre is f’ (kzn% . Bz)

5% in thi e. . . . . . .

T in this cas Thus for a given (B, ) we get an H type mode (Fig. Ic), with the outer ellipse being & = £,,. The foci of
the hyperbolae 7 =+ iy, 7 * Ny, are the foci of the core-cladding interface ellipse. This is some-

times called a ‘bouncing ball’ mode.

sinZn > = sin® Ny (14)

3.2. £ > 0 (E type)
1o Now G(0) <0, and G increases to zero at § = £, where

ylo M

Fw—Fy a9
Thus G(£) > O for £, < & < £y, and H(n) > O for all n. These are elliptic type modes, as in Fig. 2¢c, with
£ = &y, replacing £,,. Hence G(%) does not approach zero as £ = &;,. Such a mode is sometimes called a
‘whispering gallery’ mode.

The fields given by Equations 10 and 11 with G and H from Equations 12 and 13 correspond to the
asymptotic forms of Mathieu functions, known to be the exact solutions of differential Equations 6 and
7 for this case. The features of these functions, as well as approximate eigenvalues, are given in [10].

inh2 .
sinh*£ ;. =

xlp 4. Limiting cases

+ ' o Optical fibres are usually analysed using either rectangular or circular polar co-ordinates. We now show
that the results so obtained are the special cases f —+ e and f = 0, respectively, of the theory presented
in Section 2.

“ 4.1. f > oo (hence £ - 0 and n > n/2)
In this limit f cos n > x and f sinh - y. Thus

L ‘ n* > ng —g(&) — h(n)
= "(2) —& () —hi(x)

Figure 4 Example of ‘elliptic’ (E) type ) _ . i
ray path projection. The eccentricity of where &) g farcsinh (y/f)] (16)
= the fibre is 1.5%. and . h,(x) =} [arccos (x/f)]
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From Equations 8 and 9,

GE) > —p/k* ~ f2g(¥)

. a7
=—pfk? =50
Her) > 1 [no —ﬁ—~h(n)} v &
o (18)
u
=ﬁLﬁ—;~h@4+
The oscillatory part s contained within a rectangle and the caustics x,, and y,, are found from the
zeros of the above functions. Thus
ﬁ’
& 0m) = ng — hy(em) = W{ 19

Now ”2(xm:ym) = n} _gl(ym)—hl(xm)
BIk: >n?

as (Xm, ¥m ) must be in the core. Thus the modes are bound. The ray projections for such core profiles
also fill rectangles. Now fdn - — dx and fd§ - dy

0 g 12 :
S > H"exp|tik f nd—E— e+ 2| e (20)
k 1"2
and
—u 172
Q- G VMexp iikf[k—zﬁ—-g,(y)] dy;. (21)
We now consider the analysis of such profiles in rectangular co-ordinates: this uses ® = X(x) Y(») in
Equavion 3: 2 2
1d°X 14°Y .
X =+ ?E— +&2 [ng —hy () —£:0)] —4* = 0.
Taking 8 as the separation constant, we obtain
d’x
— +KH ()X(x) = (22)
dx?
where
Hy(x) = n§ —hy(x)— (6* + 8)/k*
and
da’y
e +K2G, (YY) =0 (23)
where
Gi(y) = 8/K* —£,00).
Thus

X ~ Hy" exp (i ik f H{”? dx)

Y ~ G{Y4 exp (t ik f ehi dy).
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Clearly 8§ = — p/f?, and X and Y are just the limiting forms of § and Q given in Equations 20 and 21.

42.f->0
Here fsinh £ - r and n -  where (7, {/) are cylindrical polar co-ordinates. From Equation 5
§
n? > n} __sigr’l(h’)‘g’ = n2(). (24)
Thus
G(&) = f*[(n} — B> /k*) sinh®E — g(¥)] — p/k*
- r2P(r)
where
P() = n*()— u/r* + *)/K. (25)
Now
dg > drfr  so f G dg —»f PV2 gy
and
= [P exp {i ik f VvIPD] dr] (26)
H(m) — u/k?
)
S(n) - exp (in'*n @7

S(n +2m) = S(n)

so 12 must be an integer, say v.
In these cases, where the refractive index is a function of 7 only, it is common to use & = R(r) exp
(ivy) in Equation 3, with V¢ in cylindrical polar co-ordinates. This gives

d2 1 dR
+ —_——4 k2 =0
T+ K2P(HR(r)

where u has been identified with »? in P(r). Taking r = ¥ gives

2
IR fwrewpr = 0.
dw?

So

R ~ |e®™p| 1% exp [i ikf (e p)!”? dw}

= |P2P(r)| " exp {t ik [ PY2 dr }
i.e. the same as the limit of Q, given by Equation 26.

5. Mode representations for parabolic profile with circular refractive index contours
The circularly symmetric fibre with a parabolic profile,

n¢) = nd —V@lp)* = nd[1—28¢/p)]; r<p (28)
7= 20 = =y
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fas received great attention in the literature, as it is close to the optimum shape for minimum pulse
dispersion. By applying the theory of Section 2 to it, we can gain insight into the stability of tunnelling
leaky modes with respect to slight non-circular perturbations. Clearly we can represent Equation 28 in
the form of Equation 5 by taking

g(5) = f1(v*/p*)sinh?% cosh® &
k() = f*(y*/0?) sin?n cos’n.

The curious fact that Equation 28 can be represented in this way, no matter which value of flpis
chosen, will be discussed later, We have

_ 72.4+zz‘32 zfzinhz_."‘_ 29
G(E)—"ﬂstth f mETr s E— 29
2 2 2
LA . o)
Hm) = f“;;sm“n +r* (n% —%—12 %)sm’n+k—2. 30)
For convenience let us define,
1 i
B = 7—2(71%—?). 3D
Bound modes thus have 0 < B < 1, whereas leaky modes have B> 1.
5.1. Mode classes
5.1.1. H type (1 <0)
These modes are of the form given in Section 2.1, and pictured in Fig. 1c, with
2 2 2 2 (172
. o 4 4up
2einh’Ep = B 1% [(BF_I) —;’f"_{’] 32)
2 2 2 2 172
. P P 4up

If the distance from the centre to the corner point (£,5, Nimin) iS 7max, then
Fhax = f2(cosh? £y — sin® )
= sz

50 (Fmax/P)? = B. The point (£, Nmin) is in the core, 50 . <p and B < 1. Thus these H modes can
only be bound. In [1] it was shown that, for any n(x, y), no H type rays are tunnelling.

If we consider thg set of modes having the same § but different values of u, then there are many
ellipse—hyperbola regions, but all are contained within (and touch) the circle 7 = rax(8) = pB'/2,
As a comparison, we see from geometric optics that the maximum distance, 7,5, from the centre for
a meridional ray with normalized axial invariant B is also pB'/?.

5.1.2 E type (u > 0)
As explained in Section 2.2, we must have f < p for these modes. Such an E mode is contained within
the region &, < & <%, (see Fig. 2c), where

2sinh?E,,, o? [( 0? )2 4pp? ]1/2
=B—=—1t]|B——1}) — . 33
2sinh?t, s Kty )

Of course Epin > 0, 50 B > (f/p)?. This is also evident from gcometric optics, as it corresponds to the
fact that B/k must be less than the refractive index at the focus points:
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GBIk <n — v (fle)*.

Here
T, L &
( ":") = el cosh?f,,
1 f2 f2 2 4” 172
=~ B+=+B-=) -2
2 { pz ( B pz kzpz 72 .
Hence
B~(f*/p*) > 2u™? (ko). (34)
Also 7,x/p must be less than 1, so for B > 1, we have the condition
A=7*1p*)B—1) < plkev)*. (35)
From Equations 34 and 35 we see that the maximum possible value of B is

Brax = 2—1%/p? (36)
indicating that 1 < B, <2.

Thus infinitesimal non-circular perturbations to the parabolic profile can reduce B, ., from 2to 1, or
any intermediate value. However, if the contours remain circular, but the power law profile exponent is
changed slightly from 2, then the tunnelling leaky modes remain. This shows that the tunnelling leaky
modes of the profile given by Equation 28 are only marginally stable. The effect on the corresponding
ray domains (Fig. 2 of [11]) is shown in Fig. 5.

5.2. Limit forms for the modes

There are two sets of modes commonly used for the circularly symmetric fibre with a parabolic profile,
One is based on rectangular co-ordinates, the other on polar co-ordinates. Using results from Section 4,
we shall consider the limit forms of the fields as £~ 0 and f = o, and their relation to the sets of modes
mentioned.

5.2.1. flp > oo

The fields & = QS are given by Equations 20 and 21, with A, (x) = (1x/p)? and g,(y) = (v¥/p)* in
Equations 17 and 18. The positions of the caustics, x = x,, and y = yy, are obtained from the zeros
of G and H, i.e. from Equation 19:

i
2
key} marginally stable

ltunnelling)

Figure 5 Effect of non-<ircular perturbation on
ray domains for parabolic profile fibre with
nominally circular contours. A slight deviation
from circularity can reduce the maximum
bound value of 8 from 2 to 1; hence the tunnelling
2 ] 0 leaky modes (and corresponding tunnelling
8 rays) are only marginally stable.
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2
Xm H
) =g+ ——
( P ) k2 fZ 72

2\ S
o By

These can also be derived from the limiting values in Equation 32. Thus

x_m : + h ? =B
14 14
(cf. Equation 12 of [1]). The condition H(n/2) > 0 means
0>pu>—(kfy)*B
so this limit produces rectangular mode patterns with

0<xn/p<l; 0<yn/p<l1.

The fields specif}ed by Equations 20 and 21 are approximate solutions of differential Equations 22 and
23. In fact these equations can be solved exactly when k) and g, are as given above [2, 12]. Each mode
field can be written as a product of two Hermite—Gaussian functions.

@n

522 flp—>0
In this limit the fields & = QS are given by Equations 26 and 27. From the zeros of P(r) (Equation 25)
we see that the field is oscillatory in the annular region ryy, <r <ry, where

Tgp B B 2 v 2112
a5 =

The upper limit on v is specified by

v B
—<=. 39
e <2 (39)
When B > 1, we also require )
B—1< (—" ) ) (40)
koy

Clearly, 0 < B < 2. (Bound modes have 0 < B < 1). These are seen to be the limits f/p - 0 of Equations
34-36. These modes can be written more precisely in terms of the Laguerre-Gaussian functions [13].

6. Mode fields in graded elliptical fibres
If we are given functions g(£) and A(n), then we can plot index contours on a graph with axes x/f and
ylf. We now consider constraints on these functions and represent a class of non-<ircular profiles in
terms of them.

As the focus points may be within the core, we need n2(¢ = 0, n = 0) finite. We are representing
profiles in the form of Equation 5 and hence require g(0) + #(0) = 0; we take g(0) = 0, #(0) = 0. The
profiles along the x- and y-axes are

h
n*(0,n) = n} —;%%; x| <f, y=0
n’(,0) = n} —ﬁ%; x|=f,y=0 “n
n*(¢,n/2) = n} -6 . y-axis.

cosh?¢’
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Note that n2(0, /2) = n3 (centre), so we get h(n/2) = 0. To ensure that the refractive index is con-
tinuous in the vicinity of the focus, we specify
&) . h(m) 2

i - = lim — = ¢
t—o sinh’f  n-o sin’n

say, (#0)

Thus for small ¢, :
ak) ~ e
h(n) ~ e*n’.
For example, the above conditions are satisfied by
g(t) = e? sinh?f cosh?§
h(n) = €*sin’ncos’n; p>0 (42)
and we can choose f and p to represent various forms. In this case,
n?(0,1) = n} —e? cosPn
n?(¢, 0) = n} —e? coshP§ (43)
n(E, n/2) = n} —e?® sinh?§ cosh® 2.

Taking p = 2 gives the circular parabolic profile discussed in Section 5.
As an example, we consider ‘power-law’ profiles of the form

2 2,,2\q/2

n2=n5—7’(§7+b{) ;o xT Ay pl, (44)
P P

Again y? = n} — n?, where n,, is the index at the core—cladding interface.

In these profiles, the contours of constant index are concentric ellipses, and b is the ratio of major to
minor axis length of any contour ellipse. This class is analysed using geometric optics in [1], and ray
path projections are traced out. Although such profiles cannot be represented exactly in the form of
Equation 5, we shall see that they can be closely approximated by using Equation 42, and choosing e, p
and fsuitably, thus allowing us to explain why the ray path projections in [1] (and Figs. 3 and 4 here)
appear to be enclosed by roughly confocal ellipses and hyperbolae. For a given profile it was found that
the positions of the foci varied slightly when the initial conditions were changed. We now see that this
occurs because the representation in the form of Equation $ is not exact. We shall also see the reason
why E type modes are possible for some values of (b, ¢) and not others.

By comparing Equations 43 and 44 along the (positive) x-axis we require

Y (x/p)? =~ € cos’y;, x<f
Y (x/p)? ~ €® coshPy; x=f.

Now x = fcosh £ for x 2 f, and x = f cos n for x < f, so we can get exact matching on the x-axis by
taking

45)

p=a (46)
and e* = ¥ (flp).
On the y-axis we have y = fsinh £, and so require
by\9 2 2\(g-2)2
-5 (3

where p and e from Equation 46 have been used. The functions in Equation 47 differ only slightly for
practical values of b and g (b close to 1, g close to 2). They are equal fory = 0;if ¢ > 2, they have a
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cross-over point at y = y,; where

21 _ [bn/(q-z)_ 1172, (48)
f
As we wish to match the functions for 0 <y < p/b, it is clear that the cross-over point should be placed
somewhere near the middle of this region. Numerical analysis shows that y, = 0.6 p/b is appropriate,
and that the values all over the core are very close when the axes are matched in this way. This specifies
the position of the focus (on the x-axis):
0.6
L.098 [P D ]2, g >2. 49
p - b
For ¢ <2, there is no cross-over, so the profiles cannot be matched as above. Instead the focus must be
on the y-axis:
x = fsinh £sinn
y = fcosh § cos .
We now see that the indices on the y-axis are exactly matched by taking

P =4q

q 2 2 « (50)
an et = v (fle).
For the x-axis:
q 2 2 \(@~-2)2
2 (1 +x—2) ) (51)
bf r !
There is now a cross-over point at x = x; where
X1 _ p2e/@-ar_ 11112 52
i [ 172 (52)

The region considered is 0 <x < p, and now x, = 0.6 p gives a close approximation. Thus the focus is
on the y-axis, and f

= & 06[p2V V1)V g <2 (53)
p

Again, agreement over the whole core is very close.

The positions of caustics can be found fiom the zeros of G(§¥) and H(n) in Equations 8 and 9, with
£(%) and A(n) from Equation 42, where the appropriate values of e, p and f are used. However the
general field patterns are immediately evident from a consideration of the focus position. If the focus
is outside the core (f> p/b for g <2, f > p for g > 2), then only the H type modes are possible (all
are bound), whereas when the focus is inside the core, both H and E types are possible. If the focus is
only just within the core, then there will be relatively few E modes. We see from Equations 49 and 53
that as ¢ = 2, f/p = =, and so the mode fields become more rectangular as we approach this line from
cither side. As b > 1(g # 2), f/lp — 0 and the E mode fields become more circular. These regions are
shown in Fig. 6, and we immediately have an explanation for the ray classes found numericaily. The
lines, in Fig. 5 of [1], separating the regions where tunnelling rays are possible from the region where
only bound rays can exist, are superimposed (dashed) on Fig. 6; they are seen to be quite close to the
mode demarcation lines.

This modal theory thus supports and further explains the geometric optics results. The reason why
there is a region where only H type rays are possible is that, in this region, the effective focus for the
profile is outside the core. In [1] the ray projections for ¢ < 2 and ¢ > 2 appear to differ by a rotation
of 90°; we now see that this is because the focus is on the y-axis in one case, and on the x-axis in the
other. For b= 1, and ¢ = 2, we sce from Equations 49 and 53 that the two demarcation lines can be
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Figure 6 Focus pasitions for the class of fibres given by Equation 44. When the focus is outside the core, only H type
modes are possible. The case ¢ = 2, b = 1 {see Section 5) can be represented by any value of f/p, as all the lines inter-
sect at this point. The dividing lines are obtained from Equations 43 and 53 for ¢ > 2 and q@ < 2 respectively. When
q < 2 the focus is on the y-axis, whereas it is on the x-axis when g > 2. The lines separating the region where only

H type rays are possible from the region where both E and H types can exist [1] are shown dashed; they correspond
closely to the lines where the focus is on the core—cladding interface.

approximated by the straight lines
b—1 = 033ig—2|. (54)

7. Conclusion

We have shown that the core field pattern of a non-circular graded fibre can be found easily if it can be
represented in the appropriate way. This rests on the separability of the scalar wave equation in elliptical
co-ordinates for such profiles. The two mode types discussed here have corresponding ray classes in the
geometric optics analysis. The oscillatory region is confined largely between two confocal ellipses

in the E modes, whereas in H modes, it is bounded by a hyperbola and an ellipse. The particular shapes,
and possible types depend critically on the position of the focus. When the focus is outside the core,
only bound modes are possible. For the elliptical step-index fibre, the focus is in the core, so both E

and H modes are always possible. The modes for the parabolic fibre with circular contours are usuaily
based on analyses in polar or rectangular co-ordinates. We have seen that these are obtained as limits
from our analysis by taking the focus approaching 0 or infinity respectively, but that any focus position,
0 < f< o can be used in this case. For this profile, the tunnelling leaky modes are only marginally
stable with respect to non-circular perturbations.

Slight deviations from circularity can have a substantial effect on mode shapes, and on the proportion
of the various types. Thus it would often not be satisfactory to use circular results as an approximation
[14].

The theory presented in this paper may be used in future determinations of core refractive index
profiles for noncircular fibres, and in other experiments where a knowledge of mode fields is required.
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