FIELD DEFORMATION IN A CURVED
SINGLE-MODE FIBRE

Indexing terms.: Optical fibres, Optical waveguide theory

Simple formulae are given for the field displacement caused by
bending, the change in mode volume and for the mode coupling
loss which arises at transitions between straight and curved
sections of single-mode optical fibre. These formulae are in
good agreement with other, more exact, theories.

Introduction: Experimentally, it has recently been shown'>2
that the field distribution in a single-mode fibre is shifted
considerably at a bend, with the result that a mode coupling
loss is incurred at transitions between straight and curved
sections of fibre. Thus any propagation study must take into
account this mechanism as well as the radiation loss due to
uniform curvature. These two different physical phenomena
have been isolated and observed separately® and it has been

found that the mode conversion loss, which we have called
the transition loss, predominates at large bending radii. On

the theoretical side, the modal fields of the curved fibre have
been calculated numerically by solving an approximate wave
equation via a double Fourier-Bessel expansion® and
analytically with a perturbation method.® However, the results
are not easy to assimilate or apply without complex numerical
calculations.

However, Petermann® has shown that the field distribution
in a curved fibre is close to Gaussian. This result has also been
obtained by others”>® and we show here that it can form the
basis for deriving simple formulae which may be used in
practical design work with single-mode fibres.

Simplified theory: In the weak-guidance approximation, the
electric field £ of the HE,;, mode in a curved fibre® is linearly
polarised and is a solution of

V2E + (kn)*[1 + 2(r/R) cos 0} E =0 )

where (r,8,z) are cylindrical co-ordinates, R the radius of
curvature of the fibre, k the free-space wave number, n =n,
the refractive indices in the core and the cladding, and V the
Laplacian operator. By using a first-order perturbation method
and the assumption that the radial field distribution in a
straight fibre Ey is given by

Ey=Aexp [—(r/wo)z/Z] )

where wy is the spot size at which the power has dropped to
1/e of its maximum value, the electric field £ can be obtained
from Petermann’s results® as

E = Eg[1 + (knwg)? (/R) cos 0] exp (—jBz) 3)

where § is the propagation constant in a straight fibre. Eqn. 3
forms the basis for our further analysis.

The spot size of the HE,, mode has been evaluated”® by a
number of techniques and in particular Marcuse has given an
approximate formula

Wo=2"1a(065+1-619 V1542879 V)  (4)

where a is the radius of the fibre core and V is the normalised
frequency defined by

V = kan, [1 = (ny/n;)? ] ¥ = kan, At (5)

In our simplified approach we use eqn. 4 in conjunction with
eqn. 3.

Comparison with existing theories: First of all, the field
distribution is calculated from the simple eqn.3 with an
ordinary pocket calculator and is then compared with the
results obtained by the more exact method of Marcuse® which
requires a digital computer. Fig. 1 shows the field distribution

as a function of normalised radius in the plane of curvature for”

V=24, n, = 1515 and n, = 1'5. The solid and dotted curves
are derived from the simple method and Marcuse’s results,
respectively. It can be seen that for R/a = 500 the agreement
is almost perfect, but there are slight differences for R/a = 200
which may arise from the approximate nature of the
first-order perturbation method. Thus eqn. 3 gives excellent
results for R>a which is the assumption employed by
Petermann. Next, a very useful parameter for the prediction
of transition loss and mode spot size in a curved fibre is the
beam shift d of the field maximum, which may be obtained
from eqns. 3 and 4 by solving £/6r = 0 to give

065+ 1-619 ¥ 15+ 2879 ¥ 6)* (6)
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Fig. 1 Field distribution as a function of normalised radius in the plane
of curvature for various values of R/a
The solid curves are derived from eqn. 3 and the dotted lines are
the results of Marcuse*
V=24,n=1515n=193

This normalised beam shift is shown in Fig. 2 in the form of
a universal curve which can be used for any value of R, d, A
and over the range of ¥ given. Miyagi and Yip® have calculated
the beam shift by using the complex modal field and a
comparison with their results for the case of ¥V =2-38,
a =405 um and A = 00016 is given in Fig. 3. The solid curve
is obtained from eqn.6 and the dotted curve is the result of
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Fig. 2 Normalised beam shift as a function of normalised frequency of
fibre

Reprinted from ELECTRONICS LETTERS 2nd March 1978 Vol. 14 No. § pp. 130—132

> 4
<



Miyagi and Yip. It is seen that the agreement is excellent
except for a slight departure at small bend radii.

It is apparent from the results quoted here that the mode
field not only shifts away from the guide axis with decreasing
radius of curvature but may also change substantially in width
while maintaining a quasiGaussian transverse distribution.
Now the mode spot size, in curved as well as straight fibres,
is an important parameter because the width of the field
distribution has a significant influence on the bending
(including microbending) loss*® The mode spot size in a
curved fibre may be obtained by substituting eqn.3 into
Petermann’s definition® to give the remarkably simple result

2
8w = (w — wy)/wy = 1(-‘1‘) @)

Wo

Eqn. 7 shows that the change of relative mode spot size due to
fibre curvature depends on the beam shift while the actual
spot size w increases with decreasing radius of curvature.
This implies that the actual curvature loss in a single-mode
fibre is larger than that predicted by conventional
calculations® which assume that the spot size is unchanged at
a bend. For example. for ¥ =24, 4 =5 um and A =0-001,
the change of spot size is 0-9% for R = 10 cm and 3-7% for
R = 5 cm. In contrast a reduction in spot size with increasing
curvature is predicted in multimode fibres.
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Fig. 3 Comparison between simple method, eqns. 6 and 9, of deter-
mining dfa and Pg (solid curves) and the results obtained by Miyagi
and Yip*'° (dotted curves)

Another important consideration is the prediction of
transition loss Pgr between straight and curved fibre
sections'*3 which is caused by the field deformation in a
curved fibre and is given by

f (E—Ey)*dA
_ ‘A

Pgp= (®)
f E¢dA
A
Again substitution of eqn. 3 gives
d 2
Pr = %(_) ®)
Wo

It is interesting to note that the transition loss is also expressed
simply in terms of the beam shift and the mode spot size.
Eqn. 9 gives the transition loss between straight and curved
sections of fibre, but it can be easily extended to the general

case, so that the loss between fibres with curvatures R, and
R, can be written as

Pr= %[(dl "dz)/wo]2

where d,,d, are the beam shifts for R; and R,. Thus the
loss for a change of curvature from R to —R is 4 times larger
than that?® from R to oo, because the total beam shift is
doubie. It is also worth mentioning that the splice loss due to
fibre off-set d is given by’

2
2a =1 —exp [—(d/we)?*/2] =1 (wi) (10)

0

assuming that the two jointing fibres have the same wy. The
fact that eqns. 9 and 10 give the same result is not surprising
since in each case the loss is caused by mismatched Gaussian
field distributions (due to displacement). Finally the transition
loss given by eqn. 8 is compared with the results of Miyagi and
Yip!® in Fig.3 for V=243, a=39 um and A = 00019,
The two curves are very similar; their maximum difference
being only about 11%.

Conclusions: The field distribution in a step-index single-mode
fibre is very similar to Gaussian in shape. Using this
assumption Petermann® has obtained a simple expression for
the field distribution in a curved fibre. We have extended his
work and derive simple formulae for the effect of curvature
on (a) beam shift, (b) spot size, and (c) transition loss, which
are in good agreement with other, more complex, calculations.
Our simplified technique can be directly applied to practical
design work on single-mode fibres using only an ordinary
pocket calculator whereas the conventional techniques require
a computer.
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