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The radiation losses of tunnelling leaky modes in graded-index optical fibres are calculated theoretically, and it is shown
that the near-field intensity profile has a length dependence. Consequently measurements of the near-field intens™*y distribu-
tion do not give the refractive index profile directly, and a correction factor must be applied. We have investigated this fac-
tor and find that it depends only on a single normalisation parameter involving fibre length, core radius and normalised fre-
quency. A further use of the correction factor is to determine the total power attenuation due to the loss of leaky modes.

1. Introduction

The theory of bound mode propagation in graded-
index multimode optical fibres is now well-known,
and may be adequately described for many applica-
tions by the localised plane wave method [1]. How-
ever it has recently been recognised [2--4] that tunnel-
ling leaky modes are usually present in graded-index
structures, although the significance of these modes in
a practical situation has not been fully clarified. In ear-
lier work in this area {2,5], we have assumed that all
leaky modes propagate unattenuated and showed that

i}in contrast to the step-index fibre, tunnelling
leaky rays in parabolic index fibres are all contain-
ed within the angular limits of the numerical aper-
ture. It is therefore impossible to avoid their ex-

citation when using an apertured lambertian source.

ii) 25% of the power launched by a lambertian source
into a parabolic index is carried by the leaky
modes.

iii) the near-field intensity distribution is related to
the refractive index profile by the factor
1\/1—(r/a)? , where r/a is the normalised radius.

It is apparent, therefore, that leaky modes will have a

significant effect on at least two fibre measurements

which commonly use apertured lambertian sources,
namely @) evaluation of total attenuation and b) deter-
mination of the refractive index profile by observation
of the near-field intensity distribution [6]. In the
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former the total output power is measured after trans-
mission through a long length of fibre and then com-
pared with that from a short length. Since the attenua-
tion of the leaky modes is included in the measure-
ment, the result is inclined to be pessimistic. In the
latter the refractive index profile is inferred from the
intensity distribution across the output face of a
metre or so of fibre. In this case the presence of leaky
modes can considerably influence the intensity distri-
bution, and therefore introduces a profile error. The
object of the present contribution is to calculate the
losses inherent in modes of this type, and hence to
ascertain the magnitude of the errors introduced in the
above two cases.

As a first step, the attenuation coefficient for each
leaky mode is found by application of the WKB meth-
od, and it is shown that a simple approximation may
be applied to give an expression which is not particu-
larly sensitive to the exact form of the index profile.
This expression may be used to sum the power remain-
ing in all modes after a given length of fibre, and hence
we obtain the near-field distribution at any point
along the fibre. A generalised length-dependent correc-
tion factor involving only fibre length, core radius and
normalised frequency may then be introduced to re-
late the refractive index profile to the intensity distri-
bution. Finally the theory is applied to calculations of
the leaky mode contribution to fibre attenuation meas-
urements, and this gives a useful physical insight into
the persistence of tunnelling modes.
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2. Leaky mode attenuation coefficient

For a step index fibre the attenuation of leaky modes may be calculated exactly from the known electromag-
netic fields, and has been dealt with previously in some detail [7}. For graded-index fibres, on the other hand, some
approximate procedure must be adopted, the simplest being the zero’th order WKB approximation. The results so
obtained are of comparable accuracy to the more formal first-order approach given by Petermann {3], and in addi-
tion more physical understanding is gained in the present treatment. The approximation is valid under the usual
WKB restriction, viz. small variation of refractive index distribution over distances of the order of one wavelength.
In the case of a graded-index multimode fibre this condition is usually easily satisfied. An assumption which is
made throughout is that the fibre core is surrounded by a cladding of infinite extent. Although this is not met in
practice, for the purposes of the present calculation the error introduced by the assumption is small, provided that
the cladding thickness is at least 50% of the core radius. Most low-loss CVD fibres satisfy this condition.

2.1. General form of the attenuation coefficient

Fig. 1 shows the squared magnitudes of the local plane-wave vector components as functions of radius for a leaky
mode in a general graded-index fibre [2]. Here a is the core radius and ry, r,, 73 correspond to the caustics separat-
ing regions of oscillatory and evanescent fields. In analogy with the concept of quantum mechanical tunnelling,
the probability of a photon from r, emerging at the outer caustic 75 is given by the tunnelling probability 7. This
is calculated as the inverse ratio of the squares of the field amplitudes £ (r,), E (r3), at these radii [4]:

ra
T=|E(r3)/E(ry)|? = exp{— 2 f (:’_j +32 - k2n2(r))1/2 dr}, (1
ra

where §is the propagation constant, » = azimuthal mode number, k = 27/ X, X = wavelength and n(r) is the refrac-
tive index at radius ». The dimensionless attenuation coefficient « (normalised to the core radius) of a given leaky
mode (u, v) can then be calculated from the mode tunnelling coefficient T by the simple relation

v T
oz(u, V) _(I—B ITT- . (2)
In order to obtain the net power flow out of the fibre, the component of the Poynting vector normal to the
fibre axis must be calculated, and this gives rise to the term 2p/a in eq. (2) above. The same expression may be
deduced directly from Poynting’s vector theorem (following Snyder [8]), or alternatively from geometrical optics
when the first term arises from the mean distance between points at which a ray meets its caustics (the ray period).
Note that implicit in eq. (2) is the assumption that only the least leaky modes are of importance.

Fig. 1. Squared magnitude of the plane-wave vector compo-
nents of a tunnelling leaky mode in a graded-index fibre of
core radius 4. The mode shown has an oscillatory region be-
tween caustics 7y and 72, indicating bound energy, and an
evanescent field between radii 7, and r3. Radiation occurs
radius r from radius r3.

2.2 p2
K'n3-B
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2.2. Attenuation coefficient for parabolic index variation

The integral in eq. (1) may be calculated numerically for any refractive index profile n(r). However, an analytic
expression may be obtained for the special case of a parabolic index variation:

u? v (2 2 2 2
- E (- v?) Qux + 207 — u?)
= (y4 _ 412,2) 4v 2(
T=(u* — 4v°p?) @t x)

where x = [v2 — (u? — v2)]¥/2, and the conventional notation u? = a2 [k2n2(0) — p2], v2 = a2k2 [n2(0) — n%] has
been used; n(0) is the refractive index at core centre and n, that of the cladding.

)V Qux + 2v2 — u?) 2 exp (x), 3)

2.3. Approximate form of the attenuation coefficient

Although eq. (1) can be evaluated for any index profile n(r), a more useful general result can be achieved by a
simple approximation. From fig. 1 it is intuitively seen that for most forms of the index profile n(r), the central
caustic r, is not too far from the core—cladding boundary at radius a. Using this fact as a basis for approximation
and replacing E (r5) by E(a), the tunnelling coefficient T becomes

T=E(r3)[E@)? = [(u?—vD)/(v + x)*]” exp (2%). @

It may be seen that 7, and hence the attenuation coefficient a, is no longer a function of the specific form of
the index profile n(r). This is an important result as it implies that, at least within the limits of the approximation
used here, the loss of a leaky mode having a given designation (u, ») is independent of the profile of the structure
within which it is propagating. Thus we might expect that the influence of leaky modes on, for example, the near-
field intensity, would be relatively insensitive to the core index profile, and this is indeed the case, as will be shown
later. '

In the following sections eq. (4) will be used in place of eq. (1), as this allows a considerable reduction in nu-
merical computation whilst yielding results of comparable accuracy. Furthermore, we note that provided only the
least leaky modes are considered (x > v), eqgs. (4) and (2) reduce to give the leaky mode attenuation coefficient
derived by Gloge [9] for the step index fibre.

3. The length-dependent near-field intensity distribution

Reverting temporarily to geometrical optics, the near-field intensity I(r) at radius 7 on the output face of a
fibre excited by a lambertian source may be found by summing a cosine source function over angles of incidence
6 and projected angles ¢ [2]. The attenuation of the leaky modes is included by way of the ray equivalent of the
attenuation coefficient a derived above:

/2 af2
I(r) _ 4 .
10" 7(n20) -l d¢0f sin 0 cos 8 exp[— a(6,¢)z/a] d9, ®)

where a(6, ¢) is the attenuation of mode (u, v) associated with rays launched at angles (6, ¢), and z is the fibre
length. The integral over angles of incidence 8 in eq. (5) may be split into three regions corresponding to bound,
leaky and refracted rays [2]. The attenuation coefficient a(8,¢) of a bound ray is taken to be zero, that of a re-
fracted ray infinite, and that of a leaky ray is given by the mode attenuation a(u, v) defined in eq. (2). If we con-
sider only bound rays to be propagating, the upper limit on 8 in eq. (5) becomes sin~1 [\/n2(r) — n%] and the ex-
pression reduces to that given by Gloge and Marcatili [1].

Converting eq. (5) back into the mode notation [2] (i, v), and assuming an external medium of n =1, we deduce
that the intensity distribution I(r) is
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2 2
I _n (r)—n3 n(r)—n,
== ——— (1, 2) ¥———— C(r, 2), 6
[(0) n2(0) _ n% ) n(O) —n, ( Z) ( )
where . \/u’+_p2
Crz)=1+— 4 f i f u du exp[—a(y, v)z/a] )
nlnd(r)—n3] o  @*k3 T [n2() - nd + u¥/a2K2) — (2/r2k2)) 2

The upper limit v, is given by the appropriate
zero of the square-root term in the integral *.

Thus C(r, z) may be considered as a “correction
factor” relating the near-field distribution /() to the
refractive index profile n(r). As expected this factor re-
duces to unity after an infinite length of fibre when no
leaky modes remain; a close resemblance will then exist
between the intensity and index profiles, a result first
reported in ref. [1].

The intensity distribution as a function of fibre
length for any given index profile may now be evaluat-
ed numerically from eqs. (6) and (7) using the attenua-
tion coefficients given by (2) and (1), or the approx-
imate form (4). A specific example of this is given in
fig. 2 where the near field is calculated using the more
accurate eq. (3) for a typical parabolic index fibre of
1 metre in length. The index profile is also shown, and
it can be seen that the presence of leaky modes causes
a marked difference between the two curves. In order
to illustrate the process of converting near-field intens-
ity to refractive index, and also to test the accuracy of
the approximate expression (4), as compared to the
more precise eq. (3), an index profile calculated from
the near-field using eq. (4) is plotted. It is clear that
this result is very close to the true profile, thereby il-
lustrating the level of accuracy obtainable by use of
the approximate tunnelling coefficient.

4. Generalised near-field correction factors

Although eq. (7) may be used as it stands for com-
puting near-field correction factors, it has proved pos-

* Note that in fibres having index exponent > 2 and when
launching from a lower index medium, not all leaky modes
are necessarily excited by a lambertian source. Care must
therefore be exercised in the evaluation of eq. (7) to ensure
that the upper limits in the integrals do not allow the local
numerical aperture [sin 6 in eq. (5)] to exceed unity. By
suitable choice of limits, eq. (7) may also be applied to
lambertian sources truncated in angle, which similarly do
not excite all leaky modes.
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Fig. 2. Calculated near-field intensity distribution (upper dash-
ed curve) for a parabolic index fibre compared with the refrac-
tive index profile (lower solid curve). Also shown is the index
profile (chain-dotted curve) inferred from the intensity distri-
bution by means of the approximate correction factor devel-
oped in the text. Fibre parameters are: length 1 m, core radius
50 um, numerical aperture 0.2, wavelength 0.93 um, giving
X =(1/v) In(z/a) =0.15.

sible to further simplify the results by use of a general
normalisation parameter. It can be shown that an anal-
ytic approximation for eq. (7) may be realised by con-
sidering only the least leaky modes, since these contri-
bute most to the integrals. The result of this approx-
imation is dependent principally on the normalisation
parameter X = (1/v) In (z/a), and this suggests that this
parameter may be a general normalisation even when
eq. (7) is evaluated so as to include all modes. Fortu-
nately this hypothesis is well founded provided z/a
> 103; the validity of the normalisation has been veri-
fied to within 2% for a wide range of index profiles by
numerical integration of eq. (7) using the approxima-
tion (4) introduced earlier.

As a consequence both of the approximation (4)
and the above normalisation, a single set of curves
C(r, z) is all that is now required to completely specify
the near-field intensity distribution for a length of a
fully-excited fibre having an arbitrary circularly sym-
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Fig. 3. Near-field correction factors C(, z) given as a function
of normalised fibre radius for X values from 0.05 to 0.5 in in-
crements of 0.05. The normalisation parameter X describes the
fibre core radius, length and numerical aperture, and is given
by X = (1/v) In (z/a). The curves may be used for fibres having
any graded-index profile. Also shown is the result for z =0,
when all leaky modes are present.

metric index profile. Conversely, and more important-
ly, the same set of curves may be used to correct a
measured intensity distribution to give the refractive
index profile. This fact forms the basis of a near-field
scanning technique which has been developed to deter-
mine refractive index profiles [6].

The curves C(r, z) are shown in fig. 3 plotted
against normalised radius for several values of the pa-
rameter X. Also shown is the curve for z =0 when all
leaky modes are present and equally excited, viz.
C(r,0) = 1//1— (r/a)2. The figure represents a good
approximation not only over all X values normally en-
countered, but also for a wide range of near-parabolic
and power-law [1] variations; it is somewhat less ac-
curate for a step index distribution. Taking a worst
case example of a profile having an index exponent of
3 and an X value such that a large correction factor of
1.4 is required, we estimate that an index error of
1.5% of the centre value occurs at r/a = 0.8. Greater
accuracy may be expected when using smaller correc-
tion factors, and for profiles closer to parabolic.

As an example of the use of the curves let us take
a 1 metre length of graded-index fibre having a core
diameter of 80 um and a numerical aperture of 0.18.

208

Fig. 4. Plot of output power P(z) relative to input power P(0)
as a function of length for parabolic index fibres having the
v-values shown. Provided z/a > 103 the curves are applicable
to fibres having any combination of numerical aperture, core
radius and wavelength. For shorter lengths the curve is drawn
for the specific example of a numerical aperture of 0.2 and

A =0.93 um. The decrease of power with length is caused by
the radiation losses experienced by tunnelling modes. The
curves are asymptotic to P(z)/P(0) = 0.75.

The exciting wavelength is 0.9 um. We calculate the X
value as 0.2, and the figure indicates that the near
field is 8% greater than the index profile at a normal-
ised radius of 0.6, rising to 20% at 0.85.

5. Power attenuation

The near-field distributions given by eqs. (6) and (7)
may be integrated over radius r to give the total power
remaining in all modes as a function of fibre length z.
In thise case the normalisation parameter X may be
used for values of z/a> 103, although the result is now
sensitive to details of the refractive index profile as a
consequence of the differing number of leaky modes
supported by various structures. Results for a parabolic
index fibre are shown in fig. 4, where the normalised
power P(z)/P(0) after length z is plotted as a function
of normalised length z/a for a number of v-values. The
curves are computed for a fixed numerical aperture
(0.2) and wavelength (0.93 um) and the v-values are
determined by different core radii. For other numerical
aperture/wavelength/radius combinations the curves
will be similar to those of fig. 4 for z/a > 103, but
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somewhat different for lower z/a values as a result of
the invalidity of the normalisation parameter X.

As a numerical example, consider a fibre of numer-
ical aperture 0.3 and core radius 25 um at the wave-
length of GaAs emission (0.93 um). This yields a
v-value of 50 so that, from the graph, after 50 cm
(z/a = 2 X 10%) the power in the leaky modes has de-
cayed from an initial 25% of the total to 9.7%; after
1km (z/a = 4X 107) the proportion is further reduc-
ed to 6.1%. Thi* illustrates the persistence of some
proportion of the leaky modes for considerable dis-
tances.

As noted earlier the radiation losses suffered by
leaky modes will contribute an error to the total at-
tenuation measurement of a fully excited fibre. Taking
the initial fibre length to be 1 km and the shortened
length 50 cm, as in the example given above, the fibre
loss would be pessimistic by 0.17 dB/km. If, however,
the length available was only 100 metres (z/a =4 X 10%)
the extrapolated loss would be in error by the more
significant figure of 1.3dB/km.

6. Conclusion

It has been shown that the near-field intensity dis-
tribution in graded-index fibres excited by lambertian
sources has a length-dependence caused by the radia-
tion losses of leaky modes. Although many of the
leaky modes are lost within distances of less than 1 ¢cm,
other can persist for a kilometre or more, giving a near-
field that departs considerably from that predicted by
a bound mode analysis. Length-dependent correction
factors have been computed which enable near-field
intensitites to be calculated, given the refractive index
profile. The inverse of this process yields a technique
for the experimental measurement of refractive index
profiles [6].

The correction factors may also be used to calcu-
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late total power attenuation as a function of length.
This would indicate that a small error is incurred
under normal attenuation measurement conditions,
but that care should be taken in extrapolating results
obtained on short fibre lengths. The normalisation pa-
rameter deduced here, X = (1/v) In (z/a), provides a
convenient characterisation of a given length of fibre.
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