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Ray theory of graded non-circular optical fibres
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Both bound and tunnelling rays exist in muitimode graded fibres which do not have circular symmetry;
however, the fraction of energy in the tunnelling rays is generally less than that in a similar circular fibre,
especially for near-parabolic profiles. For a large class of non-symmetric profiles, no tunnelling rays can
propagate.

1. Introduction

Usually analyses of graded-index optical fibres assume that the refractive index profile within the core is
of the form n = n(r), i.e. that the contours of constant index are circles. In practice, however, the fibre
manufacturing process often introduces some deviation from circular symmetry. It is important to
understand the effect this has on propagation, and, in particular, on the loss of leaky modes. The latter
can influence the calculation of refractive indices in the near-field method of profile measurement [1].

The leaky mode loss has been investigated for particular profiles using mode theory [2, 3]. In this
paper we use geometric optics to analyse light propagation in fibres with refractive index profile n(x, y),
where x and y are cartesian co-ordinates in the cross-section. This method is very accurate [4] for multi-
mode fibres with typical parameters.

We shall study the propagation of the various classes of rays in non-circular fibres. Our approach
empbhasizes the physical mechanisms involved, whereas the mode approach tends to obscure them. We
shall see that the proportion of tunnelling rays is often relatively low in fibres which lack circular
symmetry.

The ray path x = x(z), y = y(z) must satisfy the ray equation

d dR
& (n E) = Vn n

where R is the posijtion vector of a point on the ray path, and s is the length along the path. If we let
6(x, y) be the angle a ray makes with the z (fibre) axis, we see that

~ dz
B =n— = n(x y)cosb (2)
ds
is an invariant. Note that § = k8 = 2nf /X is the modal propagation constant, where A is the wavelength.
If we denote differentiation with respect to z by a dot, then at any point on a ray with invariant § we
have

g = n*(x,y)
1+x2 4%
From Equations I and 2
o d%x I 9 ,
X = (—12—2" = Fan (33)
1 3
y = 26728_)*”2‘ (3b)
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Let us define ng, 1, such that n(x, y) decreases from a value 7, on the axis to a value n; at the core-
cladding interface; in the cladding n(x, y) = n¢;. For convenicnce we take

¥ = n§—n} 4)

and introduce a normalized § s
p="0"F (5)
Y

It is now useful to specify the three types of rays:

(a) bound rays, which, in a lossless fibre, propagate unattenuated. They are exactly those having
Ny <P <ng,ie.0<SB<1.

(b) tunnelling rays, which also remain in the core, but must have § < n,, i.e. B> 1. The field associ-
ated with a tunnelling ray extends into the cladding, and it loses energy from a radiation surface outside
the core [5, 6].

(c) refracting rays, which are lost when they impinge upon the core-cladding interface.

2. Separable cases
For the class of profiles of form

n2x,y) = n§ — [f(x) + g0V S0 +e0) <Y’
: ; ©
= ngy ; o)y +ep)=7
we have
Sy 1k
262 ox 282y
Hence the differential equations are uncoupled, and we find x(z) and y(z) from
~ dx
z2=f| o
J. [fCrm) —fO)] V2
and @)

_ dy
==8] [0m) —20)] 7

where x; and y,, are the maximum values of x and y, respectively. If we define z,,, as the change in z
corresponding to a change in x from 0 to x,, then

fpe = B [, 0w =] 2 ax ®

Zpy is similarly defined.
For example, if f(x) = e®xP, where e is a constant, then

_ B icem 7'>I(1/p)
Zpx = —Xm T~ 11N " (9)
pe I(l/p +%)
Thus, unless z,,, /zp,, is the ratio of two small integers, the motions in the x- and y~directions are inde-
pendent, and the ray projection in the cross-section will fill the rectangle |x| < xu;, Iy] < ym.

Each time (x, ¥) = (X, ¥m ) We have X =y = 0 (i.e. § = 0) and so § = n(x;, ¥m ). The lowest poss-
ible value of n(xp, yr) is clearly ngy, so in structures of the form of Equation 6, all rays with § <ng
eventually hit the core-cladding interface, and are lost by refraction. They are ‘slowly refracting’; this
contrasts with refracting rays in circular structures, which are lost in the first cycle. Thus, strictly speak-
ing, there are no tunnelling rays in ‘separable’ profiles, as tunnelling rays must have § <.

198




Ray theory of graded non-circular optical fibres

3. Parabolic-index fibres with elliptical contours
Here we have

2
n?(x,y) = n} —Z—z(x2 +b%y?); x2 +b2p2 < p?
2
= n%—72?[1+(b2—1)sin2¢/] (10)
so the path is
X = Xy sin (%+ d/l)
g (11)
(b
y —ymsm( ~+llfz)
P8
and ~
= mE _
Zpx = E,; = bzpy

Xms¥m> Y1, Y2 can be determined from the initial conditions. If b # 1, then each bound ray maps out
a rectangle. If b = 1, then the ray path is an ellipse with semi-minor and major axes ry,;, and r, where

2 2 2 2
rmin+rtp = Xm +¥Ym.

In fact

(’—““E\,2 + (’t—")z =B (12)
o] o

where B is defined in Equation 5. Clearly, a ray is bound if and only if the left-hand side of Equation 12
is less than 1. The further b is from 1, the more quickly the projéction ellipse appears to rotate.
For b close to unity, we find that after a length

TPNg
Zg = ———
¢ ylb—1
all the ‘slowly refracting’ rays have been lost, and only bound rays remain. For typical values (ng = 1.5,
v = 0.15 are used in numerical results in this paper), ze = 15 cm for 1% ellipticity. Thus after a short
length, propagation effectively involves bound rays only. Note that this loss mechanism differs from that
suggested in [3].

(13)

4. Ray classes in circularly symmetric profiles
For comparison purposes, we briefly describe ray types in circularly symmetric fibres. There is a second
invariant [7]

I' = (r/p)n(r) sin 6(r) cos ¢(r).

Here ¢(r) is the angle between the ray projection through a point P in the cross-section, and the line in
the cross-section perpendicular to the line joining P to the centre. The ray path projection is contained
within the annulus bounded by inner and outer caustics 7, and ry,, which, in graded fibres, are the
roots (r <p) of

n*(n—B8* —TI*(p*/r*) = 0. (14)
In the step fibre, every ray reaches the interface; angles 6 and ¢(p) are conserved, and i, = p cos ¢(p).
Rays with 7= 0 have n(ryp) = § and are called meridional since they cross the fibre axis (rmin = 0).
These cannot be tunnelling, because n(ry,) > 7. As we shall see in Sections 5 and 6, there is a related
class of rays in elliptical fibres. Tunnelling rays have § < n;, but remain entirely within the core; they
have a third root r,q( p) of Equation 14,
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Figure 1 Ray classes in step ellipse fibre. Rays
passing through both foci (solid line) form the
borderline between the ‘elliptic’ (E) type
{dashed) and the ‘hyperbolic’ {H) type {dotted).
Rays of the H type always cross the major axis
between the foci, and have no inner caustics.
Rays of the E type cross the major axis between
the foci and the interface; their inner caustics
are ellipses.

For ‘power law’ profiles

n*(ry = n§ —v*(r/p)* = nd[1 —2A(/p)*]; r<p (15)

the maximum possible B for a tunnelling ray is (1 + 4¢q). For a Lambertian source, the ratio of tunnell-
ing to bound power is initially 1/3 for a parabolic fibre, and 1 for a step fibre.

5. Elliptical step fibre
Ray congruences in an elliptic domain have been studied in connection with eigenvalue problems [8].
Consider the projections of rays reflected from an arbitrary point on an elliptical step fibre, as shown
in Fig. 1. Let ¢, be the angle the ray makes with the tangent at P and let  and —a be the focal points or
generators of the ellipse. If the ellipse is represented by
x2 +b2y? = p?
then

- =1—=. (16)

The tangent at any point P makes equal angles with the lines joining it to the foci; thus any ray passing
through a focus point also passes through the other focus after reflection, and in general will ultimately
cover the whole ellipse. A ray which crosses the major axis at some point between the two foci, such as
the dotted one in Fig. 1, makes an angle greater than ¢ at P, and so, after reflection, again crosses the
major axis between the foci. This ‘hyperbolic’ type ray fills the region delineated by the ellipse on top
and bottom, and by two hyperbolae on the sides. At each intersection of a hyperbola and an ellipse,

¢ = /2, indicating that § > n,. Thus these rays are analogous to meridional rays in the circular case.

A ray of the ‘elliptic’ type (shown dashed in Fig. 1) makes an angle less than ¢ at P, and so always .
crosses the major axis at a point |x} > a. It is contained between the interface ellipse and an inner caustic
ellipse. In this case, ¢ is never /2, so this type can be tunnelling or bound. For any degree of ellipticity,
both ray classes can exist in the step, because the foci are always within the core.

6. Power law ellipse profiles
We now investigate power law profiles where the index contours are ellipses:
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x2 yz ql2
n(x,y) = n%—yz(;;+b2p—2 . a7

For b = 1 (circular) this reduces to Equation 15. Note that b is the length of the major (x-) axis divided
by that of the minor (y-) axis for any index contour. Given the fibre parameters, the system of coupled
differential equations obtained using Equations 17 and 3 together with the initial values of x, y and their
derivatives is solved numerically, in cartesian co-ordinates, using a fourth order method for accuracy. We
find that there are two classes of rays:

(a) ‘elliptic’ (E), where the inner and outer caustics are ellipses (see Fig. 2). As with skew rays in
circular fibres, 6 is never zero, so these can be bound or tunnelling. For a given ray, the ellipses are gener-
ally almost confocal.

(b) ‘hyperbolic’ (H), where there is no inner caustic; the outer boundary consists of arcs of hyper-
bolae and ellipses, as shown in Figs. 3 and 4. Again this type is analogous to meridional rays in circular
graded fibres; at a corner point (x;, y;) we have # = 0 and so

B = n(xy,y1) > na

thus 0 <B < 1, and this type can only be bound. The ellipse and hyperbolae intersect roughly at right
angles, implying that they are approximately confocal. The intersection corners can be seen in Figs. 3
and 4. If B is increased to 1, then the corners touch the core—cladding interface; if B > 1 the corners
would enter the cladding, indicating that such an H-type ray cannot propagate.

When q is close to 2, and b is not too close to 1 (see Fig. 5), only the hyperbolic-type rays can exist.
This means that essentially only bound rays propagate, because the ‘slowly refracting’ rays are lost
within a short distance of the source.

As the fibre approaches circularity (b = 1 line), the two caustics become more circular (Section 4),
whereas as we approach the line ¢ = 2, the outer caustic becomes more rectangular (Section 3). Below
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NG S ”/ Figure 2 Example of elliptic type ray
\\“‘ 'l’/ in profile of the form of Equation 17.
\ + "’ The ray traces out its path in the

“ '/ region between the two (almost con-

focal) caustic ellipses. Here b = 1.03,
q =24 and B = 1.12. Note that this
ray is tunnelling because 8 > 1 (see
C Section 1).
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Figure 3 Example of hyperbolic type
ray (g < 2). The ray occupies the
region delineated by hyperbolae and
an ellipse. There is no inner caustic.
This type can only be bound. Here
b=107,¢q=1.7 and B = 0.852.

Figure 4 Example of hyperbolic type ray
{(g>2).Hereb=1.1,g=23and
B8 =0927.
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115 r—¢
\
b | /
\\ {H only) /
\ //
B v No tunn. rays /
11 \ ;
\
\
\ /
\ /
(E or H) \ /o (EorH)
105 \\ //
\
Bound \ ,’ Bound + tunn. Figure 5 Possible ray types for various (b, q) values;
\\ / b is the ratio of major to minor axis length for any
+ tunn. \ // contour, and g is the exponent (see Equation 17).
\‘/ X . Above the dividing curve only hyperbolic (H) type
10 1% 18 2.0 22 24 26 rays exist, and hence no tunnelling rays. Below this

1

curve, elliptic (E) type rays can also exist.

the dividing line in Fig. 5, both ray types can exist, although just below this line there are relatively few
of the elliptic type, indicating that the fraction of power in tunnelling rays is quite low. For » > 1 the
maximum B is less than (1 + %4).

7. Discussion and implications

The loss of circular symmetry tends to reduce the ratio of tunnelling to bound power. The effect is most
significant in profiles of ‘separable’ form (Equation 6), as these do not support tunnelling rays, and also

in profiles close to parabolic (g = 2); a 1% or 2% deviation from circularity can then be sufficient to eli-

minate all tunnelling rays. This is just the main region of interest in practice, as the optimum profile for

the minimization of pulse dispersion is close to parabolic [7]. When further from ¢ = 2, tunnelling rays

cease to exist only for greater deviations.

By using the Hermite~Gaussian modes, it has been found {2] that the leaky mode attenuation in the
q = 2 case is extremely high; coupled mode theory shows that, when g is very close to 2, this attenu-
ation is also quite high [3] . The ray explanation presented here is more physically intuitive, as well as
being more general.

In conclusion, the presence of leaky modes in non-circular fibres depends critically on the specific
form of the index profile. The near-field scanning technique can be used to determine index profiles
[1]. In cases where the leaky mode effect is reduced in comparison with the circular case, the leaky
mode correction factor [9] used should reflect this. However, it should be noted that experimental
evidence indicates that the full correction factor is required in many fibres.
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