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Expressions for the generated antiStokes spectral density in coherent
antiStokes Raman spectroscopy (CARS) are obtained, which take into account
the finite linewidths of laser sources and which may be used to analyse
observed spectra. Lorentzian and gaussian laser lineshapes are taken as
special cases, which enable further analytic results for single and multiline
CARS spectra to be derived. Emphasis is placed on scanning and broadband
(multiplex) CARS techniques, and the choice of laser sources discussed
from the spectral point of view. As examples of multiline spectra an
analytical account of a periodic spectrum is presented and temperature
measurement from Q-branch spectra is treated.

1. INTRODUCTION

Coherent antiStokes Raman Spectroscopy (CARS) is now well-established
as a technique complementary to spontaneous Raman spectroscopy (see for
example the reviews [1-4]). Among its advantages are the easy detectability
of the strong collimated antiStokes signals, which are free of background fluo-
rescence, and the ability to monitor given spatial portions of the medium.
The broadband (or multiplex) technique, in which a broadband Stokes signal
is injected into the medium [1-6], makes it possible to obtain a spectrum of
several Raman lines in a single pulse. Thus by analysing the spectrum one
can make temporally and spatially resolved measurements of density and tempera-
ture. 'This has obvious applications in investigations of turbulent media, such
as flames, and fast reactions [2, 6, 7]. By suitable choice of narrow linewidth
laser sources, both the broadband and conventional scanning CARS techniques
allow high-resolution (compared to spontaneous Raman spectroscopy) spectra
to be obtained, assisted by the partial Doppler-cancellation that occurs with
forward scattering.

As in any spectroscopic technique, one ultimately relies on the ability to
analyse the recorded spectra and, particularly in CARS, this implies that proper
account be taken of the laser linewidths. Surprisingly, however, little work
has been done in this area, the CARS theory usually idealizing the lasers as
being monochromatic or infinitely broad, as appropriate, and thus scarcely
taking account of the far from transform-limited nature of most laser sources.
It is intuitively obvious that, for high resolution, at least some of the lasers should
have linewidths much less than the Raman lines of interest. If investigations
are limited to a few species, then this can usually be arranged by careful design,
though it is desirable even then to quantify ‘ much less than ’ for a single Raman
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line. In the case of a set of lines, however, the effect of laser linewidth is not
immediately apparent when the line spacing is comparable to or smaller than the
Raman linewidth. Moreover, if CARS is to become a routine spectroscopic
method, then there will always be species for which the Raman linewidths and/or
line spacings will be comparable to the laser linewidths. This is further compli-
cated when for example a temperature measurement is taken. The temperature
is a fitting parameter in the analysis of the spectrum. Over the entire spectrum
some lines may be more heavily weighted than others, and it may be these alone
for which the laser linewidth must be narrow. There are indeed some cases in
temperature and density measurements where it will be seen that the result is
independent of laser linewidth, rendering the use of narrow linewidth sources
unnecessary.

In this paper a theoretical discussion of the effects of laser linewidth on
CARS spectra is presented and is intended to apply to the most common experi-
mental arrangements, in which cw or conventional pulsed laser sources (several
ns duration) are employed; thus transform-limited picosecond-pulse CARS
techniques are excluded. The principal simplifying assumption which may
then be made is that the laser linewidths arise from stationary, normal (gaussian),
stochastic amplitude and phase fluctuations. As will be seen, this incoherence
in the sources results in the expression for the antiStokes spectral intensity
reducing essentially to that of a convolution over laser lineshapes of the usual
monochromatic wave formulae.

The body of the paper commences (§ 2) with a review of the formal theory
of CARS, and the usual solutions in the idealized laser source approximation.
Both the susceptibility and material excitation viewpoints are considered and
shown to be equivalent even for arbitrary time variations of the sources ; the
former method is however used as the basis of the later analysis. In §3 the
antiStokes spectrum is derived as an explicit function of stochastic laser line-
width spectra, as mentioned above. The derivation of this result is made
possible mainly because of the parametric nature of CARS, that is the antiStokes
signal depends on the prescribed injected waves and not itself. (The corres-
ponding theory for the, at first sight, more simple non-parametric process of
stimulated Raman scattering, with its single injected pump wave, is made much
more difficult to analyse because of the dependence of the Stokes signal growth
rate on itself, [8, 9].) The result is discussed in general terms for the scanning
and broadband methods, and a new CARS arrangement for the latter technique
is pointed out. Then in § 4 two specific laser spectra are introduced, lorentzian
and gaussian. These are used to investigate a single Raman line, for which
simple results are deduced. In §5 these laser lineshapes are applied to multi-
line spectra, including the non-resonant background. The resulting expressions
form a useful starting point for the analysis of real CARS spectra, since the lasers
are each characterized analytically by one parameter, their linewidth, as opposed
to the more general expressions in §3. Two multiline spectra are then dis-
cussed, in § 6, a periodic Raman spectrum (that is equally spaced lines of equal
amplitude and linewidth), for which a particularly simple result is found after
analytic summation over all the lines, and in § 7 the Q-branch of a diatomic
molecule. These spectra were chosen in order to show as simply as possible
the effect of laser linewidth on multiline spectra for varying line spacings and,
in the example of § 7, on temperature measurements. The paper is concluded
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in § 8 with a discussion of the relative merits of the various CARS techniques
from the point of view of constraints on the laser sources.

2. SumMARY oF CARS THEORY

Figure 1 depicts the arrangement for the most general CARS process, in
which three signals are injected, at frequencies centred around w,’, w,® and w,’.
The Stokes w? and pump w,® frequencies are tuned into Raman resonance
with a Raman transition g —f, of frequency €, that is the detuning A is small,
where A=Q,+w—w,". These waves set up a strong excitation in the
medium which thus results in a strongly oscillating polarizability at the driving-
force frequency wl=w'—wt=Q;, —A~Q,. Consequently the polarization
induced in the medium by the probe (or second pump) wave, frequency w,’,
has a sideband at the antiStokes frequency w,’=wy’+ (w®—wl)~>Q +w,’.
The experimental conditions are usually such that other sidebands may be
ignored and that stimulated Raman processes remain well below threshold.

as

A'j___f

Figure 1. Notations used to describe CARS. The frequencies w;, ws, w, and was con-

tained within the spread of the laser linewidths are centred around w,®, ws’, w,” and

was® = wa® + w,?, respectively. The driving-force frequency is wa®=w,"— ws® and

the detuning from Raman resonance is A= Qy+ ws®— w,®= Qsy — wa®, depicted
here as negative, where Qjgy is the Raman shift.

The total electric field E(¢) in the medium is a superposition of the input and
generated waves Ej ., .(f), where for the present any spatial dependence is
suppressed. The Fourier transform E(w) of E(t) is given by

E(t)={ E(w) exp (—iwt) dw; E(w)=E(-w)*, (1a)

(unless explicitly indicated otherwise, all integrations range from —oo to o0
throughout the paper). This transform may be written as the superposition

E(w)=}{E(w) + E((w)+ Ex(w) + E(w)}, (10)
where
E\(t)=14 [ Ey(w;) exp (—iw;t) dw,, (1¢)

etc. The quantity Ej(w;) is sharply peaked around the frequencies * w,’,
since it-is the transform of an optical carrier wave of frequency w,° modulated
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by a slowly-time-varying (complex) envelope 4,(t)
E\(t)=3A,(t) exp (—iw, t) +cc. (2a)

Thus
E\(w;) = Ay(w;— @,°) + Ay — 03 —w%)*. (20)

Notice that the transform A,(w) is sharply peaked around w=0; and that except
when E(w,;) is real, 4,(w)# 4,(—w)*. For all practical purposes

E(wy)=A4(w; — ") wy>0, (2¢)
=A(—w;—w%)* w;<0. (24d)

The spectral density of E, is given by
Sy(w;) =3eens® § (Ey(w,)*Ey(w; +w)) do, (3)

where 7,° is the refractive index at frequency w,® and the brackets { > denote
an ensemble average. In later sections all of the fields will be stationary and so
the correlation function in (3) will then be proportional to &(w). Hence
Sy(w;) ~ {|Ey(wy)|?) and is the intensity per unit bandwidth of the wave. A
trivial example of this is afforded when E,(t) is a monochromatic wave. Then
Ey(w;)=E 8w, — @) + E* 3w, +,°) and  Sy(w)=1," §(w;—w,°), «,>0,
where 1,°=1e,cn,°|E,|? is the intensity of the wave. Since S)(w;)=5(—wy),
when giving expressions for spectral densities we will only consider positive
frequencies.

The third order non-linear antiStokes polarization P,y(t), oscillating around
0,0 = w, "+ w — w0, can be written in terms of P, (w,,) analogously to (1 c)~(2)
and one finds, in terms of the non-linear susceptibility x® (units m? V~2),

Pas(was) = %EO f X(a)( —Wgs 3 Woy Wy, — ws)E2(w2)E1(w1)Es(ws)*

X 8(wgg— wy— wy +w,) dwy dwy dwg.  (4)

(The numerical factor has been discussed at length in, for example, [10].) For
monochromatic waves (4) reduces to

Pas(was) = %on(a)( - waso ; wg’ wlov - "*’so)EZEIES,)(= 8(was - waso)» w,s>0 (5)

where E,, E,, E* are the field amplitudes.
The CARS susceptibility is given by
N/bhe,

+ws—w;,—1ily,
X [ﬁ) - fm]“CARS* ag, (6)

where N is the number density of molecules, p(g) is the fraction of molecules
in the states g of energy #Q,, T, is the HWHM spontaneous Raman linewidth

of the Raman transition g —f, acaps* g is the orientation averaged product of
two two-photon matrix elements, yyy is a background contribution from non-
resonant transitions and ). denotes a sum over resonant Raman lines. The
susceptibility depends, through ap and agspg, on the polarization vectors of
the waves and on the selection rules for the transitions g —f, and has been fully
discussed in this respect in [11]. In addition, ap and acspe are respectively

X(3)(_was; Wy, Wy, —ws)ZXNR+ E Q
fg
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dependent on the frequency pairs —w,; w, and —w,; w,. This dependence
will be neglected here, since except in extreme examples of resonance CARS,
ap and ac,pg are essentially constant for frequencies within the spread of the
laser linewidths. The frequency dependence of the susceptibility is thus given
by the resonant denominators in (6). For simplicity, but with no great restric-
tion, we will assume that there is only one isolated line of interest and no back-
ground contribution (yyp=0) until §5. Thus (6) may be replaced by

X =y 5 @y, w1, — @)~ RearsL(Q +wy—wy), (7 a)
where () is the transition frequency, I its linewidth,

Xcars™= N[@— W)]“CARS* ag/6fie L. (7 0)

Ly(x)=T)(x—iT). (7 ¢)

and

Equations (4) and (6) represent the formal susceptibility theory of the CARS
polarization. A more direct physical approach is afforded by pursuing the
notion of material excitation [1-3, 10, 12-13] used in the qualitative introduction
to this section. An example of this excitation is a vibrational coordinate dis-
placement Qq(t) (dimensionless) of natural frequency Q, though more generally
it is the off-diagonal density matrix element for the Raman transition. Similarly
to (2 a), Qq(t) may be written

Qa(t)=0(t) exp (—iwg’ t)+cc; @l =w’—w, (8)

where O(t) is slowly-time-varying. Then the forced harmonic oscillator equa-
tion for Qg(¢) reduces to
00q(t ]
Palt)  ia-ir)ou) =52 ana0r, ©)
ot 4h
where op =(0x/0Qg),, the equilibrium polarizability derivative, and A=Q+
0l —w"=Q—wy® as before. The polarization envelope is given by

Pos(t) = Nogars™® O(1)4x(2), (10)

where in this classical description «g,gg is real, and equal to «g, assuming for
example that the unit polarization vectors of the waves are the same [11]. For
monochromatic waves the solution of (9)-(10) is trivial and leads to (5) and (6)
[12]. We now demonstrate for arbitrary envelopes A,(t), A/t), Ay(t) that
(9)-(10) are equivalent to the general expression (4). Taking Fourier trans-
forms, where Q(#) >Q(w) defined as in (1 a), gives

O(w) = (fap/4h) § Ay(w1)Ay(w; — w)* dwy[(A—w—iT') (11)
and
Pas(was) = N“CARS* _‘ Q(w)A2(was - w) dw
_ Nogprs™ ar -‘- Ay(w1)Ag(wge— w)Ay(w, — w)

= ¥ Ao T dw, do. (12)

Use of the identity
Az(was - w)As(wl - w)* = A2(w2)As(ws)* S(was —wy—wyt ws)s(w +wg— wl)
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in (12) then gives (4). Since we wish to find the antiStokes spectrum, it proves
more convenient to work with (4) rather than (9)-(10); some corresponding
equations based on the latter are however given in Appendix A for comparison,
and (11) will later be used to derive the excitation spectrum.
For an isotropic medium with plane waves co-propagating in the z-direction,
the growth of the antiStokes wave is given by (see for example [10, 13] or [1-3])
0 w0 .
2 Ao was— wyeds 2) = l;::; P (wes— g, 7) exp (—th(wqy)3), (13)
where for the propagation problem the definitions (1)-(2) are extended to
include the 2-coordinate. Thus

E. (2, ) =147, t) exp [i(ke 3= w4 1)] +ec, (14)

where 4,4z, t) is a slowly-time-and-space-varying envelope function, the wave-
vector k.0 equals k (w,L), and k,(w,)=n(w.s)w.s/c; n(w,) is the refractive
index at frequency w,, (but note 7,0 =7,(w.’), cf. (3)). As discussed earlier,
stimulated Raman scattering may be ignored, and so the input waves may be
taken to be prescribed. Thus A, (2, t)=4,,0,t)=4,,,t) as before.
Equation (13) with (4) is then immediately integrable and yields
Jw, . [exp (1Akz)—1
E (w4 7)= 429 5 < p AR ) ) X (= wqg ) Wgy Wy, —w)

X Eg(wg)Ey(w;)Efw,)* d(wqs— wy— 0y~ ;) dw, dwy dw,. (15)

The phase mismatch Ak is given by
Ak = kl(wl) + k2(w2) - ks(ws) - kas(was)' (16)

We will assume now and subsequently that for the given interaction length
the product Akz varies negligibly within each of the regions for which the
integrand in (15) is significant. Then Ak may be replaced by AkRY=£%,%+ &y —
k0 — k.0 aftd the factor (exp (Ak° 2/2)— 1)/ Ak brought outside the integral sign.
Except for resonant CARS, where the linear dispersion may be significant when
a broad line (or several close ones) is probed by a broad laser spectrum, the error
is unlikely to be important, particularly in view of the related experimental
uncertainties in focusing and spatial homogeneity of the waves. Note, how-
ever, that the broad dependence of Ak on frequency is retained through A&S,
although this does not affect the local spectral properties of the antiStokes wave,
only its overall magnitude. This is the case even for the broadband technique,
since each Raman line is efficiently excited by only a limited portion of the laser
spectrum, comparable to the Raman linewidth. If desired, a different Ak® may
be associated with different portions of the Raman spectrum for the broad-
band method to simulate the global variation of Ak. Nevertheless for con-
venience the variation of Ak over a wide spectral range will be ignored, since
we are interested in finer details of the antiStokes spectrum ; in any case this
is usually a good approximation.

The solution of (15) when all the waves are monochromatic is

0 0
Nas 30)03

1° 17 7,° 2c% ¢,

1,0z)=

sin (AR? 2/2) | 2

APz IPIOIP. (17 a)

X X(a)( - waso > wzoy w10y _wSO)
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Equation (17 @) forms the basis of most discussions of CARS presented in the
literature for the scanning method. In practice, as w,®—w? is scanned (tuned
through the Raman lines) the integrated antiStokes spectrum is monitored,
I,2)={ Sys(wgs 2) dw,e, which is approximated by (17 @), and the Raman
spectrum formed by the variation in 7,%2) as the scanning proceeds. The
notation in (17 @) may be simplified by writing

i Nas Jwg? sin (AR 2/2) |2
BT 0 00 | 2c% ¢ YOARS TTARI2

0

A

LII, (18)

where the I , , are mean intensities and ¥ gg has been defined in (7). Thus
for monochromatic waves I, = I,° etc. and (17 a) becomes

I02)= I, |[Le(A) 2 A=Q+ol—w. (17 b)

The second important limit of (15) that is found in the literature is an
idealized broadband technique ([1, 5] and references in §1). Suppose waves
w, and w, to be monochromatic. Then (15) becomes

Sas(wus) = ia.s | LF(Q + wZO - was) |2 Ss("‘)l0 + w20 - was)/Is (19)

for the antiStokes spectral density. Hence if the Stokes spectrum is broad,
that is S, = constant, then the antiStokes spectrum is just that of the Raman line,
through the factor |Lp|% The physical interpretation of this result has in the
past rested on the fact that the relation w,,=w,’+ w,®—w, for the broadband
method (see delta function in (15)) ensures that to each antiStokes frequency
there corresponds a unique Stokes frequency and hence a unique frequency of
excitation of the Raman transition, w®—w,.

However, the broadband method has a deeper explanation, which makes
possible a wider range of application. The formalism (9)—(10) shows quite
clearly how first the waves w, and w, set up the material excitation and then
that the excitation beats with the wave w, to produce the antiStokes polarization.
Hence the generation of the antiStokes signal depends on the excitation itself and
not the details of the means by which the excitation was established. In par-
ticular, for CARS (9) shows that O(¢) depends equally on A4,(¢) and A(t), and
therefore it is unnecessary to give either of these fields prominence relative to
the other. Going to (11), a given component Q(w) is made up of a convolution
of the two waves w, and w,: all frequencies w; and w, such that their difference
satisfies w; — w, = w contribute to Q(w) and neither wave need be monochromatic.
Then the component Q(w) is convoluted with the wave w, to produce the anti-
Stokes polarization (12). If w, is monochromatic, then P, (w,,) is proportional
to O(wqe— wy®) and the antiStokes spectrum is again that of the Raman line,
provided only that the convoluted spectrum of w; and w, is broad. In other
words it is sufficient for w, to be monochromatic in order to select a Fourier
component of the excitation and for w, and w, together to be broad in order to
ensure uniform excitation of the medium across its Raman line. The conse-
quences of this will be discussed in the next section.

When one source acts for w; and w,, then the subscripts 2 can be changed to 1
and the right-hand side of (17)-(19) multiplied by a factor }. (The use of a
single source of a given intensity differs from that of two sources of the same
frequency and intensity, and this is the origin of the numerical factor.)
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3. ANTISTOKES SPECTRUM

A typical dye laser pulse may be r,~5 ns in duration, with a linewidth of
~0:1cm™. This corresponds to fluctuations on a time scale of ~ 50 ps,
that is ~ 100 fluctuations in one pulse. Thus, within broad limits, in a single
pulse the medium samples a large ensemble of such fluctuations over a period
long compared to typical Raman relaxation times T, =1/I".  There are of course
possible exceptions, such as for extremely well stabilized narrow bandwidth
lasers, which are essentially transform-limited, or for very narrow Raman lines
(Ty27,) or where the laser exhibits a large degree of random mode-locking.
However, for the majority of cases it is reasonable to approximate the input
waves as stationary stochastic processes, and this we do.

The correlation functions thus take the form [14, 15]

CE\B)E (2 + 7)) =51(7), (20)

where the non-dependence on ¢ (stationarity condition) indicates that the begin-
ning and end of the laser pulse plays no role, which is just the condition implied
by 7,> T,, as mentioned above.

The Fourier transform of (20) yields

Feoem " CEy(w1)* Ey(wy+ @) = 8(w)Si(wy), (21)

where the delta function is characteristic of a stationary process [14, 15]. Equa-
tion (21) is the defining equation for the spectral density S;(w,) and by integrating
both sides over w one finds the alternative form (3). We shall write spectral
densities as a product of their mean intensity and spectrum

Sy(w1)=ILy(wy); 3§ Lyw)dw,=1. (22)
Notice that a perfectly monochromatic wave is also stationary and has a spectral
density S(w)= I8(w —wy) when w>0; this fact was used in deriving (17)—(19).
Consider first the case when w,, w, and w, are provided by separate sources,
so that the three waves are statistically independent. One can then write down
from (15) and (18)
$€0eNas" (B ag(@ag)* Eqowes +w))
= (Tas/IIIsI2) 5 L(Q+w,— ) )* L(Q+wy —w,)
X (Ey(0y*)Ey(w;"))<Eyws)* Ey(wy')) Efws)Eo(ws)*)
X §(wes — wy — wy + W) (wge + w —wy — wy +wy’)
X dw, dwy dwg dw,’ dw,’ dw,'.  (23)
Use of (21) in (23) and a little manipulation with delta functions using (a)é(b) =

8(a + b)8(a) shows that as expected the antiStokes spectrum is stationary (it is
proportional to 8(w)) and then, integrating over w, that the spectral density is

Sao(@as) = jas I |Ll‘(Q +w;—wy) |2 Ly(wy)Ly(@s)Lg(w,s + ws— wy) dwy dw,.  (24)
Making the substitution wg;=w, —w, in (24) gives
Sas(Was) = jas j | L(Q-wg) |2 Lg(wg)Ly(wss—wq) dwg, (25)
where the normalized ‘ driving-force ’ spectral density is

Ly(wq) = L(w;— w;)Ly(ws) deos. (26)
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Equations (24)—(26) are the basic results of this paper and may in principle
be used to analyse a measured antiStokes spectrum, given the laser line shapes.
In practice it is probable that special cases will be used as starting points. To
this end, for the remainder of this section we consider the general features of
(24)~(26), with particular reference to scanning and broadband CARS, and in
later sections we specialize to given laser lineshapes.

Equation (24) shows that the effect of the random fluctuations on the CARS
process is to wash out the coherence between individual Fourier components of
the fields and to give a result equivalent to a superposition of antiStokes intensi-
ties over many monochromatic-wave CARS processes. Thus (24) is a con-
volution of the monochromatic-wave result (17)—(18) over all frequencies
satisfying w,,=w, + wy — wyg.

The form (25)—(26) makes explicit the remarks at the end of the previous
section, viz. that the antiStokes spectrum depends on w, and w, equally, through
the appearance of a compound spectrum L j(w,).

In the scanning technique the total antiStokes intensity is measured as a
function of the detuning A=Q+wl—w"=Q—w,% Thus, using (24)

Ias(A) :I Sas(was) dwg, = ias_‘ ILF(Q - wd)|2 Lg(wg) dw 4. (27)

Provided both w,; and w, are narrow, that is L j(w,) is narrow, I, (A) traces out
the Raman lineshape. Thus, setting L,(wg)=8(w;—w®+ )= 8(w,;—wy?),

for wy>0 Ias(A)=jas|Lr(A)|2 ;  Lg sharp. (28)

(N.B. For w;<0 the integration of (27) to give (28) results in a term in
L(Q+ |wg|), which is very small and was therefore ignored in (28). Similar
terms arise in most of the later calculations and again will be omitted.) Equa-
tion (27) shows that the resolution of the Raman spectrum is independent of the
linewidth of w,. Hence it is only necessary for w, and w, to be narrow in order
that the resolution be equivalent to the purely monochromatic-wave case (17).

Equation (25) is strictly speaking the rigorous expression to be used when
considering broadband CARS and similarly (27) is the rigorous expression for
the scanning method. However, the formulae (25) and (27) are not fully analo-
gous and so we take the limit of (25) where L, is much broader than the Raman
line. 'This gives

Sas(@ae) = LsLa(wd®)  [Lr(Q + @y — w,)|? Lo(w,) du, (29)

(wy=wqs—wg). The similarity between (27) and (29) is evident. For high
resolution w, is sharp and thus

Sas(Was) = fasLd(de) |Lr(A + wo® —wge)|?; Ly sharp. (30)

Since A+ w,®=Q +w,? (30) is equivalent to the broadband limit of (19) with
the exception that L (w,®) rather than L(w,) appears, reflecting the generality
of the present treatment. The appearance of A in (30) (and implicitly in (29)
through Q —w,) is unimportant since, in the idealized limit to which (29)—(30)
apply, A represents only an overall shift of the spectrum and may therefore
be set to zero with no loss of generality. This is true also of a multiline spectrum.
The detuning A only plays a role in the broadband case (or indeed in any experi-
ment in which S, (w,,) is measured) if L, is not constant across the entire spectral
region of interest, since then (25) and not (29) or (30) must be used. The
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detuning A then serves to relate the position of say the peak of the lineshape L,
with respect to the Raman lines.

It is interesting to observe the duality between the two CARS techniques as
exemplified by (27), (28) and (29), (30). Thus L; and L, respectively play
corresponding roles, in particular of determining the resolution. (This arises
from the basic symmetry between the frequency pairs —w,; w, and —w,;
wae) One consequence is that in later sections we need only calculate ex-
plicitly for one method, the result for the second following immediately. Of
more importance is that experimentally, for the broadband method, only one
laser (w,) need be narrow, instead of the two lasers (w, and w) in the scanning
technique.

So far, only the three-laser configuration (w,, w,, w, separate sources) some-
times known as four-colour CARS has been described. The most common
experimental arrangement has in the past however used two lasers, one for both
w; and w, and the other for the Stokes wave w,. To obtain the formulae cor-
responding to (25), it is necessary (see (23)) to deal with the fourth-order cor-
relation function (E;(w;)*E (w,)*E\(w,")E (w,’)>. This is done in Appendix B,
where it is shown that (25) again results, with subscripts 2 replaced by 1 and an
overall factor of } introduced into the right-hand side ; we shall assume that
this factor is incorporated in the definition of ..~ Although of little (if any)
experimental importance in CARS, the numerical factor is of some theoretical
interest (see Appendix B). (In passing we note that the gaussian (normal)
process assumption made for the:laser spectra is only necessary for this case
and the one below where a fourth-order correlation function is to be evaluated
in terms of known second-order ones.)

The relative merits of these two- and three-laser CARS configurations have
been discussed elsewhere [1-5] and so only the points for the two-laser arrange-
ment that arise from spectral considerations need be raised here. First, in the
scanning case both lasers must still be sharp, since w; and w, contribute to L, ;
-the accompanying narrowness of w, (=w,) is irrelevant, as shown above.
Secondly, the broadband method has the complementary feature that w, alone
must be narrow whereas, since w, (=w,) is then narrow, the broadness of L,
arises solely from the Stokes source w,. Thus, provided the Stokes source is
sufficiently broad, broadband CARS with one narrow-band laser appears to
have an advantage over scanning CARS with two. (It seems possible that the
limited explanation of broadband CARS noted in the previous section arose
from an examination of the two-laser scheme, whence a narrow w; (=w,),
though not necessary, was nevertheless the case.)

The above discussion leads to the interesting conclusion that another two-
laser configuration could be used for the broadband technique, viz. one broad
source for both w; and w,, and a secorid, narrow, source for w,. Thus the pump
(w,) and Stokes (w,) frequencies arise from within the linewidth of one laser.
A linewidth of a few hundred wave-numbers compounded by the convolution
implicit in L; (26) could easily cover a large number of Raman lines of moderate
shifts. 'The formula analogous to (25) again requires a fourth-order correlation
function to be calculated (appendix B), with the result that in (25) the subscript s
is replaced by 1 and the numerical factor of } introduced as above.

A third CARS technique has been used [16], to investigate the effect of
pressure on Raman linewidth. A broadband Stokes laser and a narrow-band
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laser for both w,; and w, were used (that is the two-laser broadband approach),
but rather than resolve the antiStokes signal the total antiStokes intensity was
measured as a function of pressure. Thus no spectral information is sought
directly. A general expression for the antiStokes intensity [,7 is readily
obtained from (29)

I" =I Sas(was) dw s = iasLd(wdo) I |LF(A)]2 dA, (31)

where the dummy variable has been denoted A to emphasize that all the Raman
lines (for a suitably generalized L) are integrated over. Equation (31) shows
that 1.7 is independent of the linewidth of w,, as might be expected in view of
the hybrid nature of (31), a combination of scanning and broadband methods.
Thus two lasers, with a linewidth constraint on one only, that its spectrum should
be constant over the Raman lines of interest, is sufficient. Moreover, if the
Raman shifts lie within the broad laser’s linewidth, then that laser could act
for w, and w,, rather than, as in [16], for w, alone. This would increase the
available linewidth in L, and thus enable more lines to be covered. One might
be tempted to ask if one broad laser could directly act as a source for w;, w, and w,.
The answer, as intuitively expected, is no. This is because in the liberal use of
infinite integrations over frequency we have implicitly assumed that (a) the
integrands are significant over limited spectral regions and that (b) the antiStokes
spectral region is well separated from the frequencies w,, w,, w,. The latter is
not possible using a single laser source.

The spectrum of the material excitation Sy(w;) is also of some interest.
Using (2), (11), (21) and (26), and recalling the notation wg=w; —w,, one soon
finds

So(wa) =N § (Qwg—w)* Qlwg+w—we)) das

_ N 2 Ly(wq)
T M amegem 2e)

*R

2e,ch

This may be rewritten in a number of ways. For example, the Raman suscepti-
bility yg is defined by
Xr =X~ wy; @1, — oy, 0)=Nlag|*/6he(Q+w,—w, +iT),

whence

So(wg)=(—3 Im xel11s/27,° 0" eqchl ) Ly(w,). (32 b)
Alternatively, the peak stimulated Raman scattering gain coefficient gg is
given by

Er= — 3“)80 Im )?R/EOChnlo 7)30’

where {g is the on-resonance Raman susceptibility, gg=—IN |aR[2/6heoF. In
terms of g and using the definition (7 )
grlil
So(wd)=§fi):T; Ld(wd)lLr(Q—wd)|2- (32¢)

In this paper stimulated Raman processes are ignored and so grliz is assumed
to be small, where z is the interaction length with the medium. Akhmanov and
coworkers have studied the spectrum Sy(wy, 2) for stimulated Raman scattering,
when gpl,2~30; see for example [8, 9].
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Equation (32) shows that under conditions applying to CARS experiments
the spectrum Sy(w;) is simply the product of the driving-force spectrum
Lywg) and the natural Raman lineshape |L(Q—wy)|%. Provided L, is
~ constant in the region of the Raman line (broadband excitation) the spectrum
Sg(wy) is just that of the Raman line. When Sy(w,) is probed by a narrow w,,
the antiStokes spectrum thus reproduces the Raman spectrum, as found earlier.
For opto-acoustic spectroscopy the total acoustic energy, assumed proportional
to Sg(wg), is measured. Thus to resolve the spectrum requires that L; be
narrow, thereby selectively exciting the Raman line at frequency wg~wg’.
Scanning w,; causes the measured energy to follow the Raman spectrum.

The general conclusions of this section are summarized in the table.

4. SPECTRUM OF AN ISOLATED LINE

Although, as remarked in the previous section, (25) and (26) provide a basis
for analysing CARS spectra, detailed insight into these expressions cannot be
obtained unless some specific laser lineshapes are introduced. Indeed for
suitable analytic laser lineshapes simplified formulae may result which are more
suitable for routine spectral analysis. To this end we now assume that the laser
lineshapes may be satisfactorily approximated by either lorentzian or gaussian
profiles. Theoretically a lorentzian profile would be generated by a laser of
stable amplitude but exhibiting random phase fluctuations, for example an ideal
cw laser, where photon noise results in phase diffusion [17]). (Similarly the
absorption profile of an elastically pressure-broadened line is lorentzian.) A
gaussian profile, on the other hand, arises purely from amplitude fluctuations.
Most lasers will have photon statistics corresponding to a mixture of phase and
amplitude fluctuations, and the appropriate approximating analytic lineshape
to use should be determined by experiment.

The normalized lorentzian and gaussian lineshapes are, respectively,

Zr(x)=(T[m)[(x*+T%); [ Lr(x)dx=1 (33)

and
Gr(x)=(Tv/m) L exp (—#*[2); [ G(x) da=1, (34 a)
P=T/In2~120xT, (34 b)

where T is the HWHM linewidth and I denotes the 1/e halfwidth of the gaussian.
Either or both of I' and I' will be used whenever convenient and are always
related by (345). To use (33) and (34) note that, for positive w,, S;(w,)=
& r{wy—w,®) or ¥(w;—w,®), where terms in £ (w,;+w,%) and % (w,+w,?)
are negligible (cf. (2 ¢, d)) ; for negative w, use S;(w,)=S(—w,).

We assume that the lasers have the same type of profile and so the driving-
force spectrum L, (26) is either

Lywg)=Zrws—wl); Ta=T1+T, w;>0 (35)

or
Lywg)=%rws—ws); Ta=(TP+TME w;>0 (36)

using the well known convolution properties of (33) and (34). The linewidth
T'; 1s given by (35) or (36) depending on context. Thus a little care must be



637

Effects of laser linewidth on CARS spectra

‘saAem $9303g pue | dund jo uonnoauod
Y3 st Pm 30anog  ‘pajeiedas A[eiloads aq pinoys saaem [[B ‘90IN0S SUO WOI] SSI[U)  ‘JudwaIinbal ou ¢y ¢ proiq ‘Q ¢ YIpImoul] 19se] molleu ‘u |

‘wnayoads uouoyd ‘g § 290G u (# ‘u) Sw ‘tm ‘Auo g onsnooe-03dQ (4)
*AJessaoduun Ing ‘}nejop £q moireu ‘m u u (u ‘w) u u (u ‘u) tm=Tm ‘g Sutuuesg ()
‘MolleU 3G 01 Pm axmnbax A[uQ u u (u ‘u) * u (u ‘w) € duruuedg (2)
*$198B[ YIpIM
~9UI] MOIIBU IO PIdu ou pue juswalinbar uon * q (g9 smo=Tm ‘g
-N[0S3T OU SI 319Y} 210J219Y3 ¢ pasn dwind pueq * 9
-peoiq & pue painseawl SI A}ISUIIUI PIjeIZauUl 9y ], u q (g ‘w) * q q ‘%] €10 ®m=lm ‘g Apsuoajul pajeidnuy (p)
‘pasmbax
duruny 13se[ ou ‘saul] urwey JUIL[-MO] 10} J[qeIng u q (q ‘9 sm=Tm ‘7 pueqproig (2)
*((p) 23s) Aessadauun jnq ‘ynejop Aq moireu 'm u q (g ‘w) u q (g ‘w) tm=1m ‘g pueqpeoxg (¢)
*MOILIBU u ‘q * 'q
im pue peolq 3q Pm 1By} ST juswdlInbar A[uQp u q q ‘u u 9 Q ‘% € pueqpeoiqg (v)
tm Pm (s ‘Im) tm Pm (50 ‘tm) s13se7] POYISIAI
sjudWIWIo))

Juonein3diyuoo purioN Jiyuswaanbai [ersuocn

‘spjuawaduerie QYYD Jo Arpwuung



638 M. A. Yuratich

taken in comparing results, for given two lasers with linewidths T'; and T, the
linewidth T'; differs depending on the chosen profile. 'The exceptions are for
w, sharp, that is T, =0, when I';=T| in either case, and conversely, if w, is
sharp, then I'y=T",.

Since the susceptibility profile is a lorentzian,

|L(x)[|?=7T ZL(x) (37)

then the intensity in the scanning method (27), for lorentzian laser profiles, is
just
L L YA)y=al %L, (A); Tpu=Tq+T, (38)

again a lorentzian. (Here and subsequently we take I,,=1, since it is only a
scaling factor.)

For a gaussian laser profile it is necessary to introduce the Voight profile.
This well-known profile arises for example in the problem of Doppler-broadening
of a lorentzian absorption lineshape and occurs here because (27) is formally the
same problem. The profile will here be defined as

T ¢ exp (—#4/T5?)
= —3/2 = —_—
"//r(rx,rz)(x) ™ (1’12> j (x_ t)2+ P12 dt’ (39 a)
§ Vv, ro(x) dx=1. (39 b)
The linewidth T must be determined numerically as a function of T'; and T'y;
in the limit I', -0 it tends to I';, and vice versa. The Voight profile is essentially

the real part of the plasma dispersion function w(z), which will be defined
later

P e e =y Rew () (399)

The result analogous to (38) is thus
L, "= (D) =7TY ¢, ra(B)- (40)

A third combination of interest is where the lorentzian lineshape is replaced
by a gaussian,
| L) [2 >mTF (), (41)

where | nT'@(x) dx=nT={ |L(x)|2dx. This substitution has no simple
physical significance, but is an empirical analytical lineshape having the property
that it falls off more rapidly than the lorentzian away from the line centre (that is
as |x| increases). In particular it does mof represent a strongly Doppler-
broadened line, since we are not replacing the dispersion function (x—:I")7}
but rather its square modulus ; the plasma dispersion function would be the
appropriate substitution. Clearly, then, (41) cannot be used in a multiline
spectrum where there is interference between the lines, as it does not derive from
a dispersion function.
Using (41) and a gaussian laser profile in (27), one finds

I6-5(A)=aT%, (A); D=2 +T3)H (42)

Figure 2 depicts the antiStokes linewidth I'j; as a function of the driving-force
linewidth T'; for the above three models. It is seen that the rapid falling-off
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in the wings of the gaussian laser profile resuits in an antiStokes linewidth which
for moderate I'; is smaller than that for the purely lorentzian case. Moreover,
the simple expression (42) gives a reasonable approximation to the mixed profile
(39). Nevertheless a useful, and intuitively satisfying, rule of thumb is that the
antiStokes linewidth is the sum of I' and I',.

10 ——————————
5 -~
i /
L 2
7
2
s/ . .
/
b /
/
[ /
1 el SR 4 ) ) ) Lo 1
0.1 0.5 5 10
r;j/r

Figure 2. Observed antiStokes linewidth T'ss of an isolated line as a function of the driving-
force linewidth I'y in the scanning method. (In this and subsequent figures,
replace I'q by I', for the corresponding broadband CARS result.) (a) lorentzian
Raman and lorentzian laser lineshapes (L-L) ; (b) lorentzian Raman and gaussian
laser lineshapes (L—G); (c) gaussian Raman and gaussian laser lineshapes (G-G).

These expressions are readily transcribed to produce the corresponding results
for the idealized broadband method (29). For example, the result analogous to
(38) is

SasL—L(was) = ﬂI‘,Sf’rd(O),S,Pr”(A + waso - was)
=(P/Te)Zr(was—was’) 5 To=T3+T, (43)

where in the second step the unimportant overall shift A has been omitted and
ZLr(0)=1/7Ty inserted. Thus to find the antiStokes linewidth one need only
replace ['; by I'; in the expressions for I, in (38), (40) and (42), and in figure 2.
‘The antiStokes spectra are given in (43) and (45), (47) below.

When the driving-force spectrum is not constant over the spectral region of
interest, (29) does not apply for the broadband method, and it is necessary to
revert to the general formula (25). This may be evaluated for the three line-
shape combinations treated above. However, for linewidths of hundreds of
wavenumbers it is unlikely that a smooth single-peaked function will adequately
describe the laser profile and the following formulae are at best indicative of the
effect of a changing laser profile on the Raman spectrum. We quote only the
L-G and G-G results, since the L-L expression is too cumbersome to be of any
use here.

Thus

L-G, _F\/Tr 2/ 2
St H(wee) = T . exp (— 8453/ Lyq )V(r,rzrd/ru)(ﬂzdsas_ A), (44a)
2

Paq=(PP+ TP 25 moq=(14TPT2)=(Tg/Ty,)?, (44 0)
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where 8,,=w,s—w,’. As [lg—>c0
SastO{areg) ~ (T3 Ca)¥ it v (s = A) *3)

(cf. (43)), which is the result which would follow from a direct application of (29).
Note that in (44 @) no linewidth for the Voight profile was defined, since we
are interested in the antiStokes linewidth which results when 8, is varied and
this is influenced by the exponential factor.

Similarly
; Fin2 f Bas_"IOdA 2 A \2

G—G — _ [ Zes _ld™ il
S(zs (wns) (I“z Fd2+ 1"22 F0d2)1/2 CXp |: 1( Fas ) + FOd) } ’ (46 a)
Loq=(T2+ U202 5 mog=(1+T2Te*) " =(T4/Toa)? (46 b)

2 2 1 1 - 2 2
Fas =F2 + f;é"l'ﬁ =F2 +7’0dF . (466)
d /

When T'; o0, then Iy, >(I'2+T';2)1/2 and
St ~(wge) ~ (Dl In 21T )G, (85— A), (47)

which again follows directly from (29). Equation (46) has the advantage of
simplicity over (44) in that, for example, the antiStokes linewidth may be written
down. The factor 5y, A follows directly from (32) as the shift in the peak of
the excitation spectrum (a distortion) caused by a displaced driving-force
spectrum. Hence for two isolated Raman lines, separated by «, the observed
separation will be ny4x and as I' < T’y in the broadband method then the relative
error in observed separation will be 5y, —1~ —(I'/[Ty)%.. A >1 per cent error
in observed line-spacing results if I';<10I'. From (46 c) one can estimate the
error in observed antiStokes linewidth. Thus for I', < T, as would be the case

for high resolution, we have I' ;> (ny;)' > ' and so for I' <T'; the relative error

in the observed width is —}(I'/T";)%

5. MULTILINE SPECTRA

Although the spectrum of an isolated Raman line is of basic importance,
the line spacing in the majority of molecular species is sufficiently small for
there to be considerable interaction between them. This is of particular im-
portance in CARS, where the dependence of the antiStokes signal on the square
modulus of the non-linear susceptibility means that the interaction is of an
interference nature. An associated interference effect, often important even
for widely spaced lines, is due to the background contribution to the suscepti-
bility from non-resonant Raman lines.

We modify the notation for the single-Raman line by extending (7). Thus
for feypsLr we write feaps —=>Xcars» Where ¥eips is an arbitrary constant
with the dimensions of third order susceptibility and set L to

Li(Q+w,~w) > b+ X a(Q+w,—w; —ily). (48)
J

The dimensionless parameters b and a;/I'; represent the relative contributions

from each line. Thus g; is proportional to the population difference N(p(g)—
Tf))j of the jth Raman line g—>f and Q; and T'; are respectively its shift and
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linewidth ; b is the background contribution. As in the previous section I,
is set equal to unity. Only the lorentzian dispersion function in (48) will be
considered for the susceptibility ; it is suitable for a wide range of pressure-
broadened lines and is in practice almost invariably used.

The scanning case (27) is straightforward if the laser profile is lorentzian.
Thus after an elementary contour integration one has

L-L _p2 ) -
I LL(A)=b +2;ba, Re(Aj_iFjd)

a;ay 1 1
- —— - , (49
t L R i, TT) [A——zl"jd Ak+szd] (*+9)
where T';;=T";+ T4, Ay;=A;—A; and the detuning with respect to the jth line is
A=A+Q;—Qp; A=Q)+wl—w (50)

The detuning A is referenced to an arbitrary line 0. It is easily verified that
for a single line and no background (49) reduces to (38) (set b=0, a;=T).
Similarly, if the linewidth I'; tends to zero, the right-hand side of (49) collapses
to the square modulus of (48). Bearing in mind the non-dependence of I, (A)
on I',, this result is then just the multiline extension of the monochromatic-wave
result (17).

Equation (49) may be split into four parts. The first term is an additive
and purely background contribution to the intensity. The second term arises
from interference between each Raman line and the background. The third
part is made up of isolated-line contributions (j =k terms in the summation of
the third term in (49)) and the fourth is made up of interference terms (j # k).

The magnitude of the pure background contribution is ultimately a limiting
factor in the resolution of the resonant Raman lines. Given that there is a
background, its importance is increased as I'; increases, since the other parts of
(49) decrease as 1/T';. However, for high resolution I'; will be minimized by
suitable choice of laser and thus the relative enhancement of the background is
unlikely to be serious.

The effect of laser linewidth on the spectrum of a single line interacting with
the background is particularly simple to analyse. Thus

- 1 /1+XA/T,,)
e (V) 6

where A=bT"/a, is a dimensionless parameter which measures the importance
of the background ; more precisely it is the ratio of background susceptibility
to the peak value of the resonant part of the CARS susceptibility, xxr/fcars
in the notation of § 2. Apart from the appearance of I'y;=T"+T; rather than I',
this expression is identical to the usual monochromatic-wave formula [1-4]
and exhibits the characteristic line asymmetry found in CARS. Since A is
scaled by Ty, then the spectral characteristics such as the mean halfwidth [,
and the zero of (51) are precisely those of a Raman line of effective natural
width I'y; and therefore the relative errors introduced by the finite laser line-
widths are just Ty/I".  For example, to order A%, ['yy=Tg4(1+ A?/2) and the zero
isat A= —T',/A

M.P. 2s
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The isolated-line contributions have been discussed in the previous section.
The inter-line interference effects will be explored in the next sections; in
general terms however (49) shows how the laser linewidth affects each line
separately and that the interference is governed by the line spacing Ay, inde-
pendently of I';.

For the broadband method (29) one need only replace I'j; in (49) by I'jy=
I';+T,, multiply the whole by L;(0)=1/nI's and suitably reword the foregoing
account.

Possibly the most important analytic model is that based on gaussian laser
spectra. 'To integrate (27) in this case requires the use of the plasma dispersion
function [18] defined by

w(z)=exp (—=2?) [1 +\—il;—r ;' exp (22) dt] (52 a)
=£j?x—pz(T_tﬁdt; Im >0, (52 b)
w(z)=w(—2*)*; Rew(x+iy)=Rew(—x+1iy). (52 ¢)

(Equation (52 b) may be used to verify (39).) Substitution of (48) into (27)
and the use of the integral representation (52 b) leads to

2+/7 V4L w; +w,*
I L-6(A)=b——% , =Y a, — Tk
s G(A)=b T, 2 ba; Im w; r jzka,ak Im (Aki+i(Fk+Fj))’ (53 a)
— A +1T,
w,-=w(——%—z—’>. (53 b)
La
The similarities between (53) and (49) are striking, essentially amounting to the
replacement _
(A] - i].-‘jd)—l ’")( — \/W/Fd)w].
For large 2

w(z) ~in Y2z, (54)

Using (54) one can easily verify that (53) reduces correctly as I'; >0 ; fora single
line with no background (53) reduces to (40) after using (39 ¢) and (52 ¢).

Again, the result for the idealized broadband case (29) follows directly from
(53). 'The formula for the general broadband case (25), in which the driving-
force spectrum need not be constant across the Raman spectrum can also be
deduced and is

) P
S =[exp (=3, () {52~ 4 ¥ by T
2l g 7
V(M) w; + W *
_— . —_ 5
o, o g Gmary) 89
_ ’72d5as‘ Aj+iFj>
Bi=w| —==7"") 555
j ( T,/ (559)

which may be compared with (44), in which the parameters 7, and I'y, were
defined ; 8,,=wg— wg 0.
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The results of this section can be applied to the analysis of any multiline
CARS spectrum provided the laser lineshapes are adequately modelled as
gaussian or lorentzian. The plasma dispersion function is well tabulated (for
example [18-20]) and efficient algorithms suited to computer computation exist
(for example [18, 21, 22]).

In the next two sections some simple examples are presented, which have
been chosen in order to assess the possible general effects of laser linewidth on
complex CARS spectra, rather than with any particular molecule in mind.

6. PERIODIC SPECTRUM

Surprisingly, there is at least one non-trivial example where a multiline
spectrum can be analysed in detail without resort to extensive computation.
This is for a periodic Raman spectrum, that is an infinite number of equally-
spaced lines of equal strength and linewidth. (Tenuous contact with a real
spectrum may be established by considering an O or S branch, at large J values
and high temperature.) 4

This model has the further advantage that the molecule is completely
characterized by only two parameters, the line spacing « and the linewidth T.
For convenience we number the lines symmetrically about the centre line 0
and refer the detuning A to this line. Thus for monochromatic lasers the
intensity for the scanning method is

N 2
Ias(A)='b+a lim Y (A+na—il)1| . (56 a)

N—>® n=-N

(Actually, as shown in § 3, (56) applies for any values of the linewidth T',.)
As shown in Appendix C, which also derives other formulae quoted in this

section, (56 a) is just .
ma < A— iF)
b+—cot|m
4

o

2

Ias(A) =

(56 b)

With no background (b=0) this further simplifies to

7% a* cosh (27T /o) + cos (2mA/a)

Ias(A)z a2 cosh (277-I‘/a)—cos (27TA/OC).

(57 a)

The peak antiStokes intensity is thus

o2

2 42
1,(0)=1-Z coth? (11:> (57 b)
o

and with (57 ) one finds the antiStokes linewidth

3 —cosh (2aT'/«) }

r 3 cosh (2nT'fa)—1

as=i arc cos {cosh (27T /)

7 (57 ¢)

The ratio of peak to minimum intensities is just coth#T'/«) (the minimum
intensity occurs at A=a«/2) which is <} for «/I'$2-57, and so for smaller line
separations the lines merge and there is no halfwidth. Figure 3 depicts I',/T
as a function of «/I" and one sees the breaking-off of the curve as «/I" approaches
~2-57. Interestingly, for most larger separations («/I'22-8) the antiStokes

M.P. 2T
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linewidth is actually slightly less than I'. The reason for this is that the lines
either side of 0 then contribute at a lower rate to the wings of 0 relative to its
peak than the rate of fall-off of the contribution of 0 itself in its wings compared
to its peak. 'This phenomenon is not solely an artefact of our model and occurs
even in a three-line spectrum as also shown in figure 3. The effect is small,
however, and expected to be unimportant experimentally except perhaps in
those circumstances where precision measurements can be made.

1.3k
Tas
r L
r 10 a/fl 100
1 1 1 — L 1
i “ -
0.8+

Figure 3. 'True antiStokes linewidth T'ss of centre line of equally spaced lines of equal
strength and linewidth versus the line separation a, for monochromatic lasers. Full
curve, periodic spectrum (an infinite number of lines) ; broken curve, three lines.

If now the lasers have a finite linewidth I';, then for a lorentzian one must
use (49). Performing the summation gives
2mba sin (27wAfa)
cosh (27l g4/a) — cos (2mAfe)
72 a? (2 coth (27T'/e) sinh (271g4/ex) 1
2\ cosh (27T 4/a) — cos (2mA[x) ’

I H(8) = b+

. (58)
where T'p; =T +T; as usual. Using (58) it is possible to investigate the change
in line asymmetry as a function of background strength and laser linewidth.
Unlike a single Raman line interacting with a background (previous section)
the line asymmetry does not scale independently with variations of A=0bI"/a
and I';, One can also rearrange (58) to find the antiStokes linewidth Iy,
similarly to (57 ¢). In figure 4 we show T',; as a function of laser linewidth and
line separation, but with no background. In addition, the corresponding curves
for gaussian laser lineshapes are plotted, the result of a direct computation of (53).
The curves terminate at the point where the lines merge, due to increasing laser
linewidth. As is expected on the basis that the lorentzian lineshape has broader
wings than the gaussian, for a given line separation the lines merge for smaller
values of T'; in the former case. This is more pronounced for small separations
(for example curves (a)), where the loss of resolution is more sensitive to variations
in « and I';. Similarly, the turnover from merged to isolated lines is more rapid
in the gaussian case, where the true isolated-line curves are labelled (), «/I' = o0,
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0.5
0.1 0.5 1
g/ 7

Figure 4. Observed antiStokes linewidth T'ys in a periodic spectrum versus the driving-
force linewidth I'g in the scanning method. Upper set of curves, lorentzian Raman
and lorentzian laser lineshapes ; lower set of curves, lorentzian Raman and gaussian
laser lineshapes. Line separations «/T" are (a) 3, (b) 5, (¢) 10, (d) 20, (¢) .

Int.

Figure 5. Peak intensity of line in a periodic spectrum relative to that of an isolated line
of the same Raman linewidth T' in the scanning method. Full curves, relative
intensity with I'/o as a parameter ; from top I'/a=1 (merged with upper x-axis),
0-5, 0-1, 0-01, 0-001. Broken curves, relative intensity with I'g/T" as a parameter ;
from top I'¢/I'=1, 10, 100.
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and are the same as the ones depicted in figure 2 (a) for L-L and figure 2 (b)
for L-G.

Finally, consider the peak intensity I,;'~1(0) of a line in this periodic spec-
trum, relative to that of an isolated line excited by monochromatic lasers

g=1,""(0)/(a?/1?)

2 T2
=T [2 coth (2—”£> coth <”F°d) - 1]. (59)
oL o [+ 4

Figure 5 shows g as a function of I'y/«, with both I'y/T" and I'/« as parameters.
When the line separation is large compared to both I' and I'y, then g~ T[Ty,
which is just the single-line relation (38) as expected. For finite line separations
however the artificial nature of the infinite-line spectrum results in the intensity
not decreasing indefinitely as I'; increases. Thus from (49) for sufficiently
large T'; the intensity will vary as 1/T';, whereas from (59)

g~ (272 T%a?) coth (27T/a).

Nevertheless, for small values of I';/a or T'y/T" figure 5 has the characteristics of
a real spectrum. Thus the laser linewidth has no effect until it is comparable
to the Raman linewidth and then only if it approaches the line spacing. It is
quite possible for the laser linewidth to exceed the line spacing, but not greatly
affect the intensity so long as I'y/I" is small.

7. ROTATIONAL CONTOUR FIT

The last example to be treated in this paper is an attempt to assess the effect
of laser linewidth on temperature measurements. If the lines are well separated,
the problem is in principle trivial. Thus as seen in § 4 the peak of each line is
scaled in the same way by the laser linewidth I'; (or T'y) and therefore the contour
of the line peaks is independent of I'; provided T'; is larger than the variation in
Raman linewidths from line to line. If the molecular population is confined
to the lower levels of the Raman transitions, then (see (62) below) a plot of log
(peak intensity of line) versus (energy of line) has slope —1/kT. This fact
has been used in [6], for example, to deduce the temperature of H, gas. For
most molecular species, however, there will be considerable interaction between
the lines and it is necessary to analyse the spectrum in detail. The best fitting
procedure to adopt is not clear at present, nor is it clear what influence the laser
linewidth will have on the result. Thus, unlike the antiStokes linewidth that
is observed for a particular line, the temperature that is deduced may depend on
global features of the spectrum which are not sensitive to laser linewidths. The
contour fit for isolated lines is indeed an example of this. We shall pursue the
basic contour-fitting approach in this section, assuming for definiteness the
scanning CARS technique ; one need only replace I'y by I'; to obtain the cor-
responding result for the broadband CARS method.

Consider then the v=0-—>v=1 branch of a diatomic molecule, for which the
ground-state rotational energies are

E(J)=(B,—a,/2)J(J+1)~B,J(J+1) (60)
and the Q-branch shifts are
Eo(J)=Ey(0)— o J(J+1). (61)
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The population probability p(v =0, J) of the lower state J is given by
p(v=0, J)=(2J+1)g(J) exp [ Eo(J)/RT], (62)

where g;(J) is the nuclear spin degeneracy factor for level /. We assume that
there is no background, no contribution from O and S branches, and no popula-
tion in the upper Raman levels. Further, for typical non-resonant CARS
experiments the normalized amplitudes a; in (48) can be taken to be a;=
p(v=0, J) (we omit the slowly-varying J-dependent line strength factors) and
as a first approximation the Raman linewidths are assumed equal. Despite
these simplifications it is not possible to fully normalize the problem ; in par-
ticular there are two energy-level parameters, «, (~ o of the previous section)
and B,. We have therefore loosely based the calculations on N, gas by taking
B,=2cm™, «,=0-02 cm™! and g;=3 (J odd) or 6 (J even). The assumption
that there is no population in the upper Raman level means that the problem is
limited to moderate temperatures (less than ~ 1000 K) but permits one to
ignore the further complication of hot bands.

Figure 6 shows the result of trying to fit the usual monochromatic-wave
formula, that is the susceptibility expression (48), to an observed spectrum by
determining the least-squares fit at the rotational line peaks. The fit was
obtained by varying the temperature Ty, and using the lines Q(0) to O(30).
(Thus to fit data g,, i=1, .. ., N, a function uf,(T) is tried. The scale factor p
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Figure 6. Error in temperature measurement resulting from fitting Q(0)-Q(30) rotational
contour without allowance for the driving-force linewidth I'¢ in the scanning method ;
ae is a rotational constant equal to half the spacing of the Q(0)-Q(1) lines. Raman
linewidths I'/«, are (a) 0-01, (b) 1-0, (¢) 10, (d) 20, (¢) 50. Broken curves, I'/ae=1-0,
negative error O(0)-Q(10) only, positive error Q(20)-0Q(30).
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is given by w(T)=(Z,g:f;)/(Zf2) and then Ty is the solution of X;(uf,—g;)
0f/oT=0. 'These formulae follow by straightforward application of the least-
squares principle.) The observed spectrum was calculated from (53) at a
true temperature T and therefore allows for the effect of the laser linewidth
(gaussian lineshape). Hence the relative error AT'= Ty, /T~ 1 gives an estimate
of the error in a temperature measurement that would be incurred if one tried
to fit an observed spectrum without allowing for laser linewidth.

A qualitative impression of the observed spectrum may be obtained by noting
that the line separation varies from 2e,=0-04 cm~ (lower lines Q(0)-Q(10)) to
~ 600, = 12 cm™* (upper lines O(20)-Q(30)) with a mean separation of ~ 30x,=
0-5 cm~! near the Q(15) line. Thus for sharp Raman lines (I'/, < 1) the spectrum
is well resolved when T/, < 1, is unresolved for the lower lines when '/, ~ 10
and is completely unresolved when I';2100. This is the range of I'; values
(~0-02 to 2 cm™?) used in figure 6. The curves labelled (c) and (d) refer to
the case where the Raman linewidth is large and therefore the lines are un-
resolved even for small laser linewidths.

The main features of these curves are easily explained. Consider first a
molecule with sharp Raman lines (curve (a) I'=a,/100). Thus for small laser
linewidths the lines are essentially isolated and from (49) we can write

Ty Ll (A=0)~ .. +a_2/(1+03To?) +agd + a2/(1 +a2Tog) +...  (63)

as

for a typical peak intensity, where a2 is the contribution from the line itself
and a,,2/(14a%/Tys?) give the contributions from adjacent lines separated by
~a. These adjacent lines are significant only when «/[); <1 and, as I' <a,
we require ['; 2 a.

Now for the Q branch spectrum the lower lines are much more closely spaced
than the higher ones and thus we can have I'y~a for the former but I'y <«
for the latter. Hence the lower lines grow in intensity relative to the higher
ones, which gives the impression of a lower temperature. This is the reason
for the negative error shown for curves (a)-(c) in figure 6 and was confirmed by
computing the fit with only the Q(0)-Q(10) lines (dashed line in the figure).

As T, increases, (63) tends to ...+a_;2+a,2+a,*+... for the lower lines
and the peak intensities for these stabilize with I'y> «, but I'; comparable to the
upper line spacings. Hence the upper lines now grow relative to the lower ones
and the contour gives the impression of an increased temperature; as I'
increases the temperature error passes from negative to positive. The fit
obtained with only the Q(20) to Q(30) lines confirms this (again shown as a
dashed line in the figure). Finally, as Ty increases beyond the largest line
spacings, the entire spectrum stabilizes in shape and the error becomes constant
and positive. This was confirmed in the calculations, but not shown in the
figure as this limit is of no practical interest (I several thousand «, with no
resolution of the spectrum).

If on the other hand the Raman linewidth is large (curve (d) I'=50a,)
then from (63) we see that the contour over the lower lines will always be con-
stant in shape, as («/T;)? is less than («/T')? and («/I')*<1. Thus the laser
linewidth will only cause a relative increase in intensity for the higher lines and
the error is therefore positive without a negative dip.

This discussion shows that the Q branch temperature analysis is sensitive to
laser linewidth in a complicated mixture of positive and negative tendencies to
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error. Since dye laser linewidths are typically 0-1 cm™! and «, is ~0-01 cm™?,
then T/, is likely to be ~ 10 or greater. Then figure 6 shows that the error
can be very large, even if I'; €I, unless there is a fortuitous cancellation in the
distortion of the contour as the lower and upper lines change their relative in-
tensities (for example curve (¢)). The selection of, say, the upper or lower lines
alone does not improve the situation. Thus except in the happy circumstances
where the laser linewidths can be made narrower than I' and possibly «,, large
and essentially indeterminate errors will occur if no account is taken of the
effect of laser linewidth.

It is natural to consider if the position is made better by using the .S (or O)
branch. Here the lines are equally spaced by an amount ~4B,, much larger
than those in the O branch. Hence there are no distortions incurred by non-
uniform line spacings and all the lines remain effectively isolated if I' € B,, for
much larger values of I'; than before.

It is however more difficult to determine the nature of the error qualitatively.
Thus as T'; increases adjacent lines contribute as in (63), but simultaneously
for all the lines in the spectrum. Because the intensity is stronger for the lower
lines, then the absolute intensity changes will be largest for these. This might
suggest an apparent drop in temperature. Direct computation shows however
that the best fit occurs for increased temperature, since the broader maximum
in the resultant contour allows more adjacent strong lines to contribute, thereby
producing the required changes. It is seen therefore that the S (or O) branch
contour, although weaker than the Q branch, is generally much less sensitive to
laser linewidth because of both the uniformity and increased size of the line
spacings.

8. CONCLUSIONS

In this paper we have considered the effect of finite laser linewidth on the
CARS process in both general and specific terms, mainly under the assumption
that the laser sources are monochromatic or may be approximated as stationary
stochastic processes. The latter derives from the fact that most sources are
far from transform limited and have linewidths due mainly to (quasi-) random
amplitude and phase fluctuations.

The table summarizes the general conclusions (§ 3) in so far as they affect
experiments in which high resolution of the Raman spectrum is required.
The asterisks denote that there is no special laser linewidth requirement and
comparison with the usual experimental configurations shows that in many
cases the linewidth constraint on the sources is unnecessarily severe. For the
two-laser arrangements () and (f) where one source plays the role of two,
this is unavoidable and is possibly a secondary consideration compared to the
simplicity of using only two lasers. However, three-laser configurations have
the advantage, particularly for small Raman shifts, that the antiStokes frequency
can be far removed from w, and w,. It is therefore highly satisfactory to find
that the additional laser need not have stringent linewidth requirements and on
balance this may make the use of three lasers more attractive. Another possi-
bility suited to small Raman shifts is the use of two lasers in the broadband
technique, with one acting as both the first pump w, and the Stokes wave w,
((¢) in the table). Here there is no need for either laser to be tunable, the re-
producibility from shot-to-shot is governed essentiaily by the single broadband
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laser and w,, can be far removed from w; and w,=w;. Thus advantages of
conventional two- and three-laser configurations are combined.

The formulae derived in § 3 allow one to analyse a CARS spectrum given
the laser and spontaneous Raman lineshapes. However, to gain insight and to
reduce the computational burden, we introduced lorentzian and gaussian
lineshape functions. Figure 2 shows the observed antiStokes linewidth for an
isolated Raman line (§ 4). The multiline spectrum was also analysed, including
an arbitrary background contribution, and compact working expressions derived
(§5); the observed linewidth is not expected to be a simple function of laser
linewidth and few general conclusions can be drawn.

As examples therefore these expressions were applied to a periodic spectrum
(§ 6) and a Q-branch temperature problem (§ 7). 'The former has the advantage
that the sum over all lines can be performed, resulting in a single-term formula
for the intensity and observed linewidth. The laser linewidths affect the resolu-
tion only when they are comparable to or greater than the Raman linewidth,
even if the latter exceeds the line spacing, as when the true spectrum is a band.
The temperature analysis determined the error in measured temperature in-
curred by fitting a synthesized observed spectrum (measured with lasers of finite
linewidth) with the ideal monochromatic-laser formula over the rotational
contour. This showed the error to be a balance of negative and positive con-
tributions due mainly to the relation of the laser linewidth to the non-uniform
line spacings across the contour. For large spontaneous Raman linewidths
[' (rotational band) the net error was positive (increased temperature) and
remained small until the laser linewidth approached I', even if greater than the
line spacing (cf. above). The S or O branch measurements are less sensitive to
a given laser linewidth, because of both the uniformity and increased magnitude
of the line spacing, and the error when appreciable was positive. There is
considerable scope for improving the fitting procedure, but it is clear that,
excluding such ideal species as hydrogen, it will be necessary to take into account
the laser linewidths if reliable results are to be obtained. .

In summary then, we have derived a range of formulae which can be used to
analyse CARS spectra when it is desired to take into account the effects of laser
linewidth, which in turn are expected to be important for the majority of
molecular species, both for Raman linewidth and temperature measurements.
In the course of the calculations a number of important general conclusions were
derived concerning the principal CARS configurations, with particular reference
to constraints on laser linewidths.

The author is grateful to Professor I. R. Beattie, Dr. T. R. Gilson and
particularly Dr. D. A. Greenhalgh for their interest in and constructive comments
on this work. The author holds a Ramsay Memorial Fellowship and wishes
to thank the Trustees for their support.

APPENDIX A

As pointed out in § 2, the material excitation approach to CARS, formulated
in the time domain, is equivalent to the susceptibility approach, formulated in
the frequency domain. The latter method is used in the body of this paper ;
here we indicate some corresponding equations in the time domain.
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The starting equations are (9) and, corresponding to (13),

0 naso 0 _lwaso
& Aas(z’ t) +T B_t Aus(z’ t) - 2606

as(za t) €xp (_ikaso Z)

; 0 *
_ iNw, acars

= SO 0 A exp (88 7) (A1)

using (10). As in § 2, group velocity dispersion is ignored in (A 1). Changing
to the characteristic coordinates {=z and 7=1—17," 2/c, (9) and (A 1) become

2 Q) (A~ T)Q() =2 Ay(x) A7) (A2)
0 Ny o *
7z Aas(b T)=M——“S2—€OCC£{'S— Q(7)Ay(r) exp (1AK L). (A3)
Since Q (— ) =4,,(0, 7)=0, the solution of (A 2)~(A 3) is
Aul, 7) =222 208 e (100 1)~ 110() Al ), (A4)
0) =22 | exp (AN - . (AS)

These equations are analogous to (15).
Under the assumption that the fields 4, ,, are statistically independent
and stationary, then

<Aas(c’ f)*Aas(C’ T+ T)> =

0 * 2
Noyg acaps™ ar
2eqc ARY
T+ T

X o9(T) __E dr' _"_ dr” exp [ (A +iD) (7" = F)+ (A —iC) (7" —7—7)]
x ot =)o (7" —7")¥, (A6)

sin? (AR £/2)

where for example

coy(1)= (A (F)*A(F+ 7)) (A7)
(cf. (20)). Making the substitutions t'=7"—# and ¢"=7"-7—7 shows the
antiStokes field to be stationary

0 *
N, acars® 2r

2
aus(T)= ST AR sin? (ARY £/2)
0

0
xoyr) § dt’ di" exp [(A=il) —i(A+iT)t]
X oyt —t + 7)ot — ' +7)* dt’ dt". (A 8)

Tt is not difficult to show that, after taking Fourier transforms, (A 8) is equivalent
to (24).

APPENDIX B

To evaluate the four-frequency correlation function

Sy(wy, ws, w, wy)= <E(‘“1)E(w2)E(w3)E(w4)> (B 1)



652 M. A. Yuratich

we express it in terms of the four-time correlation
sa(ty ta B3, ta) = CE(0)E(t)E(2)E(14)) (B2)

using the transform relation (1)
1\¢ . -
Sy(wy, wg, wy, wy)= (Z;) I exp [{(wyty + ... +wyty)]sa(tys Ly, 15, t,) d*e, (B3)

where d*t denotes dt, dt, dt, dt,, Under the assumption of a stationary and
normal (gaussian) process, one has [14]

Sy(ts to, By 1) = S {CE(t)E(t,) ) CE(t5)E(2,))}
=§Sp!{s(ty—t1)s(ts— )} (B4)

where s(7)=s(—7)=(E()E(t+ 7)) (cf. (20)) and S¥...} is an overall permuta-
tion operator instructing one to sum the expression in braces over all 4! permuta-
tions of ¢, ... ¢,. We have required E(t) to be a gaussian process in order that
s, be expressible in terms of the known two-time correlations s(r). (If s, is
known but non-gaussian, then (B 3) gives the result directly.)

From (21) (but omitting the factor }eqcn® for clarity) s(+) may be expressed
in terms of the spectrum S(w) (one is the Fourier transform of the other) and
thus

. L \4 ‘ ’
Sy(wy, wy, wg, wg)=1% <Z;> § exp [{(wit; + ... + wyty)]S(w)S(w”)
« S ptexp [iw(ty —t;) +i'(fy— 1)]} dw do’ dbt. (B 4)

A little thought reveals that (B 4) is essentially unchanged if S;! is replaced by
the permutation operator S;¢ which acts on w, .. ., w,

Sy(w;, —w,, ws, —w4)

1 4
~1( ) S § StS() {exp B o)t~ s -t
+i{wg+ 0 Yty — i(wg + ' )ty]} deo de’ d4

=3S7°{S(;)S(w3)8(w; — wp)d(ws — wy)}. (B 5)
Since S(w)=S(—w), we can write
Sy(wy, @y, wg, ) =$S72{S(w;)S(w3)d(w; +wp)d(ws +w,)} (B6)

= S(wy)[S(wg)8(w; + wy)d(wy + wy)
+ S(wy)8(w; + wy)8(ws + w,)
+ S(wy) 8wy + wy)8(wy +wy)]. (B 7)

Thus the correlation function required in the text for conventional two-
laser CARS is given by Sy(—w;, —wy, @y, ;')

(%5067)10)2<E1(w1)*E1(w2)*E1(w1’)El(w2’)>
= S1(wy)[Sy(ws)d(w; — wy)(wy— ;") + Sy(w;") 3wy + wy) 8wy +wy')
+Sy(wy)8(wy — ;" )8(wy —wy')]. (B 8)
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When inserted into the equation analogous to (23), the middle part of (B 8) is
found to make no contribution (the delta functions cannot be satisfied) and the
remaining two parts make equal contributions. Bearing in mind the factor of
1 due to the intensity of one beam playing two roles (§ 2), the result is just the
right-hand side of (23) multiplied by 4, and with Sy(w,) +Sy(w,). Similarly
for the second two-laser scheme described in § 3, there is a numerical factor }
and Sy(w,) =>S1(w,).

If the mean intensity of the beam w; were to be doubled so as to make the
two-laser configuration more comparable to the three laser one, then it is seen
that the former arrangement is intrinsically stronger by a factor of two. This
is because for a single beam intensity fluctuations at w, and w, (or w,) occur
simultaneously, whereas for three statistically independent lasers such coinci-
dences are rare. The enhancement for these chaotic light beams is just that
which gives rise to an n! increase in the rate of n-photon absorption from a single
chaotic light beam over that from # beams of the same mean intensity [17];
here n=2.

ArpPENDIX C

In this Appendix the infinite sums required for the periodic spectrum problem
(§ 6) are evaluated. The basic sum is well-known (see for example [18, 23])

N1

1 o]
lim Y =-+ §<n+z ! >=7rcot1rz, (C1)

N->o n=-NHB+Z n —n+z
from which (56 b) follows directly. Notice that it is not possible to write the

first sum on the left-hand side of (C 1) 51mply as Z since the sum is then
undefined and need not converge. The limiting procedure ensures that to
each positive term (n>0) there is a corresponding negative term (-—n), as
indicated in the second sum in (C 1), and the series is then well-defined and
converges.

The need to impose a limiting procedure in (C 1) means that the calculation
of (58) cannot be performed directly from (C 1) and (49). Thus (49) becomes

I(A)= b2+@c0t <A"’F>+F, (C2)

o4

where F is formally defined as

1 1

@ 1 1
F=a2 m,n ;_eo m— n+21F/05<n+(A-—ZF0d)/o¢——m+(A+lF0d)/a> (C 3)

The first two parts of (C 2) give the corresponding parts of (58). F however
cannot be summed by double application of (C 1) to the sums over m and =,
since these are defined as tending to infinite limits together and therefore the
finite double sum must first be found.

One way of summing F is to find an integral representation for the summands
and reverse the order of integration and summation, providing suitable con-
vergence tests are satisfied. 'This notion immediately indicates the method to

M.P. 2U
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be used here, for we take the basic susceptibility (56 a), sum it as in (56 b) and
insert this into the integral (27). The basic integral required is

cot m(z +a) cot w(z+b) d

1=2§ s: Rec>0, Im —a b>0. (C4)

™ 22+ 2
For c=T,/x, a=b*=(A—il")/x one has F=(m/x)? I. Equation (C 4) may be
evaluated by contour integration, for which the contour is shown in figure 7.
Thus in the upper half plane there is a simple pole at 2=ic and an infinite
number of simple poles at s=n—a, n=0, +1, ... . The contour chosen
vanishes along 4 as |z| -0 and along B and C as N ->c0 (the contributions are
O(1/N?)). Hence, evaluating the residues

. . . 2ic X cotw(b-
I=cot m(a+ic) cot m(b+ic)+ lim i ¢ 7"(2 a).
Now T amon(n—a)i+c?

-N-1-a -N-a N-a N+l-a
X X e e X

Figure 7. Contour for integration of equation (C 4).

The sum can be deduced from (C 1), whence, after some trigonometric manipula-
tion,
cot w(b—a) . .
I—éo—t;—r(b_—a_l:‘zTc)[COtﬂ(a—‘lC) COt7T(b+lC)+l]—1. (C 5)

This result leads directly to (58) after making the above indicated substitutions
to find F.
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