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Simple analytical results are obtained for the mode distribution and impulse response of graded index
fibres under a variety of excitation conditions relevant to practical systems. It is found that the choice of
an optimum refractive index profile depends quite strongly on the source distribution of or, that one can
significantly improve the impulse response of a particular profile by appropriate choice of launching con-
ditions. Furthermore the r.m.s. pulse width is not necessarily reduced simply by partially filling the
numerical aperture of the fibre.

1. Introduction

Now that {ibre attenuation is no longer the major obstacle to the use of optical fibres in communication
systems, and methods are available for manufacturing (more-or-less reproducibly) fibres of any desired
refractive index profile {1, 2], much attention is being given to the choice of profile which will maxi-
mize the bandwidth, or information-carrying capacity, of the fibre.

Increasingly sophisticated analyses have been presented which take account of mode coupling [3],
material [4-6], profile [6] and non-linear [7] dispersion and low-frequency perturbations in the refrac-
tive index profile {8]. However, it is generally assumed in these analyses that all modes of the fibre are
equally excited. Very little theoretical attention has been given to the fact that a fibre's response may be
substantially altered by the use of sources which excite modes selectively, despite the fact that a variety
of source configurations are being used experimentally to investigate fibre behaviour e.g. {9, 10].

The aim of the present paper is to examine the mode distribution and pulse dispersion of a graded
index fibre (with a-law profile) under a variety of excitation conditions relevant to practical systems
where simple analytical expressions can be obtained. As the main interest lies in the effect of selective
mode excitation {(and in avoiding lengthy numerical calculations), dispersion and mode-coupling effects
are not considered at this stage.

As a result of this analysis we find, for example, that (i) focussing an incoherent source does not
improve the pulse dispersion of the system, (ii) for profiles with & € 2 — A4, a Lambertian source gives a
smaller r.m.s. pulse width than an unfocussed laser (plane wave) source and (iii) given a particular
a-profile and launching efficiency requirement, one can, by varying the beam waist or launching position
of a focussed (Gaussian) spot, obtain very much smaller r.m.s. pulse widths than are achieved using un-
focussed or Lambertian sources.

The approach here is based on the WKB approximation. It follows, with one important modification,
an idea which was originally presented by Timmermann {11] and which has been shown to give good
agreement with experimental results in the particular case of a fibre with quartic refractive index profile
excited TJy an LED [12] (although it must be noted that an adjustable parameter is involved in ¢btaining
this agreement). »

Experimental results have also been published for the pulse dispersion of a graded index fibre excited
by obliquely incident plane waves [13, 14] and a theoretical treatment of this situation for the para-
bolic index fibre has appeared [15]. However, we believe the latter to be in error, for reasons discussed
in Section 3.2.
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The paper is organized as follows. In Section 2 the impulse response of a general graded index fibre is
calculated using a method which basically involves the conversion of an angular source distribution into
a distribution in terms of fibre-mode parameters followed by a summation over all bound modes. (The
effect of leaky modes can be included — but not analytically). .

These results are used in Section 3 to derive analytical expressions for the impulse response of fibres
with a-law refractive index profiles [16] excited by LED and laser sources, focussed or unfocussed. In
each case, the variation of the mode spectrum and pulse width with changes in the source distribution is
investigated. The results are discussed in Section 4.

2. Impulse response-formalism
We consider a fibre with core radius a and refractive index profile

: _ , n*(x) = njg(x), (1)
where x = r/a is the normalized radius.
The usual mode parameters § and » can be written as

B = kogd'® cos 1o (2)
and , .

v = v cos¢sinye 3)
where ’ 5

m

ko = —>\_9, (4)

Vo= akoxogclxlz, &)

& = g(xo), 6

xg gives the radial position of the source point, ¥, is the angle to the fibre-axis and ¢ is the projected
angle of incidence of the ray ¥\ is the free-space wavelength. We also define a normalized phase con-

stant
Ba = Bik. Q)

Assuming for simplicity a monochromatic (or in the case of incoherent sources, quasi-monochromatic)
source, the power g d€2 dA radiated from an infinitesimal area d4 within a solid angle d £ can be ex-

pressed as
IadQda = Ig [ve(Ba, ), ¥(Ba, v), X0, 80]iD] dv 4B, d4
here = Iy dvdp,dA 8)
d4 = a*x, dx, dé, O
{Dl = {V'[go — B — goW/V' )12}, (10)

and Iy gives the mode spectrum.
For a unit input pulse 5,(¢), the output pulse P(¢),can then be calculated from

P([) = Sz(t) t1<t<t2 (ll)
=0 otherwise
where .-
Sz(t) = }—\-}J‘JJISI([ - Tg)IM dv dﬁn dA. (12)
74 is the modal gr-oup velocity (a function of the profile) and M is a normalizing factor defined by
J’" () de = 1, (13)

*Sce Fig. 1 of {17]; but note that throughout the present paper, all angles are measured within the fibre.
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where the integration is extended over the whole of the output disiribution, including that part which
lies outside the numerical aperture of the fibre. The times £, and £, which specify the bound part of the
output pulse are determined by the allowed range of 8, values (see Section 3).

Equation 12 can now be simplificd using the following assumptions: (i) /g does not depend explicitly
on ¢ and (ii) 7 is a function of f and a/A only. For bound modes, the p-integration can then be per-
formed between the limits*

. Voin = 0 and vy = ¥'(1 —B3lg0)"? (14)
to give

52() = Eﬂﬁj‘“s,(r*r‘) Iqgs"*dA ) (15)

This is the point at which we depart from Timmermann’s work [11]. He gives @ vmay which is evaluated
from the WKB eigenvalue equation for the particular profile under consideration and hence independent
of x, whereas, according to Equation 14, we integrate between the zeros of D! and thus take account
of the fact that the range of modes launched will depend on the location of the source.

In the case where s, is a delta function, we obtain the impulse response by using assumption (ii) to
replace the integration over f, by an integration over 7, and find

m {98,

—f IogoV?dg, dA. 16
- aTw,H ags"? dg, (16)

52(1) =
Now given s;(t) and hence P(r), the r.m.s. pulse width, g, can be determined. This is the quantity of
major interest as it determines the bandwidth in a multimode fibre [18] and is given by [6]

o = MM, _(Ml/Mo)2 (17),
where

M, =J PO, n=0,1,2. (18)
o
We can now apply these results to a number of specific cases.

3. Impulse response of « law fibres
We consider the profile defined by
glx) = 1—24x* x<1

19
1-2A x> 1. 1)

Previous analyses of such fibres have been restricted to Lambertian sources or, in the special case @ = 2,
to plane wave excitation.

In order to apply our formalism here, we must first evaluate 9P, /37 1t is shown in the Appendix
that

Ty _ a+ 282 (20)
1o (a+2)B,
so that 3 @+ )i
n & -~ n
— = 1)
or Tolo— 263
and Equation 16 becomes (g . 2);2 )
. _Ma n “' -1/2
) =————"">5 1, . 2
52(8) INralo— 262 280 d4 (22)

where the range of integration over Xo depends on the source but is restricted by the requirement to
include only bound modes to lie between

xo =0 and x = [(1—pRN24]" 23)

*If tunnelling leaky modes are to be included, the limits on v must be adjusted.
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Figure 1 Examples of the 7,—8y, relationship forA =0.02,v,=0,7,=90" and {a) e =2, x, = 0, x, = 1; (bl a = 1.94,
x, =075,x,=1;c)a=1.94,x, =06,x, = tand ([d) a = 1.80,x, = 0, x, = 1.

In Equation 22, all quantities on the right hand side are evajuated at 7y = ¢ and, for a in the range

2(1 — 24) < a < 2, Equation 20 shows that two distinct values of 8,, may contribute to the outputata
given time. To calculate the times £; and £, which bound the output pulse we must take account of A, &
and the extent and angular spread of the source. If the source lies between the normalized radii x, and
x5 (> x;) and it emits rays with angles to the z-axis between v, and v, (>7,) then, for bound modes,
B, lies between

; BRIR = max [(1 —24)"2, (1 —24Ax5)"? cos 1] 24
an .
max = (1 —2AxH"? cos ;. (25)

These boundaries determine the absolute pulse width through Equation 20:
If @ > 2, 74 decreases monotonically as §,, increases so that

1827) = 1o (26)
Tx(ﬁgun)-

If 2(1 —24) € « < 2, the 14 — f, curve passes through a minimum at 8, = (¢/2)"'* so that there are two
possible situations, depending on the source. If 8, does not reach this turning point, then Equation 26
applies, but otherwise

I

151
and

£

N (8&)”2
o= a+2
and i @n
t; = max [r(65"), 1B ™).

Finally, if a <2(1 — 24), 7, increases monotonically with §, so that
= Tg(ﬁ?"’)
o t; = 1,85 < To.

These various situations are illustrated in Fig. 1.

(28)

3.1 LED sources
As a first example, we consider an LED butted against the fibre aperture and approximate its intensity
distribution with that of a Lambertian source. That is, we put
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't e i L 1 I 1 L] Figure 2 R.M.S. pulse width, o, as a function of a for focussed
1.88 1.92 1.96 2 and unfocussed LED (Lambertian) sources. A = 0.02. The value
-4 of v¢/v, is given on each curve.
€0s Yo 1 -
Ig = = 5 6.85". 29
7 g T g ted (29)

Substituting in Equation 22 and normalizing, we find the output pulse

T =B i + 2))

2@+ 2)8 i=o

roala— 26l E [1/(ei+Dl(ali + 1) +2)]

$12(0) = (30)

Apart from a normalization factor, the first term of Equation 30 (i.e. / = 0 in both numerator and
denominator) gives the result previously found by Arnaud [4] while the remaining terms give extremely
small corrections, since for a weakly guiding fibre, 1 — % < 1. Equation 30 can also be reduced to the
small-A approximation of Gloge and Marcatili [16]. When & — <o (step index fibre), Equation 30 also
reduces to the form given by Dakin ez al. [19].

If light {rom the LED is focussed by passing through a lens before entering the fibre, all rays will have
an angle of incidence, 7o, smaller than some angle, 7,. Assuming the cosine intensity distribution is
approximately unchanged by the passage through the lens, we model this situation with a Lambertian
source which is simply truncated at v,.

A little care is needed in this case if v, is smaller than the numerical aperture of the fibre. The smallest
value f, can take for a ray launched from xo is (1 — 24x§)"2 cos v, so that if §,, < cos 7, Xo must have
some minimum value greater than zero. When f, is in this range, the lower limit in Equation 23 must be

altered to ) v
1
ro = [Lfot )
2A cos®ryg

Using this lower limit in Equation 22 and retaining only the first term of an expression similar to
Equation 30, we find the output pulse

__(at+2)8] «
s5;(1) = rola— 28N [(1—BR*®* = (1 — Bifcos® 1, )2®] B, <cosv, on
I CR ) PoYN
- Tola‘Zﬁ,z,lN (1 Bn) ﬁn > cos Ts
where
a

WD) {{1 —cos®14{1 —24)] @/ 1 — cog2ay (2A)2RO*+ 1}

Using Equations 17, 18, 30 and 31 we can now calculate the r.m.s. pulse widths resulting from these
Lambertian sources. Fig. 2 shows ¢ as a function of « for various values of Yolve (Where v, = (2A)? is
the numerical aperture of the fibre). As expected from the approximate analysis of Gloge and Marcatili
[16], the pulse widths are smallest in the neighbourhood of @ = 2 —~ 2 A. But we also have the surprising
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Figure 3 Distribution of average power per mode as a function of 3, on a para-
botic index fibre excited by focussed and unfocussed Lambertian sources. The
value of yg/v. is given on each curve,

result that, while truncating the source makes very little difference to the r.m.s. pulse width, it actually
worsens it slightly for « <2 —2A[20].

We can also use Equations 30 and 31 to obtain some 1nformat10n about the distribution of power
amongst the modes of the fibre. The number of modes with propagation constants in the range
(Bn, Ba + dBn) is given by [16]

ﬁz 2/a
(ako)wn( ” ) %, (32)
so the average power per mode in the interval (8, By + dBy), P(B,), can be calculated from
or af
p(Ba) = 5:2(t )*— —" (33)

In Fig. 3, this quantity is plotted against f, for various values of 7,/7,. The horizontal line corresponds
to the full Lambertian source and is in agreement with the “equal excitation principle’ [21, 22] - but
note that we have already summed over v so this gives no information about the actual power in indi-
vidual modes.

3.2 Unfocussed laser (plane wave) excitation
As we noted in Section 1, Jacomme [15] has calculated the impulse response of a parabolic index fibre
excited by a plane wave incident at various angles to the fibre axis using ray-tracing techniques. However,
there is a marked disagreeraent between these results and our own. '

Because of assumption (i) in Section 2, Equation 22 can only pe used for excitation by a plane wave

30 T T —T T

0 0.5 1 1.5 2 Figure 4 Impulse response of a parabolic index fibre excited
/1t - 1) x10° by a ptane wave incident at various angles to the fibre axis.




Pulse dispersion in partially-excited graded-index fibres

parallel to the fibre axis so we shall look at this result first. (In the off-axis case, the v-integration in
Equation 12 must be performed in a different way.)
The angular intensity distribution is written as

Io = 1 8(yo)
&7 Iratsinyg
= P sy —pa) 34)
2na
so that substituting in Equation 22 gives
e+ 2B 28 J SU2g (gl

t 5 - dx
5y(f) = TroN I — 262 (8% — Bo)xo dxo

where X, is given by Equation 23.
Integrating this equation we find

4o+ 2)53 2\(2/a) -1
82(1) (2A)(2IQ)QT0|Q’ . 25,2,|( ﬁn) . ( )
which reduces, in the special case of a =2, to
283
) = ———F— 36
20) = -6 G6)

Equation 36 exhibits qualitatively different behaviour from Jacomme’s numerical results (see Fig. 4).
Fortunately this system is sufficiently simple so that it can be analysed without the use of either ray-
tracing or the present theory and it is found that Equation 35 is confirmed when proper account is
‘taken of the distribution of mode transit times.

The power traversing an annulus of radius ax, and thickness @ dxo due to a uniform plane wave inci-
dent at angle 8 to the fibre axis is proportional to xo dxo. Now, from Equations 2 and 7, with yo = 6, we
find for the a-profile that

B2 = (1 —24x%) cos? 37
so the element of area xo dx, is associated with an area in §, space given by
-1l g2 2l g qp
Xo d: = —j— 1 — a o vn
0 %o aA[2A (1 cosze)] cos?g ’ 8
But from Equation 20 (42 )
—(a
df, = ——>~dt ’ 39
Bu i = 050, (39)
so that combination of Equations 38 and 39 gives the power density as
+2 3 1 2 (2/0)-1 dt
xodrg = — 2D |1 () Fa - (40)
altela— 2851124 cos“d cos*8

In the case 6 = 0, Equation 40 confirms Equation 35 and for 8 # 0, normalizing Equation 40 gives the
result for an off-axis plane wave,

4a+2)BE (1 —BE/cos?g)*O
aro(24)*® cos? 0 la — 282

5() = 41

The r.m.s. width of this pulse is shown as a function of « in Fig. 5, for various angles of incidence 6. The
calculations apply 10 a fibre with A = 0.02 so that the critical angle is v, > 11.54°. Once again, we note
that although the Lambertian source produces the pulse with the largest absolute pulse width, the
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1+ - Figure 5 R.M.S. pulse width as a function of «a for a fibre excited
1 1 L - 1 L L by plane waves at various angles of incidence, 8. A = 0.02 so
188 1.92 1.96 2 that the critical angle {inside the fibre) is 11.54°, The Lambertian
26 result is also inciuded for comparison.

minimum r.m.s. pulse width in the Lambertian case is considerably lower than that obtained using plane
wave Sources.

In Fig. 6, the r.m.s. pulse width is shown as a function of angle of incidence for the particular case of
the parabolic index fibre. A great improvement in pulse dispersion can clearly be obtained by launching
off-axis but this must be balanced against the decrease in launching efficiency shown in Fig. 7 for the
same fibre. Given a minimum acceptable launching efficiency, one can choose the most appropriate
launching angle using these curves (and similar results for other values of ).

Apart from the pulse width, the other quantity which has been experimentally measured is the mean

delay difference M©) M)
1 1

=2 0 42

Mo(8) My(0) “2)

wn
Q
x
ie
o
Figure 6 R.M.S. pulse width as a function of angle of incidence for a para-
bolic index fibre excited by a plane wave. Note that as in Fig. 6, angies are
measured within the fibre. A = 0.02.
100 T T Y T
>80 4
c
@
L 60 -
-
@
(o)) LO — ¢ —
K=
Z
8 20 [ —
=]
o
- ! 1 1 | ) .
0 2 L 6 8 10 Figure 7 Launching efficiency as a function of angle for the
fibre described in Fig. 6.
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L 4_—4.——2-1/ Figure 8 Mean delay difference between pulses launched by plane waves
0 2 4L 6 8 10 incident at angle 0 for various values of a, For o = 1.5, the absolute value
6 is shown as the delay decreases with increasing angle. A= 0.02.

between pulses launched at different angles (M, and M, are given by Equation 18). This quantity is plot-
ted in Fig. 8 as a function of @ for various values of . When o= 6 and A ~ 0.006 our results agree with
the theoretical curve given by Keck [13] but it is difficult to compare these with experiment as the fibre
involved is only approximately an a-profile and a number of other uncertainties introduced by the
experimental system must be considered [13]. ‘

Finally, looking as we did in Fig. 3 at the average power per mode as a function of 3, Fig. 9 shows
P(B;) (calculated from Equation 33) plotted agatnst f,/cos 6 for various values of 9.

3.3 Excitation by a focussed spot

We consider now the excitation of an a-profile fibre by a tightly focussed laser beam moving across the
fibre face. This is a particularly useful example because it enables us to examine separately the influence
of the index profile, the position of the source and its angular spread on the output pulse.

Assuming that the spot size is much smaller than the fibre diameter the focussed spot is described by
4 Gaussian distribution of the form [19]

1 2 2 5(xn —
Ig = —2—2(7—7%) sec3yg exp [—2(”—‘;—9tan 70) ]M

n‘a X9

2 3n 2 _
LS

where as is the distance between the spot and the fibre axis and Wy is the ‘spot size’ corresponding to an
angular beam spread 2 tan™! (A/mwy,).
The resulting normalized output pulse is given by

T Y T T
sof -
6 =0 .
2
60
o~
-3 0,
:‘9‘— 5
x 4LO0F 3
=
= o
a 8
20r =
10°
1 1 L
f%.!‘ 1 Figure 9 Distributign of average power per mode as a function of 8,,/cos 6 on a
Bn/cos @

parabolic index fibre excited by plane waves incident at various angles 6.
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Sz(dB)

(t/T.-1)x10"

Figure 10 Impuise responses of fibres of various profiles excited by a Gaussian beam of angular spread 30° moving
across the fibre face. The normalized radius of the launching point is indicated on the curve. A = 0.02 and (a) a = 2;
{b) a=1.96; (c) a = 1.94; (d} a = 1.92.

52(0) =

4(a+2) (m)2 go €xp [ 2(mwo/N)(g0/82 — D] (44)

To Ba la— 282

A

where g, is calculated at xo = s and the absolute pulse width is given by Equations 26-28. In the limit
@ - oo (step index fibre), this result agrees with that previously derived by Dakin et al. {19]. Figs. 10a—d
show the impulse responses of fibres of various profiles excited by a Gaussian beam with an angular
spread of 30° moving across the fibre face. This value of angular spread has been chosen so that the angle
at which the intensity falls to e times its peak value exceeds the local numerical aperture at all points
on the fibre face. There are several points of interest in these curves:

@Il —24)<e<2ands < [(1/22)(1 — &/2)]"*, the impulse response is infinite at the lower
time limit (where f2 = &/2). In the parabolic case, only the on-axis beam gives an infinite response.

(b) The discontinuities in Figs. 10b and ¢ occur because at the leading edge (shorter time), contri-
butions from two values of f, must be added but, as we approach the trailing edge, one of these §,
values falls outside the allowed range. In the case where a = 1.94, the outermost launch point corre-
sponds to a pulse whose trailing edge is defined by the smailest allowed B, value (i.e. ‘cutoff’), while the
remaining four curves have their upper limit determined by the largest allowed 8, value, and the discon-
tinuity by the cutoff value. Thus, if leaky modes were included in this figure, the effect on the first-
mentioned curve would be to add a slow ‘tail’ but to leave the discontinuity unaffected while the
remaining curves would have the discontinuity smoothed. When o = 1.96, introducing leaky modes
would add a glow tail in all cases.

(c) The variations in absolute width with & and s can be determined from Equations 26-28.

Figs. 11a-d show the effect on the impulse response of one particular profile (o = 1.96) when the
launching beam width is increased from 10° to 40°. The behaviour of these curves can be most easily
understood if they are considered in conjunction with Figs. 12a-d which show the average power per
mode plotted against 8, on this fibre. The latter show that for a near-parallel beam, the majority of the
power is confined to modes within a small range of B, values (which decrease as the source moves
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-05
{t/T.-1)x10°
Figure 11 Impulse response of a fibre with « = 1.96 excited by Gaussian beams of increasing angular spread moving

across the fibre face. As in Fig. 10, the launching radius is indicated on each curve and A= 0.02. yg = 2 tan™" (A/mw,)
is (a) 10° {b) 20° (c) 30° (d) 40°. ’

towards the periphery) but as the beam becomes more divergent, the power becomes more equally distri-
buted in B,. For the least divergent beam, Fig. 11a, most power is launched into modes with large 8,
and very little into small 8, modes. Curves corresponding to all but the outermost launch point there-
fore have, apart from the infinity at 82 = a/2, a secondary peak at times corresponding to the largest
allowed f, value, and then a discontinuous drop to the contribution made by the smaller g, modes

T T T T T T T i 1 1
100
80
80F
. wof
[84]
x 20k
=
X T T | 1 i
s
x 60
<
a 40
20F
1J -
1-24)"
1-24) Ba 1

Figure 12 Average power per mode plotted against 8, for the situation illustrated in Fig. 11,
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Figure 13 R.M.S. pulse width as a function of « for a fibre excited by a Gaussian beam of varying position and angular
spread. The normalized source position is indicated on the curve, A= 0.02 and vg = {a) 10°: {b) 20°; (c) 30° and
{d) 40°. The ordinate is o/1, X 10",

which propagate over a longer time interval.* Moreover, because the range of 3, values excited by
sources at different points are quite distinct (see Fig. 12a), the resulting output pulse shapes are also
easily distinguished. As the beam spread increases, the curves merge because: (a) for any one source
point the transmitted power is more equally distributed among the modes excited and (b) the spectra of
modes excited by the various source points increasingly overlap.

The set of curves in Fig. 13 shows the variation of r.m.s. pulse width with «, the source position and
its angular spread. The times involved are clearly at least an order of magnitude smaller than those ob-
tained with any of the other sources investigated here and, in the case of the narrowest beam, even
smaller still. However, in this last case, the assumption of a point source becomes somewhat suspect so
that the result must be treated with some caution. '

*Such double-peaked pulses have recently been observed by Cohen {9] and Ikeda and Yoshikiyo [10]. The latter attri-
bute the second peak to irregularities in the refractive index profile but our analysis shows that such a peak can arise
even when the profile is perfectly smooth.
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g Figure 14 Launching efficiency as a function of source position for a fibre excited
3 by Gaussian beams of the indicated angular spread. The curves are calculated for
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02 04 06 08 1 thefibreA = 0.02 and a = 2 but there is very little variation with a in the range
Xo considered in this paper.

Furthermore, just as in the plane-wave case, we must balance against these short pulse widths the
decreasing launching efficiency as the spot moves away from the centre of the fibre (see Fig. 14). How-
ever, an optimum launching position and spot size can be determined for a given a-profile, once a mini-
mum launching efficiency is specified.

4. Conclusions

Using the WKB approximation to relate group delay to mode parameters (and with a minimum of com-
puting) we have studied the effect of changes in source distribution on the mode launching and impulse
response of graded index optical fibres with refractive index profile described by an a-law, We have
found that considerable variation in the pulse dispersion can arise from factors such as the focussing of
the source and its alignment. More specifically,

(i) Fig. 2 shows that focussing an LED (which we have represented by the truncation of a Lambertian
source) increases the r.m.s. pulse width;

(ii) Fig. 5 shows that while increasing the launching angle of an unfocussed laser (plane wave) source
decreases the r.m.s. pulse width, for & £ 2 — A, the Lambertian source actually leads to shorter pulse
times; and

(iii) according to Figs. 13a~d a substantial improvement in pulse dispersion can be obtained by using
a focussed laser source incident near the core periphery. The reduced pulse width must be weighed
against a corresponding reduction in launching efficiency but for a specific a-profile and launching -
efficiency requirement, the optimal beam waist and launching position can be found from these results.

The response to these basic sources can also be used to deduce the response to more complex launch-
ing conditions by appropriate superposition of plane waves or Gaussian beams.

While the results predicted are confined to a-profiles, the general result given by Equation 16 is not
similarly restricted; nor is the exclusion of material dispersion necessary, provided one can write down
an expression for group delay in terms of the mode propagation constant, which is independent of the
azimuthal mode number, v (using Arnaud’s [4] dispersion factor, for example). However, this approach
loses its advantage of reducing numerical computations if the p-integration in Equation 12 cannot be
performed analytically. Under such circumstances, a general numerical technique such as that of Arnaud
and Fleming [7] would seem to be the most useful.

Appendix
Either WKB or ray analyses lead to an integral expression for group delay:
7y _ JE g(9)lg(x) — B — 12571 dx
To  [3 Balg(x) —BR—1P/x*)V dx
where xo and x; are the zeros of the denominator in the integrand and / = v/ak,.
For an a-profile, .
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1 ¢
e __J : (1 — 2863 [(1 — B)u — 280D — 13|12 gy
To BnI By

where u = x* and
u
I= [ [ — B)u = 286D — 22 gy,
Ju

1

Using the fact that

~

d ) 1
:i; [(1 _Bg)u —2A.‘1(°"2)” _12]1/2 = _2_ [(1 -sz\) —(a + Z)Au‘m] [(1 _Bg)u _2Au(alz)ﬂ _12]-1/2’
we then have
e _ 1] 2 — B2V — DAL J2]%a +a+2[33,
70 Bulla+2 [(1 = BoJu — 24u Pl a+?2 !
_ a+28
(a+2)8,’

since the first term in brackets is zero at the limits u; and u,.

Acknowledgements

i am very grateful to Dr M. J. Adams for suggesting the problem and for his help and encouragement
during the course of this work. I would also like to thank D. N. Payne for his helpful suggestions and
the Commonwealth Scientific and Industrial Research Organization of Australia for their financial sup-
port.

References

1. W.A. GAMBLING. D. N. PAYNE, C. R. HAMMOND and S. R. NORMAN, Proc. IEE 123 (1976) 570-6.
2. W.G. FRENCH, G. W. TASKER and J. R. SIMPSON, App!. Opt. 15 (1976) 1803-7.

3. R, OLSHANSKY, ibid 14 (1975) 935-45.

4. 3. A. ARNAUD, Bell Syst. Tech. J. 54 (1975) 1179-205.

5. C.C.TIMMERMANN, 4.E.U. 28 (1974) 144-5.

6. R. OLSHANSKY and D. B. KECK, Appl. Opr. 15 (1976) 483-91.

7. J. A. ARNAUD and J. W. FLEMING, Elect. Lett. 12 (1976) 167-9.

8. R.OLSHANSKY, Appl. Opt. 15 (1976) 782~-8.

9. L.G.COHEN, ibid 15 (1976) 1808-14.

10. M.IKFDA and H. YOSHIKIYO, ibid 15 (1976) 1307~12.

11. C.C.TIMMERMANN, A.E.U. 28 (1974) 186-8.

12. C.C.TIMMERMANN and K. PETERMANN, ibid 29 (1975) 235-7.

13. D.B. KECK, Appl. Opt. 13 (1974) 1882-8.

14. J.P. HAZAN, L. JACOMME and D. ROSSIER, Opt. Commun. 14 (1975) 368-73.
15. L.JACOMME, A4ppl Opt. 14 (1975) 2578-84.

16. D.GLOGE and E. A. J. MARCATILI, Bell Svst. Tech. J. 52 (1973) 1563-77.

17. M.J. ADAMS, D. N. PAYNE and F. M. E. SLADEN, Elect. Lett. 11 (1975) 238-40.
18. S.D. PERSONICK, Bell Syst. Tech. J. 52 (1973) 1175-94.

19. I.P. DAKIN, W. A. GAMBLING, H. MATSUMURA, D. N. PAYNE and H. R. D. SUNAK, Opt. Commun. 7
(1973) 1-5.

M. EVE, Opt. Quant, Elect. 8 (1976) 285-93.

A.W. SNYDER and C. PASK, J. Opt. Soc. Am. 63 (1973) 806—12.

D. MARCUSE, Bell Syst. Tech. J. 54 (1975) 1507-30.

(WS EN)
o — O

74



