MODE TRANSIT TIMES IN NEAR-
PARABOLIC-INDEX OPTICAL FIBRES

Indexing terms: Fibre optics, Guided light propagation, Optical
wavegtides

Calculations are presented of the transit times of guided and
tunnelling rays in graded-index optical fibres. It is shown
that 25%; of the power launched by an incoherent source into
a parabolic-index fibre is carried by leaky rays, which may
increase the r.m.s. width of the impulse response by up to
41°%,. The profile which most effectively equalises the combined
transét tzrges of both guided and tunnelling rays is given by
o =2-

Introduction: In a recent publication,! it was shown that
tunnelling leaky rays? are present on all multimode guiding
structures having circular symmetry, and the plane-wave
decomposition technique® was used to delineate the angular
region in which they exist. For a near-parabolic-index
fibre, this angular region was found to be within the meri-
dionally defined numerical aperture. Thus, in contrast to
the step-index fibre, leaky rays are excited not only by an
incoherent source, but also by other extended sources which
may fill the numerical aperture, such as a broad-contact
semiconductor laser. Consequently, these rays assume some
importance in graded-index fibres, and may be expected to have
a significant effect on both attenuation and pulse-dispersion
measurements.

We show here that for a parabolic-index fibre 25%,* of the
power launched by an incoherent source is contained within
the leaky modes, and that if all these modes propagate
unattenuated the r.m.s. width of the impulse response may be
increased by up to 419, It is further shown that the index
profile may be adjusted to equalise the transit times of both
leaky and guided modes, leading to a somewhat different
result from that obtained by equalising the transit times of
guided modes alone.?
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Fig. 1 Number of modes m(B) in parabolic-index fibre having
propagation constant B greater than value specified on abscissa

Below the bound mode cutoff the Figure shows both the total number of modes
(upper curve) and the number of modes having some bound energy (lower curve).
No tunnelling modes exist below £2 /n2(0) k2 = |1 —4A

* As this letter was being prepared, we learnt that the same result has been derived
independently by J. A. Arnaud using an entirely different method. We are indebted
to Dr. Arnaud for a preprint of his paper ‘Pulse broadening in multimode optical
fibres’ to appear in Bell Syst. Tech. J., Sept. 1975
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Number of leaky modes: As a first step towards determining
the pulse dispersion, we may calculate the number m(g) of
all modes having a propagation constant f greater than a
certain specified value, including those below cutoff. Modes
below cutoff have B2 < n?(0)k3(1—-2A), where k is the
wavenumber, A the normalised maximum refractive-index
difference and n(0) the index at the core centre. In this case,
the modes are of two types: tunnelling and refracted.? The
total number summed over all modes may be determined by the
plane-wave decomposition technique,!* 3 and is given by the
analytic continuation of Gloge and Marcatili’s® expression
below cutoff. The result is shown by the upper curve in
Fig. 1. The lower curve is obtained by summing only the
guided and tunnelling modes, and represents the subset of
modes assumed here to be propagating unattenuated. The
Figure is drawn for a parabolic-index fibre for which a = 2,
where « is defined in Reference 3.

Whereas refracted modes may have f— 0, there is a critical
value of f below which no further tunnelling modes are found.
The limit occurs when the v?/r? curve is tangential to the
k2 n2(r)— B? curve (Fig. 2, Reference 1), so that there is no

\

\

-
LR S e R e a N
- !
1
/I\

-
N
T

-
Q
S
1

T

maximum pulsewidth, ns/km

T

03 e N
191 192 193 194 195 196 197 198 199 200
a

Fig. 2 Pulse dispersion as function of index-profile parameter
for fibres having numerical apertures of0-7,0-2and 0-3

For a given a the pulsewidth is determined cither by the broken line or by the
limits of the shaded regions

longer an oscillatory region within the core. For this condition
to apply it can be shown that

Bz @)K [1-Q2+a)A}20 . . . . . (D)

It is clear from Fig. 1 that there are V 2/4 guided modes in a
parabolic-index fibre, since this number has a propagation
constant greater than the bound-mode cutoff value of
B? = n*(0)k%(1—-2A) (V is the normalised frequency).
Similarly, the number of guided plus tunnelling modes is
V 2/3, these modes having B2 > n%(0) k2(1—4A). Thus 25%,
of the power launched by an incoherent source will be con-
tained within the tunnelling modes, since the ratio of the
number of guided to tunnelling modes is 3 : 1.

An alternative method of obtaining the above result is to
integrate the near-field intensity profile shown in Fig. 3 of
Reference 1 over the radius r, from which the ratio of the
number of bound modes to leaky modes may be calculated.
We note in passing that Snyder’s result* for the total number
of tunnelling modes in a step index fibre may be derived by
either method.

Differential mode delays: 1f, for the present, we ignore the
attenuation of leaky tunnelling modes, we may obtain an
upper limit for the dispersion effects on near-parabolic fibres.
Following the method of Reference 3, we differentiate the
m(f) curve shown in Fig. 1 (using the curve for all modes)
to obtain the dispersion d g/dk.
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Fig. 2 shows the calculated pulse dispersion, as a function of
the index-profile parameter «. For a given numerical aperture
the shaded area represents a region of allowed pulse dispersion,
the actual pulsewidth depending on the power remaining
in the leaky modes at the fibre output. Each shaded region is
bounded by the calculated curves for guided rays® (lower
bound) and for leaky-plus-guided rays (upper bound).
Outside the shaded regions the pulsewidth is unaffected by the
presence of leaky rays, and is given unambiguously by the
broken curve. It should be noted that the pulse dispersion
referred to here is the total spread in transit times between the
fastest and slowest modes, and represents an upper limit on the
pulsewidth.

For a near-parabolic-index variation in the form of a power
law,? we assume

=2—-KA . . . . . . . . . . .

It has been shown? that the optimum choice of K to minimise
the group-delay differences between guided modes is given
by K = 2, resulting in a dispersion per unit length of n(0) A?/8c¢.
However, Fig. 2 shows that this choice of profile is no longer
optimal if all tunnelling modes are present. In this case the
pulse length may be increased to 9n(0) A?/8¢c. A new optimum
value of K = 4 is now appropriate and the maximum pulse
length is reduced to n(0) A%/2c. We note that this result has
been obtained by Geckeler? for helical rays only.
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Fig. 3 Impulse response per unit length for index profiles
described by » = 2, 2—2A and 2—4A

The solid lines show the pulse dispersion with both bound and tunnelling modes
present gnd the broken lines show the effect of bound modes only

Impulise response: Having obtained the number of tunnelling
modes and the transit times for all modes below cutoff, it
remains to determine the impulse response, assuming that the
guided and tunnelling modes propagate unattenuated. The
results are shown in Fig. 3 for K of 0, 2 and 4 in eqn. 2,
corresponding, respectively, to the perfect parabolic index,
the optimised distribution for guided modes and the optimised

distribution for guided-plus-tunnelling modes. It is seen that
for A = 0 and 2 leaky rays havc the effect of adding a tail at
the end of the pulse, since their transit times are all greater
than that of the slowest bound mode. For the perfect parabola
the r.m.s. width of the response is increased by 41%, from
0-51(0) A%/c to 0-704n(0) A?/c when all these rays are present.
For the new optimum condition K = 4, the effect of leaky
rays is to increase the amplitude of the response, rather than
the overall width, since this choice of profile has the effect
of adjusting the transit times of the leaky rays to lie within the
normal range of those of the bound rays. Note that it is this
effect which gives the unambiguous pulse dispersion shown
by the broken line in Fig. 2. The complete overlap of the
transit times of both leaky and bound rays is only possible in
fibres with close-to-parabolic index profiles.

In conclusion, it must be reiterated that the results herein
ignore the attenuation of leaky tunnelling modes, so that they
represent a worst-case estimate. However, there are indica-
tions that these modes? may persist for long distances and
carry a significant proportion of the power. In addition
Stewart® has shown that many of the modes treated here as
leaky no longer radiate if the fibre has a cladding of finite
thickness. In this case they may be expected to have low loss
and, consequently, to have a significant effect on pulse
broadening in long fibres.
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