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Silica-based binary glass systems: wavelength
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A composition-dependent single Selimeier oscillator model, developed for predicting the refractive index
against composition behaviour for the three binary glass systems, SiO,—B,03, SiO,—P,0;5 and
Si0,—Ge0,, is extended to a double Sellmeier oscillator model. The inclusion of both composition-
dependent u.v. and i.r. terms in the Sellmeier equation has enabled the wavelength dispersive properties
of optical glass fibres; refractive index, material dispersion and profile dispersion, to be computed for
any composition, in any one of these three binary glasses. Theoretical calculations, for particular
compositions, of material and profile dispersions are compared with experimental measurements on
fibres of the same compositions, fabricated by chemical vapour deposition.

1. Introduction

In a recent paper by Hammond and Norman [1] refractive index measurements against composition in
glass optical fibres are presented for the three most commonly used silica-based binary glass systems:
Si0,-B,0s, Si0,-P,05 and Si0,-GeO,. The results are interpreted in terms of a single Sellmeier oscil-

lator of form
EdEo

nt—1 = e (1)
where £, is the effective oscillator energy (near the fundamental u.v. absorption edge), £ the photon
energy, and E4 the dispersion energy. The value of Equation 1 results from the widely applicable
empirical rules [2] obeyed by E4 and E,,. These allow an interpolation of the refractive index
behaviour of a binary glass system, for example xSiO,:1B,03;, based on the properties of the end
members — glassy SiO, and B,03 — through the bond fraction U and cation fraction V {1, 3]. Thus

Eq(x) = Ey(By03) + U[E(SiO,) — E4(B,03)] (2)
and
Egq(x) = E4(B,03) + V[E4(SiO;) — E4(B,03)]. (3)
The dispersion energy E4 has been found to obey the empirical rule [2]
Egq = BN Z,Nepy )

where N, is the cation coordination number, Z, is the chemical valency of the anion (2 for oxides), N, is
the total number of valence electrons per anion (8 for the oxides considered), p, is the ratio of the den-
sity of the glassy material to the density of the ‘compacted’ crystalline structure, and § is 0.28 eV for
‘jonic’ bonded materials, 0.38 eV for ‘covalently’ bonded materials [2].

The basis of the method used by Hammond and Norman [1] is to calculate £4 from Equation 4 for
each end-member, then using £y and np (D - sodium line, A = 589.3 nm) to calculate a corresponding
E, by solving Equation 1. Table I lists the values of £, Fq, U and V for the three binary glass systems

© 1978 Chapman and Hall Ltd. Printed in Great Britain 163

S8



C. R. Hammond

TABLE |
Glass system U vV u.v. term ir. term
. 2x X , »
xSi0,:1B,0, i3 i Ey(B,0,)=12.63eV Ey(B,0,)=0.17eV
E4q(B,0,)=13.00eV E4(B,0,)=0.11251 -4 X 10 *meV
. X x ,
xSi0,:1P,0, i c12 Eo(P,0,) = 13.84eV EL(P,0,) =0.155eV
Eq(P,04) = 16.49eV E3(P,0,) =0.11251--2X 10" *meV
. x x . .
x8i0, : 1GeQ, il Py Ey(GeO,)= 9.80eV E4(Ge0,) =0.113eV
E£4(Ge0,)=15.49eV E4(GeO,) = 0.11251 — 1.4 X 10 >meV
Sio, 1 1 E,(Si0,) = 13.38eV E,(Si0,) =0.1254¢V
E4(8i0,) = 14.71 eV E4(8i0,) =0.11251eV

under consideration. Using these parameters Hammond and Norman obtain theoretical values of core-
cladding refractive index differences (above or below silica), which are in good agreement with exper-
imental measurements made at 1.0 um by the near-field scanning technique {4] on optical fibres
fabricated by chemical vapour deposition (CVD) [5].

2. Extension of the Sellmeier model

Consideration of Table 1 reveals that in the portion of the spectrum of interest (the visible and near i.r.)
E, > E, thus in the near i.r., n as defined by Equation 1 is virtually independent of A. The use of a single
Sellmeier oscillator of form defined by Equation 1 when predicting the material dispersion M of a fibre-

core glass, where
X d2n1

M=|—-——= 5
( c dA? ) )
leads to the obviously erroneous result the M — 0 in this wavelength region.
An extension of the Sellmeier model with a second oscillator, in the i.r., is thus required to follow
more closely the behaviour of #(\) and M(}), i.e.
EqEy | EaF,
ET_[E? + '2 2
2o Ey —F

n?—1 = 6)
where now E, and Eg are respectively the oscillator energy and dispersion energy of this i.r. vibrational
term.

For the doping levels commonly used in fabricating fibre-core glasses by CVD (up to 20 mol% dopant
in silica) U =~ ¥ > 0.8 so that the binary glass refractive index should still behave closely like that of
glassy silica (U = V = 1). Consequently, the i.r. term in the three term Sellmeier expression for the
refractive index of fused silica due to Malitson [6], forms a good starting point for assigning composition-
dependent values to £, and E§. From Malitson’s expression £, = 0.12536 eV and £j = 0.11251 eV after
re-writing the Sellmeier equation in the form of Equation 6 above.

The parameter E;, = 0.12536 €V is equivalent to a Ay, = 9.8962 um, which is very close to the strong
fundamental v5 vibration of the Si-O bond in the SiO, tetrahedron at 8.98 um [7]. So it seems likely
that the i.r. oscillators, for the glassy end-members B,04, P,05 and GeO,, should lie near their respective
wavelengths of fundamental vibration at 7.3 um, 8.0 um and 11.0 um [7]. In our notation this means
that £,(B,0;) ~0.17eV, E_(P,05) ~0.155 eV and finally £.(GeO,)~0.113¢V.

It has been shown that the transmission loss of optical fibres in the near i.r. region is dependent on
the positions of the fundamental vibrational absorption wavelengths in the i.r. of the B—0, P—0 and
Ge-0 bonds, in relation to the i.r. vibrational absorption wavelength of the Si-O bond [7]. It is not
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unlikely then, that E(x) for a silica-based binary glass depends on E,(SiO,) and E;,(B,05), for example,
through the bond fraction U by the following equation, which is analagous to Equation 2

Eo(x) = Eo(B203) + U[E4(Si0,) — E4(B,05)]. (7

However, there seems no theoretical basis for relating E3(x) to £4(Si0,) and E4(B,03), for example, by
an equation analogous to Equation 3.

Examination of the Sellmeier equations fitted to refractive index measurements made on bulk glasses
in the Ge0,-Si0, and B,03-Si0, systems by Fleming [8], indicates that E3(x) for these binary glasses
is crudely described by:

Ej(m) = A—Bm ®)
where m (mol%) is the level of dopant added to the glassy silica to form the binary glass, and if m =
0mol%, A = E4(SiO,) = 0.11251 eV the silica i.r. term value. From Fleming’s Sellmeier equations for
Si0,-GeO, glasses the average value of Bis 1.4 x 10™3, while for SiO,—B,0; glasses the average for B is
4 x 107*. Whilst no comparable Sellmeier equations exist for SiO,~P,0; glass, experimental measure-
ments of profile and material dispersion in these laboratories give that B ~ 2 x 10”4 for P,O5 in SiO,
(see Section 4).

In calculating n from Equation 6 the values of E, and E4 for silica and the other glassy end-members
from Table 1 are retained and the method outlined above followed again, with the addition that now for
the i.r. term in Equation 6, £, (x) is obtained from Equation 7 for the particular end-member used with
silica (see Table 1), and Equation 8 gives E3(m).

With the two-term Sellmeier equation for n, it was found that a slightly better fit could be made to
the experimentally measured refractive index differences against composition data obtained by
Hammond and Norman [1] for the three binary glass systems under consideration.

3. Material and profile dispersion

Although the two-term Sellmeier equation has in effect only been tested by comparison with refractive
index measurements at one wavelength, A = 1.0 um [1], it has been found to be still accurate in
predicting n()) and more interestingly M(X) and profile dispersion P(}) for the three binary glasses in
optical fibres.

Multimode optical fibres with low pulse dispersions are well suited to high data rate applications.
These fibres can be fabricated by doping silica by CVD [5] to achieve a refractive index profile charac-
terized by an exponential parameter a(A) that minimizes waveguide (modal) dispersion [9]. For a fibre
of binary composition having a silica cladding and doped silica core (or vice versa), the wavelength
dependence of the optimum «() can be calculated from the core and cladding refractive indices n,(})
and ny(A) [10]. Under the condition that a()) is optimum and minimizes the waveguide dispersion, the
pulse dispersion is limited by M(X) the material dispersion (Equation 5) of the core glass.

Olshansky and Keck [10] consider a cylindrically symmetric waveguide with an index profile

specified by the equation
n*(r) = ni[1—2A(r/a)*] ©)
where n(r) is the refractive index of the waveguide core as a function of radius r, and n, is the index

along the fibre axis. At the core~cladding boundary where r = a, n(r) = n,, and for r > the term (r/a)*
is defined to be unity. Thus from Equation 9 the relative index difference A is found to be

A = (ni—n3)2n}. (10)
According to Olshansky and Keck [10] the optimum « is given by

(4 —2P)3 — 2P)J

(5—4P) ()

a()) = 2—=2P—A [

where the term P() in the above, called the profile dispersion is
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ny )\A'

PA) = —— 12

™ =35 (12)

Here N; = [n; — Adn,/dA] is the material group index and A’ = dA/d\. Thus from Equations 10 and 12
we may write q q q

2A ny n, n
P = — e 2 a2y 1 13
) (nl—dn,/dx)(nf—ng)["‘(”‘ a dx) (i —n2) d)\} (13)

Hence for a particular core composition the Setlmeier equation as defined by Equation 6 giving n;(\, x)
may be differentiated to yield dn,(X, x)/d\ and d?n,(, x)/d\? for the core glass, and by setting
U=V =1 dny(\)/d\ and dn,(A)/dA? are obtained for the silica cladding. For a SiO,-B,0; fibre the
procedure is reversed since for this geometry the core (n,) is now silica and the cladding (n,) the binary
S8i0,-B,0; glass. Consequently the parameters P(A, x), a(], x) and M(}, x) may be calculated at any
wavelength, for a fibre waveguide with given core glass composition (on axis) from any of the three
binary systems Si0,-B,03, SiO,—P,05 or Si0,-GeO,.

4. Comparison of theoretical and experimental results

Sladen et al. [11, 12] have developed a technique which allows a direct determination of the wavelength
dispersive material properties of glasses within a multimode fibre. Their method measures the wavelength
dependence of the numerical aperture (NA) directly, thereby yielding the difference in dispersion
between core and cladding and hence the profile dispersion P. The total output power from a short
length of straight fibre is measured at each wavelength for both apertured and non-apertured excitation,
the use of the ratio of the two transmitted powers, which is proportional to (NA)* = 2n, An, provides
compensation of the Lambertian source and eliminates the effect of fibre attenuation. The measured

o3f PR
Glass : Measured P(})
12mol% B204 Computed P{A) - ------- with :
' S0 - B,03
__ E,=1338&/ Eq=1471eV Eg1263eV Eg13.0eV
a2k E/=0125¢V E4=0M251eV ES=017eV  E5=010771eV
: Fleming P(A) «eo
01f )
Alym)
0 1 1 1 | | 1 i | 1 1 1
0 0z & 06 08 10 12 14 16 18 20 22

Figure 1 Theoretical and experimental values of P{A) for 12mol% B,0,-Si0, glass.
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Figure 2 Theoretical and experimental values of P(x} for 10 mol% P,0,-SiO, glass.

An(R) is then fitted by the least squares technique to an expanded Sellmeier representation of An())
with six physically significant coefficients. From the wavelength dependence of NA, the material disper-
sion M() may also be deduced if the refractive index behaviour of either the core or cladding (usually
silica [6]) is known.

Fig. 1 (solid curve) shows the profile dispersion parameter P()) obtained by Sladen [13] for a step-
index CVD-multimode fibre with silica core and a cladding of 12 mol% B,0; in SiO,, measurements
being made over the range 0.35 um to 1.30 um. Also shown in Fig. 1 (dashed curve) is the computed
variation of P(A) for a fibre with 12 mol% B,03-SiO, cladding and silica core using the parameters
E,=12.63eV,Ey4=13.0eV,E,=0.17¢V and F§ = 0.10771 eV for the glassy B,O; end-member.
Here agreement with the experimental values of P(}) is reasonably good particularly in the near i.r.
region. These results may also be compared with those obtained by Fleming [8] from measurements
of n(\) on a bulk unquenched sample of 13.5 mol% B,03-SiO, glass (shown dotted). The higher
values of P()\) obtained by Fleming probably arise from the unquenched bulk nature of his sample,
whereas Sladen’s measurement is on a highly quenched fibre.

Sladen [13] has also measured P(X) over the same wavelength range for a step-index CVD-multimode
phosphosilicate glass core fibre with 10 mol% P,0s (Fig. 2 - solid curve). The computed variation of
P()) for a 10 mol% P,05-Si0, core fibre with parameters £, = 13.38 eV, £q = 16.49¢V, E, =
0.155e¢V and Ej = 0.11051 eV for glassy P, 05 is also shown by the dashed curve. For P,0s, E3(m)
was given the value 0.11251 — 2 x 10™%*m eV as this produced the best fit to the experimental variation
of P(X) for this and other phosphosilicate core fibre measurements.

The measured and computed variations of M(A) have been compared for both the borosilicate fibre
and phosphosilicate fibre described above. Both measurement and computation agree very well and lie
very close to that of M(X) for pure silica, calculated from Malitson’s three term Sellmeier equation.
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Figure 3 Theoretical and experimental values of P(A) for 10 moi% Ge0,-Si0, glass.

This fact for P,05-Si0; glass has also been observed by Luther-Davies e al. [14] and Katsuyama et al.
[15].

Finally Fig. 3 illustrates the measured [13] and computed variation of P(A) over the same wavelengths
for a step-index CVD-multimode fibre with a core glass of 10 mol% Ge0,-Si0,. P(\) was computed
using the values of £, =9.80eV, Eq = 15.5eV, E, =0.113eV and E4 = 0.09851 eV for the vitreous
GeO, end-member. Also shown for comparison are measurements of P(A) made by Gloge et al. [16] on
a graded-index Si0,-GeO, glass core fibre with A = 0.02 (fibre G4), and values of P(}) obtained by
Fleming [8] from measurements of #()) on a bulk glass sample of 13.5 mol% GeO,-Si0,. Agreement
between the three curves of P()) obtained by measurement [13], computation and Fleming is very
good, but Gloge’s measurements show considerable departure from the other data towards the u.v.
region. However P() obtained by Gloge [16] for three other GeO,-SiO, fibres shows a considerable
spread in value; £ 0.05 over his wavelength measurement region (0.5-1.1 um).

The measured and computed dispersion M(}) for the same Ge0,—SiO, glass core fibre are present in
Fig. 4. At 900 nm the measured value of M(\) is 10% greater than M(R) for SiO,, while the computed ¢
value of M(\) is 25% greater than M()) for SiO,. A measurement by Gloge [17] using two GaAs lasers
operating at slightly different wavelengths gives a value of M()\) 20% greater than M () for SiO, which is
in good agreement.

Measurements on n(A), P(A) and M(X) have also been made on a number of glass systems in fibres,
amongst them Si0,-B, 03, Si0,-P,05 and Si0,-GeO, by Presby and Kaminow [18]. They use an
interference method [16] with thin (~ 50 um) sections of multimode fibre to obtain An()). A least-
squares fit is used to obtain a polynomial representation of An () and derivations of An(X). Using
n(X) for silica [6] they then calculate P(X) and M()) from the polynomials.

Unfortunately the polynomial representation of An()) apparently causes serious errors in the com-
putation of P(X) and M(}). For instance in the u.v. and visible region, the values of M()) for silica
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Figure 4 Theoretical and experimental

values of M{7) for 10 mol% Ge0,-SiO,
glass.

presented by Presby and Kaminow [18] are at least 40% greater than the normally accepted values
calculated from Malitson’s Sellmeier equation for silica. More generally their values of P(X) and M()\)
for the various binary glasses considered are at variance with other known measurements [8, 11,12,
15,16].

5. Conclusions

A two-term composition-dependent Sellmeier model has been developed for predicting the wavelength
dispersive properties of the core glass of an optical multimode fibre fabricated from a Si0,—B,0;,
Si0,-P,05 or Si0,-GeO, binary glass system. The Sellmeier mode! has been tested by comparing com-

putations of refractive index n(\), profile dispersion P(\) and material dispersion M () with measured

values obtained from multimode fibres from the three glass systems of known compositions. Reason-
ably good and accurate agreement with the measurements was obtained.

The Sellmeier model has also shown, as suggested by Gloge [16] that to a first order P(X) is indepen-
dent of composition, and is only a function of the constituents of the binary glass. Calculations to deter-

mine pulse broadening, profile dispersion and optimum alpha for a large number of fibres of differing
compositions from the three glass system have also been made with success {19].

Finally an extension of the Sellmeier model to predict the wavelength dispersive properties of the
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core glasses of optical multimode fibres fabricated from silica-based ternary glass systems is possible,
which is the subject of further study [19].
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