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A stable resonator incorporating a suitably adjusted telescope gives reliable operation of an Nd:YAG
laser with a large-volume TEMg, mode. The telescope adjustment is chosen to minimize the effect of
focal length variations in the laser rod and at the same time ensures the optimum mode-selection
properties of a confocal resonator. Simple approximations applied to the ray transfer matrices allow
a detailed analysis of the resonator to be performed. This analysis yields simple design equations
relating the mode spot sizes, resonator length, telescope magnification and defocusing, and diffraction
losses. Experimental results show excellent agreement with the results of this analysis.

1. Introduction

By introducing a suitably adjusted telescope into a Q-switched Nd:YAG laser resonator we have been
able to obtain reliable operation with a large-volume TEMy, mode [1]. The basic principle behind the
resonator design is that of choosing a telescope adjustment which compensates the thermal lensing in
the laser rod (thus permitting a large spot size) and at the same time ensuring that the spot size is insen-
sitive to fluctuations in focal length of the thermal lens. In order to illustrate the principles of the
design, the discussion in [1] was given in terms of a simplified resonator in which the telescope and
laser rod were assumed short compared to the overall resonator length and located close to one mirror.
In fact, for accurate calculations in practical resonators these assumptions are too restrictive and in this
paper we derive the necessary design equations taking into account the finite length of resonator occu-
pied by the laser rod and telescope. However, before introducing the resonator analysis, we first briefly
review some of the previous approaches to the operation of Nd: YAG lasers with high power and low
beam divergence.

It has long been appreciated that, by compensating the thermal lens induced in solid-state laser rods,
one can increase the TEMg, -mode spot size and thus extract more energy in a diffraction-limited beam
[2]. However, it is found that in general this compensation needs to be very precise if the mode size
is to be comparable to typical laser rod diameters. Fluctuations in the focal length of this thermal iens
(due to pump fluctuations) then lead to large spot-size fluctuations and thus unreliable performance
of the laser. Steffen et al [3] pointed out this important effect of focal length fluctuations but also
showed that stable resonators could be designed which are insensitive to these fluctuations. They
referred to these resonators as ‘dynamic stable resonators’. In one of their designs the resonator used
two plane mirrors with the laser rod close to one mirror and the mirrors spaced by half the focal
length of the rod’s thermal lens. While this design did permit reproducible operation of an Nd: YAG
laser with a large-volume TEMg, mode, it suffered from an inconveniently long resonator. Another
design made use of a short-radius convex mirror at one end of the resonator. This produces a large spot
size at the other, concave, resonator mirror (the laser rod is located here) and allows a conveniently
short resonator to be used. At about the same time Chesler and Maydan [4] also reported using a
convex—concave resonator with a CW Nd:YAG laser, In a later paper Lortscher et al. [S] gave further
details of the performance of their convex—concave resonator and their results amply confirm that it is
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possible to obtain reliable operation with a large-volume TEMg, mode (up to 850 mJ fixed-Q output
was obtained from a pulsed Nd: YAG laser). However, the disadvantage of the convex—concave resonator
is that the spot size is very small at the convex mirror and this effectively precludes its use in high-
power Q-switched lasers. Thus Q-switched Nd:YAG lasers continued to be operated with conventional
stable resonators which result either in a very multimode output when the full aperture of the laser rod
is used or in a small output energy when apertured down to give TEM,, operation.

An important advance was made with the application of unstable resonator techniques to the Q-
switched Nd:YAG laser [6] since this allowed the extraction of a large energy in a low-divergence beam.
The advantages of this were immediately apparent in such applications as harmonic generation. However,
the diffraction-coupled output beam from an unstable resonator also has disadvantages associated with
its non-uniform intensity profile [7]. These shortcomings have stimulated a search for other means
(e.g. [8]) of producing high output energy in a low-divergence beam, but with a smooth intensity
profile. Sarkies [9] reported using a telescope in an Nd: YAG resonator. An attractive feature of the tele-
scope is that it allows easily controllable adjustment to compensate thermal lensing under varied pump-
ing conditions. Although the output of his laser was not TEMg,, Sarkies found that a good working com-
promise could be achieved with high output power and low beam divergence. We undertook our investi-
gation of the telescopic resonator with a view to gaining a fuller understanding of its behaviour and in
particular of seeing whether a large-volume TEMy, mode could be obtained. In the course of our
investigation we discovered that Steffen et al. [3] had suggested a telescopic resonator configuration as
one means of realising a dynamic stable resonator. In their publications they make no mention of having
used a telescopic resonator and yet if offers two advantages over their convex—concave resonator. These
are (a) the easily controllable adjustment mentioned above and (b) the fact that it avoids the very small
spot on the resonator mirror, and can therefore allow operation at the power levels typical of a Q-
switched Nd:YAG laser. There is a third attractive feature, which applies to all dynamic stable reso-
nators, namely that the diffraction losses produced by such resonators are the same as those of an
equivalent symmetric confocal resonator. This result, which we derive in the Appendix, has not been
referred to in earlier discussions of dynamic stable resonators. However, it has an important bearing on
the problem of TEMg, mode selection since it is the confocal geometry that provides the greatest degree
of mode selectivity [10]. This feature, and the two advantages referrred to above, have enabled us to
obtain Q-switched TEM, outputs of greater than 100 mJ from an Nd: YAG laser with excellent relia-
bility and without any damage problems.

2. Theory of the telescopic resonator

2.1, Preliminary remarks

First we write down the standard result [11] for the Gaussian-beam spot sizes w, and w, at the mirrors
1 and 2 (curvatures R, and R, respectively) of an empty resonator, as shown in Fig. 1. Expressed in
terms of the g parameters, g, =1 —L/R; andg, =1 —L/R,, we have

2 172
™y _ L ) 1)
A &1(1 —8182)
and
2 172
™. ( &1 ) . @)
A 8:(1 —£:8,)

We shall be concerned, in the discussion that follows, with resonators containing a laser medium which
exhibits a thermally induced lensing behaviour, having a focal length f5 . At first we shall assume the
laser medium to be adjacent to mirror 2, with the lens f incorporated in the curvature R, . It can be
seen from Equation 2 that the spot size, w, , in the laser medium can be madg arbitrarily large by an
appropriate choice of R, R, and L. For example, with g, = 1 (i.e. R, plane), thenasg, - 1,s0

w, = <o, In practice, however, such a choice of parameters leads to a situation in which the spot size
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g,=1-L/R, g,=1-L/R, Figure 1 Empty resonator.

w, is extremely sensitive to the value of g, and fluctuations in the value of fg will cause variations of
w, which are too great to permit reliable selection of the TEMy, mode. In fact, it can be shown from
Equation 2 that the fractional change, dw,/w, of spot size due to a fractional change dg,/g, is given by

dws _ 128182 — 1) dg> (3)
W2 4 (1—-8:82) &

Thus, as g, g, — 1, the spot size w, becomes sensitively dependent on g, and hence fy . However, if

one chooses g,g, =4, then Equation 3 shows that spot size w, (but not w, ) becomes insensitive to

variations of g, . This property was first exploited by Steffen ez al. [3] in a resonator with two plane

mirrors, with the laser rod close to mirror 2 (thusg, = 1,g, = 1 —L/fg ), and the mirror separation L

given by L = f /2, hence ensuring g,g, = 4. Substitution of g, = 1, g, =} in Equations 1 and 2 gives

W= @
n

and

AL A
wi =22 _Ne

(5)
m g

In this way, if f is large, then a large value of w, can be obtained (one can always introduce a lens to
compensate the thermal lens, thus making fr effectively large). The disadvantage of this approach
however is that the resonator is inconveniently long. It is worth noting here that this is actually a half-
confocal resonator and an aperture placed at one mirror would therefore offer the ideal mode-selectivity
characteristic of a confocal resonator (see the Appendix).

Another resonator design, which retains the condition g,g, = %, but allows a short length L, involves
choosing mirror 1 to be a very short-radius convex mirror, i.e. R, negative and |R, | €L, hence making
g1 > 1. Thus g, is also positive but g, € 1,1i.e. R, corresponds to a concave reflector (R, > 0) whose
radius of curvature is slightly greater than L. An examination of Equations 1 and 2 shows that w? =
(82/81)W3 and, since g, g, =}, this gives

1

wi = ag—%wg (6)
and
2\
wi = & U

Comparing Equations 5 and 7 it can be seen that a large spot w, can be produced in the laser medium
(still assumed at mirror 2) with a short L provided g, is large. However, Equation 6 shows that this
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implies a very small w,. Thus, although this resonator was successfully demenstrated [3, 5] for a
fixed-O Nd:YAG laser, it would be unsuitable for a O-switched laser.

The telescopic resonator which we now describe provides a compromise between the two resonator
designs given above. To compare its performance with these two resonators we anticipate the results of
our analysis and quote here the expressions for w, and w,, in the situation where (a) mirror 1 is plane,
(b) the telescope, of magnification M, is assumed short and is placed close to the rod, which itself is at
mirror 2, and (c) the telescope is adjusted to ensure insensitivity of spot size w, to variations of fy .
Our analysis shows that w, and w, are given by

Lx
who= = ®)
T
and
2L
wi = _71_M2' ®

Thus, compared with the long resonator described by Equations 4 and 5, for the same spot size w,, the
length of the telescopic resonator can be reduced by M? | although this makes w, smaller by a factor M
than the corresponding value in the long resonator. On the other hand, when the telescopic resonator is
compared with a convex—concave resonator of the same length and same spot size w, , then g, in
Equation 7 takes the value M? and it follows from Equation 6 that the spot size w, in the telescopic
resonator is M times larger than the spot size w, on the convex mirror.

2.2. Derivation of an equivalent resonator for the telescopic resonator _

In making these preliminary remarks about the telescopic resonator we chose a simplified resonator as
an illustration. In practice, the simplifications made, such as assuming a short telescope and short laser
rod, are too sweeping for accurate calculation. We now consider a telescopic resonator, shown in Fig. 2,
for which the simplifying assumptions have been dropped. Both mirrors are assumed curved and the
resonator contains a telescope of magnification M = — f, /f; and a lens, focal length f5 , representing
the laser rod. The length L now refers to the length of that part of the resonator occupied by the con-
tracted beam. The telescope lenses are spaced by d + § where d = f; + f, and § is referred to as the
telescope defocusingt. The centre of the laser rod is spaced an optical distance I, from the second tele-
scope lens (focal length f, ), and the mirror 2 is spaced a further optical distance /; from the rod centre.

We shall find it convenient to treat a mirror of curvature R as a plane mirror with an adjacent lens of
focal length R in front of it. This approach has the merit of allowing the resonator properties to be
calculated in terms of the single-pass, ray-transfer matrix elements, where a single pass takes one from
the left-hand plane mirror (plane 1) to the right-hand plane mirror (plane 2).

The analysis is aimed at finding simplified expressions for the spot sizes wy, w,, and in particular at
finding the value of § which makes w, insensitive to variations of fg . Our procecare is first to consider
the case where mirror 2 is in fact adjacent to the rod, and the rod is short, so I, = 0, and where the rod
is in the focal plane of the telescope objective (lens f,) so I, = f, . This gives compact and exact results
which exhibit the main features of the telescopic resonator. It is then possible to relax the above restric-
tions, and introduce arbitrary spaces /, and /; ; the formulae are more complex, and we discuss their
approximations.

It is readily shown that the ray matrix [11] of the telescope f;, d + 8, f5 is

M—;— d+5

‘ (10)
6 1.8
fifs M1

TStrictly, if the resonator length is to remain fixed as the telescope defocusing is varied, L should be replaced by
L —&. We shall ignore this small correction however as it can be shown that it has a negligible effect.
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Spot size w, Spot size wy Spot size w, Figure 2 The telescopic resonator.

This matrix may be factorized exactly into a space — f; ,a ‘thin telescope’, a thin lens f; and a space — f:

1 —f 1 0 M 0 1 —=f
(an
0 1 —1/fr 1 0 1/M] |0 1
where the ray matrix of the thin telescope is
[M 0 } (12)
0 I/M
and the thin lens’ focal length is
1 8
— = —. 13)
A (

The effect of the thin telescope is to expand the spot size of the beam by a factor M and to reduce the
beam curvature by a factor M, so that there is a beam discontinuity in its plane. Note that the telescope
defocusing is described by a single element, the lens fy. Equation 11 provides a key to the telescopic
resonator. It shows that the resonator is exactly equivalent to one containing the following sequence
of elements: alens R, a space L', where

L' =L-f, (14)

the thin telescope, a lens pair fr, fg separated by a space I, —f,, a space I, and a lens R, . By choosing
I, =f,,the lenses fr and fg are made adjacent and form a compound lens. Since 1/fy is proportional
to 6, the compound lens has an adjustable focal length, which can be used to precisely compensate its
rod lens component fg . By making the further restriction that /;, = 0, we have a compound lens of
focal length R, , where

1 1 1 1
=t
Ry fr fr R

The restricted resonator with I, =f, and I, = Qs depicted in Fig. 3. Its exact single-pass ray matrix is

(15)

G, ML’

4 B] _ | _a=66n (16)
C D ML' 2

where the G parameters are given by
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Thin Figure 3 Equivalent telescopic resonator with both
telescope thin telescope and laser rod located at mirror 2.
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With the help of these equations one can express spot sizes in either of the commonly used ways, namely
in terms of 4, B, C and D, or in terms of G, and G, . The latter are particularly convenient for a dis-
cussion of resonator stability. The G parameters defined here are a generalization of the usual parameters

& and g, for an empty resonator, and if we let M = 1, i.e. if the telescope is removed, then G, - g,

1 _L/R‘ and G2 >g, = 1 —“L/Rz.

As shown by Baues [12] the spot sizes are given by

i _
2
ﬁ_(
A

It is convenient to normalize the spot sizes to AL’

BD 1/2
= 18a
AC) (18a)
1/2
_AB) T (18b)
CcD

, bearing in mind that typically L' is approximately

equal to the length L of resonator occupied by the contracted beam. Thus the normalized spot sizes W

are

2
mw
W = (v‘f

) 1/2

Spot
size

MG,

Gi(1-6:Gy) (152)

o em)

Figure 4 Normalized spot sizes W, , W, and W,
versus G, for fixed values of Mand G, .
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and 2\ 172 M2G 1/4
D L R 19%)
AL G,(1 —G,G,)
and at the entrance to the telescope, i.e. at the lens f; , the spot size is
7TW2 1/2
W; = (M?) = W,y/M. (19¢)

Fig. 4 shows the behaviour of the spot sizes W), W, and W; as a function of G, with G, and M

fixed. From Equations 15 and 17, these curves also represent the dependence of spot sizes on telescope
defocusing §. A number of important results are indicated in this figure. First we note that the spot

size W, is insensitive to variations of G, when G, = 1/2G, ,i.e. when G, G, =}, and this is therefore
the desired operating point. In fact, a comparison of Equation 19b with Equation 2 is enough to show
that the earlier condition g, g, =4 now becomes G, G, =}. The spot sizes W,, W; and W, for G,G, =
4 are indicated in Fig. 4 as (2MG,)"?, (2G,/M)""* and (M/G, )"'* respectively. Thus the ratio of spot
sizes, W, /W, , is G{+/2, an important quantity to bear in mind when considering the question of damage
to components in the contracted beam. For the particular case where mirror 1 is plane, G, then has the
value M and the normalized spot sizes W,, W5 and W, are M\/2,+/2 and 1 respectively, a result pre-
viously quoted in Equations 8 and 9. From Fig. 4 it can be seen that the minimum of W, is quite flat
and from Equation 19b one can show that a 10% change of G, about the operating point G, G, =1}
(i.e. G, varying from 0.4/G, to 0.6/G,) causes only a 1% increase in W, . The spot size W, does however
vary and (dW,/dG,)g, ¢, -1/2 = (MG)"*. The figure also indicates that as one approaches the bound-
aries of stable operation (at G, = 0 and G;G, = 1) the spot size W, diverges, whereas the spot size W,
goes to zero as G, = 0 and diverges as G,G, ~> 1. In Section 2.3 we discuss the choice of § which opti-
mizes G, and hence the performance of the telescopic resonator.

The stability behaviour can be illustrated with reference to the G, G, plane, of which the positive
quadrant is shown in Fig. 5. The stable region is enclosed by the G; and G, axes and the hyperbola
G,G, = 1. The locus of ideal adjustment G, G, =14 is also a hyperbola, passing essentially through the
centre of the stable region. An empty resonator with mirror 1 plane (G; = 1) and mirror 2 concave
with R, > L (hence G, > 0) is represented by a point on the line PQ. The point U represents the half-
confocal resonator, Q the plane-plane resonator. If a thin telescope of magnification M is inserted
adjacent to mirror 2 in the resonators represented by the line PQ, they will then be represented by
points on the line RS, with the point S corresponding to the plane—plane resonator and the point V
corresponding to the ideal operating point. As the magnification M is increased, so the range of values
of G, for stable operation is decreased.

Having discussed the properties of the telescopic resonator with the particular choice I, = f, and
1, =0, we now consider arbitrary spacings. Whereas the first case allowed us to derive exact and com-
pact expressions, in the case of arbitrary spacings the exact expressions are very cumbersome. Exact
results can, of course, be obtained on a computer, but our aim here is to show that in fact the expressions
derived above remain quite adequate for practical spacings.

Any ray matrix can be put into the form of Equation 16, and with appropriate parameters G, G,
L" say, all the discussion relating to Fig. 4 and Equations 18 and 19 for the spot sizes still applies.
However, the expressions for Gy, G5, L” (and hence 4, B, C and D) in terms of the physical resonator
parameters will now differ from the G,, G, and L’ of Equations 14 and 17. From Equation 18 it is seen
that the spot sizes vary as BY# | and so any small error in B will be insignificant. On the other hand, the
spot sizes vary as 1/C'* and 1/DY*  and so errors in C or D will have a large effect on the spot sizes,
since the limits of the stable region are defined by C = 0 and D = 0. We conclude that when making
approximations, C and D need more care than B; 4 can be regarded as a derived parameter since
AD —BC=1.

Consider first the case where [, # f, . The matrix elements are readily determined, and may be put
into the form:
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Locus of ideal
adjustment, G4G,=1/2
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| Figure 5 Stability diagram. The line PQ represents stable empty
: resonators with mirror 1 plane (G, = 1). The line RS represents
1 1 GZ stable resonators with thin telescope adjacent to mirror 2, and
2 mirror 1 plane (G, = M).

A L A |
- (i-2)| | ) o
A
=ML' [1—— |14 57— 20b
B=M ( fT) +M2L'(1—A/fT>] (20%)
1 A L'\ {1 ML
L T R
1 A ML
D= (1—7) (1 ——M—) (20d)
where
A=l2_f2 (21a)
111
11,1 21b
f fr R 21%)
Lyt (21c)

In practice,

Al <If], fp |, M*L' (22)
or can be made so by design. Thus the term A/f can be dropped from Equation 20d, giving
1 ML
D= Gy>=— |1 —— 23a
M ( R} ) (232)

Note that the limit of the stable region defined by D = 0 is still an exact function of R}, and hence cf
the defocusing 8. Turning to Equation 20c, then with G defined by Equation 23a and by comparison
with element C in Equation 16, it is seen that a suitable choice of G|, and hence of 4, is
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fr fr Ry fr fa Ry
A L A
{a) {c)
fr R R fr fq R,
l1
Figure 6 Various cases of resonator
(b} (d) lens combinations.
' L'
A=G6G =M (1 ———). (23b)
R,

As with D, this choice gives the zero of element C exactly. B can be approximated by dropping the terms
Affr and A/M*L'(1 — A/fr), giving

B=ML", L"=L". (23c)

(It is seen that we have effectively approximated 4 in the same way as B.) To summarize, we have found
that by making the assumptions of Equation 22, our earlier treatment of the telescopic resonator comes
through with the one change, of R, to R; . Moreover, as |A| < |f| from Equation 22, we can generally
ignore the change, and use the original Equations 15-17.

Fig. 6a shows the actual resonator lenses fr, fr and R, and their spacings A and /, . Figs. 6b and ¢
respectively depict the special case A =1, = 0 treated earlier, and the case A = 0,1, = 0 just examined.
The last case we wish to examine, A = 0,/; ¥ 0, is shown in Fig. 6d. By comparing with Fig. 6¢ it is
apparent that Equation 20 can again be used, but with the changes 1/fy = 1/f¢ + 1/fg, A—1,.and
1/f = 1/R, . The inequalities corresponding to Equation 22 are I; < |R, |, |1/fg + 1/frl™, M?L', and
these again are satisfied in practice. Hence the only change from the first expressions (Equations 15-17)
is that R is replaced by R}, where

1 _1.1 !
Rg fT g r R, '
Again [, can often be omitted, for example in the instance where mirror 2 is plane. However, whereas A

is the difference of two comparable lengths, A =1, —f,, and so always tends to be small, /, may give a
significant correction in Equation 24, and hence to the predicted defocusing § in fir.

(24)

2.3. Choice of resonator parameters and telescope defocusing

In the previous section we have shown that the telescopic resonator can be characterized by the values
G, and G, of its equivalent resonator containing a thin telescope. We concluded that the telescopic
resonator should be adjusted so that its equivalent resonator satisfies the condition G, G, =%. This

can be achieved by adjusting the telescope defocusing §, since this determines f (through Equation 13),
hence R; (through Equation 15) and finally G, (through Equation 17b). Thus, with G, G, put equal

to 4, we find that § ., is given by

1 M 11 1 1—2L'/R 1 1
aopt=f§ 271! 1_— T T 5 =f% 27! l/ . T T 5 1 (25)
M L 2G1 fR R2 211'[ L I_L /Rl fR R2
Once the resonator parameters M, f,, L, R, and R, have been chosen and f is known, then § ¢ can
be calculated from Equation 25. The value of fi; depends on the operating conditions (repetition rate

and pump energy) and provided its dependence is known one can then calculate the necessary changes
of § oy for changed operating conditions. The effect of a change in f is to change R; and hence G,.
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This simply translates the curves in Fig. 4 parallel to the G, axis. A change of § has exactly the same
effect since it changes f and hence Rj . Thus the curves of Fig. 4 also indicate the dependence of spot
sizes on telescope defocusing. This behaviour provides an experimental means of identifying whether
one is operating at the optimum point. As GG, is made to depart from its optimum value by changing
the telescope defocusing it is found that the laser output energy drops and the beam quality degrades.
This drop in performance shows a symmetric behaviour on either side of the optimum so that, for
example, a plot of output energy versus § will exhibit a rather flat maximum and this can be used to
locate § o Toughly. Fine adjustment of 8 is usually then required for final optimization of performance.

We have indicated how 6 o, can be calculated once the resonator parameters are chosen. We now
consider some of the factors that influence the choice of these parameters. Obviously one cannot give
here an all-embracing strategy for the optimum selection of these parameters since they are influenced
by the operating conditions of the laser. For example, if the laser is Q-switched then it is likely that
damage limitations of components in the contracted beam will be a major factor in deciding the energy
to be extracted. This influences the choice of spot diameter in the laser rod. Under fixed-Q conditions
quite different considerations apply and the maximum spot size in the laser rod may then be determined
by inhomogeneities caused by thermally induced birefringence [13]. If damage is the main limitation
then one must seek a compromise between the convenience of a short resonator with its greater risk of
damage and the inconvenience of a long resonator. This choice can be illustrated most clearly by con-
sidering a resonator with mirror 1 plane (G, = M) and, since G, G, =}, then G, = 1/2M, for which
Equations 19a and b yield

w? = L'\n (26)
and
2L ' AM?
wi="— 27
T

Equation 27 shows that for a given w, , the smaller one makes L' (by choosing a larger M), the smaller
is wy . This increases the risk of damage due to the higher energy density and also, since the resonator is
shorter, due to the shorter pulse duration. The damge limitations of dielectric coatings have led us to
use an uncoated plane parallel plate of fused silica as the reflector for the contracted beam and this
then serves as the output mirror.

The laser used in our experiments has a 75 mm x 9 mm Nd:YAG rod pumped by twin flash-lamps.
We have operated this laser with TEM,, spot diameters (2w, ) up to 5 mm and it is likely that at repeti-
tion rates of less than 10 Hz, where thermally induced birefringence effects remain small [13], even
larger spot sizes would be feasible. A typical set of resonator parameters as used in most of our work
is as follows: L =034 m,M =4,f; =—0.05m (hence f, =0.20mandd =0.15m),7, =025 m,

I, =0.51 m. Hence L' = 0.39 m (from Equation 14), w, = 0.36 mm (from Equation 26) and w, =

2.1 mm (from Equation 27). The overall optical length of the resonator was 1.25 m and when the
output energy £ was ~ 100 mJ the pulse duration 7 was measured to be 30 ns (FWHM). The peak
intensity at the resonant reflector is then 2E/mw?t = 2E/A7L’, which for our parameters gave a value

of 1.6 GW cm™. This is to be compared with values for the damage threshold of Spectrosil B when
subjected to 10 ns pulses of 1.06 um radiation, namely 5 GW cm™2 [14]. The spot size w3 at the small
lens of the telescope is, according to Equation 19¢, /2 greater than w, . We have found that AR coatings
on this lens are liable to damage and an uncoated lens of BK7 is therefore used. Apart from the use of
uncoated optics in the contracted beam we have not made any serious attempt to optimize the damage
threshold. Our laser has been operated with the resonator parameters listed above, producing Q-switched
outputs of ~ 100 mJ for ~ 10° shots, so far with no sign of damage®. To optimize the damage threshold
one would need to examine the various trade-offs, such as increasing the resonator length, decreasing

the magnification, etc., and Equations 19a and 19b provide the basis on which to carry out this

TIn deliberate attempts to induce damage we found that a small damage speck could be produced on the Spectrosil
flat when the laser output energy reached 150—170 mlJ.
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optimization analytically. The simplicity of the design equations (Equations 13-19 and 25) makes their
use very straightforward.

For the exact calculation of spot sizes one needs to know fg . Using a He—Ne laser we have measured
the mean focal length of the laser rod for various average pump input powers P (kW) and find that the
focal length (in metres) is given by fr = 2.7/P. We have assumed that this measured value of focal length
corresponds to the actual value which prevails at the time when laser oscillation occurs. Thus we assume
that transient focal length variations during pumping, such as observed by Baldwin and Riedel [15], are
small compared to the mean focal length. This assumption appears to be valid for our operating con-
ditions since the observed changes of 8,y (i.¢. the necessary telescope readjustment) for given changes of
pump power P were found to agree with those predicted by Equation 25 with fg put equal to 2.7/P and
both 1/R, and 1/R, put equal to zero, i.e.

1 1
6opt. =f% \:2M2Ll—};] . (28)

This equation therefore provides a very simple prescription for change of telescope adjustment with
change in average pump power. Typically we have operated the laser with a modest repetition rate

(~ 8 Hz) and fg ~ 4 m. It should be noted that under conditions involving a high average output power
from the laser (such as where a high repetition rate is used) it is possible for the Pockels cell to con-
tribute noticeable negative lensing due to absorption of the laser radiation. This was noticed by observ-
ing that 8, shifted in value when the Pockels cell was added to the resonator (between the laser rod
and mirror 2) while it was operating under fixed-Q conditions with 350 mJ TEMy, output at 18 Hz
repetition rate. The effects of such a lens, of focal length fp, can be included in the foregoing analysis
simply by adding 1/fp to the term 1/fy in Equations 15, 25 and 28. From the observed shift of § ,p,
the value of fp was estimated from Equation 28 as — 20 m. This is consistent with the value calculated
(following [16]) by assuming an absorption coefficient in the KD*P Pockels cell corresponding to 95%
deuteration [14]. However under our typical operating conditions (100 mJ output at 8 Hz) the Pockels
cell lensing was not significant,

An experimental check on the alignment tolerances of the laser mirrors was made by observing the
mirror tilt required to reduce the output energy by 20% from its optimum value. This reduction was
produced by a ~ 0.3 mrad tilt of mirror 1 and a ~ 0.08 mrad tilt of mirror 2. Beam quality was not
noticeably altered by this amount of tilt. These angles correspond to around one third of the calculated
divergence (half-angle) of the beam incident on the respective mirrors. This confirms the expected
result that the alignment tolerance of the mirror in the expanded beam should be tighter by a factor
~ M (i.e. 4 in this case).

We conclude this section by showing, in Fig. 7, the calculated spot sizes wy, w, and w; versus tele-
scope defocusing § for the typical set of resonator parameters quoted earlier. The calculations have been
made in two ways: (a) using exact ray-transfer matrices throughout, shown as full curves in Fig. 7, and
(b) using Equations 14-19, shown as broken curves. The excellent degree of accuracy obtainable from
the approximate equations is apparent,

3. Choice of mode-selecting aperture
The TEM,, mode is selected by means of a circular aperture which is accurately centred on to the laser
axis by micrometer adjustment. One can in principle use an aperture either in the contracted or expanded
beam (provided the aperture size is appropriate, see Appendix) but we have chosen the latter for two
reasons (a) for convenience, since the larger aperture is less liable to damage, and (b) the resonator is
designed to minimize variations in spot size of the expanded but not of the contracted beam.

The aperture introduces round-trip diffraction losses Lo, and Lo respectively for the TEMy, and
TEM,, modes. The degree of mode selection (i.e. ratio of TEMy, power to TEM,, power) resulting
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from g round trips is thus given by*: [(1 — Lgo)/(1 — L10)]?. The losses Lgo and Lo can be found
exactly using the results of Li [10] provided the aperture (which is assumed to be the dominant cause
of diffraction loss) is located at a resonator mirror. First however we consider a rough estimate of loss
which can be made by calculating that fraction of the power in the Gaussian beam (spot size w) inter-
cepted by an aperture of diameter 2a. For a TEMy, mode this is given by (see e.g. [17])

Loo = exp(—2a*/w?) (29)
and for a TEM,, mode, by

Lo = (1 + 2—:22—) exp (— 2a% /w?). 30)

Like Lortscher et al. [15] we have used an aperture size such that g is nominally equal to 1.5 w, thus
giving Loy = 0.011 and L, = 0.061, according to Equations 29 and 30. If one considers a typical Q-
switched Nd:YAG laser where g may be ~ 35, the above values of loss would then imply [(1 —Lgg)/
(1—Ly)]? =6.

One thing that is apparent from this calculation is that the degree of mode selection.is sensitively
dependent on the values of Lo, and L,,. In the Appendix we show how an exact calculation of L
and L, can be made, using an equivalence relation between the actual resonator used and a symmetric
resonator for which exact diffraction-loss calculations have been performed [10]. The result from the
Appendix is quoted here, namely, that a round trip of the telescopic resonator, starting from the aper-
ture (diameter 24, located at mirror 2 in the expanded beam) produces the same diffraction loss as a
single pass through a confocal symmetric resonator of Fresnel number a?/[2MW2L'(1 —L'/R,)], where
L' =L — fi, (Equation 14). Li [10] has shown that the confocal geometry provides the greatest mode
selectivity, and it is a useful feature of the telescopic resonator that it is able to exploit this property.
From Li’s paper (his Fig. 8) one can see that for a TEM, loss of 0.01, the TEM,, loss is 0.12, thus
giving a value for [(1 —Lgg)/(1 —L,0)]? of ~ 60 for g = 35.

Despite this large selectivity it must be borne in mind that the mode selection is a sensitive function
of Loy and L, and hence of aperture size. It is therefore advisable, in selecting the aperture size, to have

e

tThe analysis leading to this expression ignores possible mode distortion effects due to non-uniform saturation of the
spatial (radial) gain distribution. However, for most of the pulse build-up, such saturation effects are in fact absent.
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Figure 8 Sequence of burns on photographic paper. These were taken at 4 m from the resonant reflector, at an output
energy of ~ 100 mJ and a repetition rate of 8 Hz.

available a range of closely spaced aperture sizes so that one can find in practice which gives the most
satisfactory performance. Using the parameters already quoted for our resonator and the aperture dia-
meter 2z = 6.25 mm, the above expression for Fresnel number yields the value 0.74. With this Fresnel
number, Li’s calculations give round-trip losses for our resonator of Ly, = 0.008 and L, = 0.10, thus
giving a generous degreé of mode selection over the 35 or so round trips when Q-switched. The very
small diffraction loss for the TEMy, mode suggests that little or no diffraction ring structure would be
visible in the output beam since the mode is only very slightly truncated. This is indeed the case and
Fig. 8 shows a sequence of burn patterns on photographic film. These were taken at 4 m from the
output resonant reflector. Fig. 9 shows the TEM,, mode intensity profile as observed on a diode array,
confirming the smooth, structureless profile indicated by the burn patterns. Spot sizes measured using
the diode array agree within experimental accuracy with TEMg, spot sizes predicted by our analysis.

4. Conclusion
We have shown that a telescopic resonator can provide a reliable means of generating a large-volume
TEMy mode in a Nd: YAG laser, permitting Q-switched operation at the 100 mJ level. An analytical

Figure 9 Beam profile as monitored by a diode array.
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description of this type of resonator has been developed which reduces to a few simple design equations.
We have found that these equations describe the experimentally observed behaviour with a degree of
completeness and accuracy beyond what was expected. This indicates that a very thorough design
calculation could be made, e.g. to maximize output energy while keeping clear of damage problems,

and the results of such a calculation could be trusted with confidence. It is expected that a similar
exercise could be extended to other optically pumped solid-state lasers, notably Nd-doped glass and ruby.
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Appendix. Calculation of diffraction loss for TEM,, and TEM,, modes

We consider a general resonator represented, as in Fig. Ala, by two plane mirrors separated by a medium
whose ray transfer matrix is [& 5] when traversed from left to right. Where an actual resonator mirror
is curved, this is represented by a plane mirror and adjacent lens, and the lens is then included in the
matrix [& B]. We assume the resonator contains an aperture of diameter 2a, located at the surface of
the right-hand mir: or (Fig. Ala) and centred on the resonator axis. The round-trip diffraction loss of
this resonator is the same as the single-pass loss of the symmetric resonator in Fig. A1b in which the
matrix [2 f] corresponds to the medium in Fig. Ala being traversed from right to left. Thus the over-
all matrix [§ B'] of the symmetric resonator is {& 8] = [4 B][2 B] = 243" 24B_ | where we
have made use of the relation AD —BC = 1.

It can be shown (see e.g. Baues [12]) that the diffraction loss of the above symmetric resonator is
the same as that of an equivalent empty symmetric resonator having a g parameter given by g =A4' =
24D — 1 and Fresnel number N = 2> /AB’ = a* /2\AB. From Equation 16 we write g = 2G, G, — 1
and since G, G, = } for a correctly adjusted dynamic stable resonator it follows that the diffraction
losses are the same as those of a symmetric resonator with g = 0, i.e. a confocal resonator. By substi-
tuting from Equations 16 and 17a, the expressions for 4 and B for a telescopic resonator, it is found
that the Fresnel number NV of this equivalent resonator is given by

(l2

N = ; ; . Al
2AMAL'(1—L'[R}) (AT)
In the particular case where R is plane this reduces to
2
a
N=—"=. A2
ML’ (A2)

If the aperture in Fig. A1 had instead been located at the left-hand mirror, then a similar analysis shows
that the round-trip diffraction loss would be the same as that of an equivalent symmetric resonator
whose Fresnel number is

Figure A1 (a) Resonator with plane

mirrors with an aperture of diameter 2a
‘ ” adjacent to the right-hand mirror, and

separated by an optical medium whose

A B
2a ray-transfer matrix is [é S] for propa-
D 1 U gation from left to right. (b) A round

trip of the resonator in Fig. Alb, start-

[A B} iﬂ Hja [D B]
C D C A
1] If ,
ing from the aperture, and shown as an

(a) (b) unfoided resonator.
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a* a®

T MBD  (1I—M’L'RY)

(A3)

Thus, as far as the mode selectivity is concerned, it is immaterial whether the aperture is in the expanded
or contracted beam, i.e. at the right-hand or left-hand mirror respectively, provided the aperture size is
chosen to give the same value of V in either case.
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