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The application of perturbation theory to a threc-layer weakly-guiding slab waveguide composed of lossy dielectric
mediz yiclds a simple formula for the attenuation coefficient o of a guided mode: « = (Z?_, eiPp)! _?_, Pj), where oy, P;
are respectively the loss coefficient and model power in region i (i = 1, 2, 3). It is shown that this result can also be ob-
tained from arguments based purely on geometric optics. The result is easily extended to apply to circularly-symmetric
optical fibres where it yields confirmation of an earlicr approximation for the power ratios P,'/(Z‘f:, Pp.

1. Introduction

The theory of optical dielectric waveguides current-
ly finds applications in a number of fields related to
optical communications, viz. integrated optics [1], in-
jection lasers [2], waveguide lasers {3}, and optical
fibres {4]. In all these applications the calculation of
waveguide attenuation for a guided mode forms an
important topic. In principle, solution of the eigen-
value equation (dispersion relation) for the waveguide
structure of interest yields the attenuation coefficient
from the imaginary part of the longitudinal propaga-
tion constant, However, in most cases such a solution
must be performed numerically [5,6] and little physi-
cal insight is gained into the roles played by various
mechanisms for attenuation. Hence approximations
are usually employed in order to obtain estimates of
the relative contributions of such mechanisms; a use-
ful review of such approximations has been given by
Reisinger {7].

To take a concrete example consider the slab wave-
guide structure illustrated in fig. 1, consisting of a cen-
tral core layer of complex refractive index n| +iK|,
between cladding layers of index n, +iK, and ny +
iK 5. The quantities K; are sometimes termed extinc-
tion coefficients and are related to the usual absorp-
tion coefTicients o; by a; = 2Kk, where k is the wave-
number (27/X). There are two principal ranges of nu-
merical values for n;, K; for which useful approximate
results may be obtained for the attenuation of a
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Fig. 1. The lossy slab waveguide with a modified zig-zag ray
path including the effects of the Goo-Haenchen shifts at
cach reflection,

guided wave in this structure:

() K, = 0; K2 > n? +n} (i =2, 3): This corre-
sponds to the usual dielectric waveguide with metallic
walls, which has been adequately discussed in the rel-
evant literature [3,7—11]. However it is worth noting
that the same expression for attenuation coefficient
may be derived either from perturbation theory [8—
11] (the conventional microwave frequency method)
or from geometric optics [12,13].

(i ny >n2,n3 (ny —n)<€ny (i=2,3);K; <
n; (i =1, 2, 3): This corresponds to a weakly- gundmg
dnelectnc guide with relatively low-loss dielectric me-
dia. For this case perturbation theory [4,7,14] yields
the simple result for attenuation coefficient:

3

o= (Zor)f (27} ®

where P; is the proportion of the total power in re-
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gion i, which is easily obtained from the modal solu- .
tions of the guide [14,15]. Note that in the weakly-
guiding sitvation considered here the TE and T™M
modes are degenerate. We will show below that eq. (1)
can be derived from arguments based purely on geo-
metric optics.

2. Geometric optics derivation of modal attenuation

Fig. 1 shows the path of a ray in the slab waveguide,
sometimes referred to as the modified zig-zag ray mod-
el [1,16]. If the waveguide is of width 24, it can be
shown {16] that for al calculations involving energy
transfer and power flow the ray appears to propagate
in a guide with an effective width w, as shown in fig. 1,
where, in terms of the angle of incidence 9, [(16]
w=2g+ 1 1
k(n? sin20 —n3)112 k(n? sin20 — n3)1/2 @)
The “end-corrections” involved in this expression are
those resulting from the Goos-Haenchen shift occur-
ring at each reflection on the dielectric interfaces [16—
18]. Now the modal attenuation coefficient o may be
defined as the relative power loss per unit length from
the guide core, The mechanisms for this loss are (i) ab-
sorption in the core region, and (ii) transmission to
the cladding layers [7,18] which occurs since total in-
ternal reflection is impossible at an interfact between
lossy dielectric media. If R 12> Ry 3 are the power re-
flection coefficients at the appropriate interfaces [19],
the proportion of power lost in an axial length 2w
tan 8 is (1 — RyyR;3). Hence

1- R12R13)
= + .
* ( 2wtan @ “ 3)

Invoking our assumptions of weak guidance and K; <
n;(i=1,2,3), the expressions for Ry2, R4 simplify
considerably to yjeld [18,20) (TE/TM degenerate):

4nyn? cos 0 (K;/n; — K, /ny)
e o 47 1/ (i=2,3)

Rl"z] - G ,
(n%—n?)(nlz sin20 — n.2)1/2 (4)

If we change to normalized variables [21] v =
ak(n% —n; )2 b= (nf sin26 -n%)/(nl - n%), c=

¥ Note that the definition of v used here is one half that in
ref. [21]; this is to conform with the definition of v in the
circularly symmetric guide considered later,
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(n% - n_%)/(nf - n%) ¥ with the aid of egs. (2) and (4)
eq. (3) may be re-written:
1 @ = b)(a, -q;) (1 = b)(as -a;)
e e Z e SR S L I o
w 112 (b+c)2(1 +¢)

oM tayn, tagn,, )
where )
1 ® +c)1/2] (1 -1b)
e = + ]/2 +27 E A
711 w [20 b (1 +C) y 772 bl/z)v ’
(64, b)

1 1
R R e —
wEsv bl/2 (b +c)l/2

(6c, d)

Comparison of eq. (6) with the expressions for
modal power P; in each region [14,15] shows imme-
diately that

- (1-b)

o+ c)1/2zl +ohw

3

Hence eq. (5) reproduces the result (1) by an argu-
ment based entirely on the zig-zag ray model.

Eq. (6d) gives the expression for the normalised
mode width of an asymmetric weakly-guiding slab

 guide, graphical representations of which will be found

if ref. [21]. For the sake of completeness we present
in fig. 2 plots of the core power ratio 0, versus v from

* The asymmetry factor is here termed ¢ rather than a (as in
ref, [21}) in order to distinguish it from the guide half-
width a.
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Fig. 2. Ratio of power in the core to total power, 0y, from
eq. (6a) plotted versus normalized frequency v for the lowest-
order modes of a slab waveguide of varioyg degrees of asym.
metry characterised by c,
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(6a) for the lowest order modes. A range of values of
the asymmetry factor, ¢, was used in the calculation,
as indicated in the figure.

3. Extension to circularly-symmetry guides

For circular optical fibres the zig-zag ray mode! has
also been applied to determine the modal attenuation
coefficient. For the case of a lossless core (K, =0),
"and ignoring the Goos—Haenchen shifts (which are
small in many cases for multimode fibres), Gambling
et al. [22] calculated the attenuation for meridional
rays. More recently, Pask and Snyder [23] have used
the approximation of weak guidance and relatively
low loss to calculate the attenuation including skew
rays. If attenuation is restricted to the important case
of a multimode optical fibre whose diameter is much
larger than the wavelength of the guided radiation,
then the contribution of the Goos—Haenchen shifts
to the effective width w is negligibly small and one
may use the approximation w = 2a. Following a simi-
lar argument to that used above for the slab guide, the
attenuation coefficient of a zig-zag ray may be found
by summing the loss due to absorption in the core and
that due to partial reflection at the core-cladding in-
terfaces. The result, expressed in normalised variables,
is [18,20,23]:

(1 - b)(eg — &)
o e

(bv? +p2)1/2 tog ey tagny ®
where
Mm=l=1m, ny= -0 (9a,b)

(bv? +2)1/2

and v ia the azimuthal mode number.

In the derivation of eq. (8) it has been assumed
that the Goos-Haechen shifts are negligibly small, i.e.
the fibre is strongly overmoded. Regions 1 and 2 in
this case are identified with the core and cladding re-
gions, respectively. Once again the 7’s represent the
power ratios:

71,' =PI/

g
¢

- (10)

This may be verified by using the expression for
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power ratios resulting fromt he weakly-guiding LP
mode theory [24,25]:

Py ( b)[ K2(wpl2) }
—= (] — 1 — ’
P +Py K,_bVDK,,  (wbl/?)
(1
where the K’s are modified Bessel functions. Compar-

ison of egs. (9-11) yields a verification of the asymp-
totic relation [4,24]:

K2(wbl/?)
K,_bY)K, . wbl/2)

~1—(bv2+r2)-12. (12)

A more accurate derivation of the attenuation coeffi-
cient along the lines indicated above, but retaining
the expressions for Goos-Haenchen shifts would pre-
sumable furnish an improved approximation for the
lhs of eq. (12). Plots of i, versus v for the lowest or-
der modes of the fibre have been given by Gloge [24]
and Snyder [25].

4. Conclusion

It has been demonstrated that the simple formula
(1) for the attenuation coefficient of a weakly-guiding
asymmetric slab waveguide composed of relatively low-
loss dielectric media may be derived from arguments
based purely on geometrical optics, viz. Snell’s and
Fresnel’s laws, proved the Goos-Haenchen shift is in-
cluded. Extension of the argument to weakly-guiding
optical fibres with lossy cores and claddings provides
a verification of an approximation for the ratio of
power in the cladding to total power of the mode.
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