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Coherent anti-Stokes Raman spectroscopy (CARS)
Selection rules, depolarization ratios and rotational
structuret
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By putting the non-linear susceptibility tensors in irreducible spherical
form it is found that orientation averaging, selection rules, and the angular
dependence of intensity on field polarizations all follow in a straightforward
way. These spherical tensor techniques are used to treat coherent anti-Stokes
Raman scattering (CARS) in detail and a comparison is made with con-
ventional Raman scattering. 'The selection rules for both processes are shown
to be the same. The paper concludes with a brief discussion of the rotational
structure in CARS.

1. INTRODUCTION

In recent years coherent anti-Stokes Raman scattering (CARS) has been
attracting much interest. It could prove to be an important spectroscopic
technique, since in some situations it offers great experimental advantages over
the usual spontaneous Raman spectroscopy [1-5]. In CARS, just as in spon-
taneous Raman scattering, it is necessary to know the selection rules, and to have
expressions for depolarization ratios and the rotational intensity structure. In
this paper we derive these by using spherical tensor techniques.

Spherical tensors offer many advantages for calculations in isotropic media
such as molecular gases or liquids and have been widely used to treat Raman
scattering, for example, see [6, 7]. In particular the angular dependence on
polarization vectors is given quite generally in a direct and simple way and
orientation averaging can be carried out without resorting to direction cosines,
etc. We give here a detailed comparison of CARS and Raman scattering] in
order to emphasize their similarities and also because the familiar process of
Raman scattering provides a convenient vehicle for introducing spherical tensor
techniques which may be less well known.

It i1s also possible to treat higher-order processes such as hyper Raman
scattering in a similar way. The material presented in this paper in fact consti-
tutes a special case of a more general treatment of nth-order non-linear processes
by spherical tensor methods which will be presented in a further paper. The
notation and the procedure we use here have been chosen to facilitate this

1 A preliminary account of this work was presented at the 1Xth Int. Quantum Electronics
Conf., Amsterdam, 1976. See [18].

T With a few simple changes (see [8]) the analysis of this paper applies also to two-photon
absorption.
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672 M. A. Yuratich and D. C. Hanna

extension to higher-order processes. The notation and conventions are estab-
lished in § 2 and in § 3 the formulae are cast into spherical tensor form and the
orientation average performed. Selection rules and depolarization ratios are
discussed in § 4 and the paper concludes with a discussion of rotational structure

in §5.

2. RamMaN AND CARS INTENSITIES

We use real monochromatic plane-wave electric fields written as
E(w, r, t)=}(eE, exp [i(k . r—wt)]
+e*E_, exp [—i(k.r—wt)]), E*=E_, (1)

where in general the unit magnitude polarization vector € is a complex linear
combination of the real Cartesian unit vectors (i<, y, 2).
We define the Raman polarizability «j as

xR = Z (ar)ij(€*)ilep); (2a)
{fle*. Qlby{ble,. @la) (fle,. @|b)<b|e*. Qla)
h Z ( Qy, —w, + Q,, + wg >’ (26)

where @ is the dipole moment operator, |a) and [f) are the initial and final
states, b runs over all intermediate states, Q,,=(E,—E,)/# is a molecular
transition frequency, and the subscripts p, s refer to the laser (frequency w,) and
Stokes (frequency w,) radiation. It is convenient to write «p in terms of an
operator dy through ap = {f|dy |a).

Then ap is related to the macroscopic Raman susceptibility by [8]

N[(6ke)  pla) & o
Qfa+ws_wp+ipz deg:f,a |<f|0‘Rla>l ’ (3)

X(s)(_ws; Wy, — Wy, ws)=

where N is the number density of molecules, I' is a damping constant, Y is a
deg f.a
sum over the degenerate states of energy £Q, and £Q, and p(a) is the fraction of

population in the g,-fold degenerate initial level. The horizontal bar denotes an
orientation average. (Note that SI units are used throughout this paper.)

To make the connection between the susceptibility formalism and the more
usual (for Raman scattering) expressions in terms of a cross section doy/dQ we
note that

_167%c*N/hwyw? doy
p Y wS)_Q/a+ws—wp+iF a0

0~ )
The differential cross section per molecule dog/dQ is defined in terms of the ratio
of the number of scattered to incident photons (rather than the ratio of powers)
and has been integrated over all Stokes frequencies.
The spontaneous Raman power Pp, scattered from a length / of medium into a
solid angle dQ is given by
Niw ! —
PR mP dQ {ga_l a) Z IdR|2}, (5)

deg f,a

where P, is the pump power. This establishes our notation for Raman scattering,
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and in deriving selection rules, depolarization ratios, etc. only the expression in
braces need be considered.

We now write down expressions analogous to (2), (3) and (5) for CARS.
The nature of the CARS process has been described in detail in the literature [1]
and we need only summarize briefly here. It is a four-wave parametric process
in which three waves (two of frequency w,, one of frequency w,) are mixed to
generate a fourth wave of frequency w,, (the anti-Stokes frequency) given by
wye=2w,—w,. By analogy with the Raman polarizability we define a CARS
polarizability :

XCARS = ; (xcars)i(€p®)il€as)s (6 a)
12 fle* . Qby<be,, . @|ay
h Qba T Wyg

Ll @B e* . Qa)
ot o ) (6 b)

In terms of this polarizability, the CARS susceptibility ycaps=x®(— wag;
w,, —wg) can be written as

N/(3#%e
e S IR D LT )

wp,

| = +
XCARS = XNR Q

x~g 18 2 non-resonant term which produces a background in the CARS spectrum
that i1s (usually) unwanted. For the most part we will assume the resonant
part of the CARS susceptibility to dominate and so, unless otherwise stated, shall
put xyg=0. The intensity I,, (W m~2) of the generated anti-Stokes radiation
is found by the usual coupled wave approach [1] to be

2
Wag

Akl
J =——32 |3 22T 2] ginc? | —
as 7]as’7p27’s€02€4 |IXCARS| p LgSINC ( 2 )) (8)

where 7, is the refractive index at frequency w;, [ is the interaction length and
Ak is the wave vector mismatch, i.e. Ak=2k, —k,—k,,. The dependence of I,
on the square of the CARS susceptibility is characteristic of parametric processes.
A word of caution should be given here about the varying numerical factors
(% in our case) which different authors give in their versions of equation (8).
These numerical factors have been discussed in detail by Orr and Ward [9], and
Bogaard and Orr [10] have reconciled the differences arising from different
conventions. Apart from a factor ¢, which we incorporate in our definition of
susceptibility (see [8]), our conventions are the same as those of Bogaard and
Orr.

When «p and ac,gg are non-resonant, i.e. all interacting frequencies are
well away from any Q,,, it is usual to write oy =ac,rs and then (4) and (7) are
combined to express ycspg in terms of dog/dQ. Clearly in the case of resonant
Raman scattering or resonant CARS this equality need not apply. To preserve

the generality of our treatment we avoid this assumption of equality here and using
(7) and (8) we see that

I, oc | g, p(a) Z acarg®or |2 (9)

deg fa
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The close analogy between the expression in braces in (5) and the right-hand
side of (9) can be seen. It is the latter expression from which the selection
rules, etc. for CARS are to be derived.

3. SPHERICAL TENSOR FORM AND ORIENTATION AVERAGING

As the reduction of (ay);; to spherical tensor form is well known [11] we
merely summarize here by stating that, by using the complex spherical coordinates
(unit vectors e, g=0, +1) defined as

€= $(ea: + iey)/\/zi
(10)
e=e,
then (ag);; can be written in terms of (ag),,-.
The Raman spherical tensor is then given by
(ar)o™ = X (1q1¢'|KQ)(ag )gg» (11)
qaq

where the term in angular brackets is a Clebsch-Gordan coefficient. The rank
K can take the values 0, 1 or 2, analagous to the S, P, D atomic terms arising
from the coupling of two p electrons.

Similarly the polarization vectors €, €, may be coupled to form a spherical
tensor

(e*€)o" = X, <191g'|KQ)(es*)(ep)q - (12)

17
Equations (2 a), (10)—(12) yield the result that

ap = I;Q(— 1)E*O(ag) o (es*ep)-o* = ;(— DF(ar)® . (e*e;)%.  (13)

It may then be shown (by the use of rotation matrices, or by group theoretical
arguments) that

lfxp.|2=KZQ(2K+1)‘1|(°¢R)QK12®RK, (14 a)

where
Or% =(e*¢€,)E . (e *¢,)E. (14 5)

The angular factor ©zX has been evaluated for all combinations of linearly and
circularly polarized light [8] and these results are summarized in table 1.  For the
special case of light linearly polarized along cartesian axes p, o (14 a) becomes

()0 |*= é(2K+ 1) (ar)o™ [*C0™, (14 ¢)
where C,, X can be written down from table 1. The equation (14 ¢) is exactly
that given by Koningstein [7, 11]. Sharma and Levin [12] have obtained some
of these factors for the special case of symmetric rotors but their procedure is
very lengthy. Damen et al. [13] have experimentally confirmed these factors
for linearly polarized light. Some care is needed in relating the results of table
1 to the particular geometry of their experiment.
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Table 1. Angular factor Og¥ for Raman scattering (see also [8]).

Polarization vectors K=0 K=1 K=2
Both lineart % cos? Bs 4 sin? Bs % (3 +cos? Bs)

Both circular}

Same sense 1 3 i

Opposite sense 0 ‘ 0 1

1 Bs is the angle between €5, €p.
1 Propagation of both beams in same direction.

For CARS, (x¢arg)o¥ is defined in an exactly analogous way to (ag)o¥, and
this yields

acars*oR = I;Q(ZK‘*' 1) ecars)e®*(@r)o*Ocars”™s (15 a)

where
Ocars¥=(~- I)K(EAS*ep)K . (epes*)K‘ (15 5)

This angular factor can be evaluated in a similar fashion to @zg%. In table 2
OcarsX has been evaluated for two cases: (i) where all the waves are linearly
polarized with polarization vectors lying in the same plane and (ii) where all the
waves are circularly polarized in the same sense and propagating collinearly.
Since the usual experimental arrangement for CARS involves approximately
collinear beams (to ensure a significant interaction length) these two cases are the
ones of most interest. It is readily seen that for linearly polarized light with

Bas=Bs then (= 1)EKORK =0O¢,ps¥.

Table 2. Angular factor ®@carsX for CARS.

Polarization
vectors K=0 K=1 K=2

All lineart 4 cos Bs cos Bas —3%sin Bssin Bas 3[4 cos Bs cos Bas

+3 sin ﬁs sin Bas]
All circular}
Same sense 3 3 %

1 Bs is angle between €5, € ; Bas is angle between €as, €p; €s, €35, €p are coplanar. In
{18], for K=2, cos Bas should be cos Bs.

1 Propagation of all beams in same direction. For other senses of polarization the factor
vanishes.

Equation (15 b) also applies to yyg, which may be expressed as

xxp= Y, (2K + 1)y p(K)Ocsps’.

K

However, the ‘ physical * selection rules on K (discussed in the next section) do
not apply to yyr(K), and yyg therefore consists of an indeterminate sum over the
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Ocars® of different K+. It is in fact quite easy to show that any third-order
susceptibility x® can be expressed as a sum over angular factors as in (15 b), with
(in general) four different polarization vectors.

3. SELECTION RULES AND DEPOLARIZATION RATIOS

We make a distinction here between two classes of selection rules. The
‘ physical * selection rules give the conditions under which (a ), X or (2cars)o®
are non-vanishing whereas the ‘ geometrical ’ selection rules give the conditions
under which ©g¥ or ®¢4p¢™ are non-vanishing.

Now (ag)e® in equation (13) can be rewritten as {f|(dg) " |a), where
(6g)¥ is an irreducible spherical tensor operator. Similarly we can rewrite
(xcars)e® in (15 a) as {f|{(dcags)o™|a). These Raman and CARS spherical
tensor operators of rank K belong to the irreducible representation (IR) D X of
the full rotation-reflection group. Let DX decompose into a sum, denoted by
{D,X}, over IR’s of the molecular point group G and let |a) and |f) belong to
the IR’s I'(f), I'(a) of G. The identity IR of G is I'y. Then the ‘ physical ’
selection rules for Raman and CARS are the same, viz. that

P T (f)* x {D,X} x [(a) (16)

must be satisfied. If it is, then this means that for some Q in (14 a) and (15 a)
the matrix elements are allowed.  As all Q values are summed over it is sufficient
therefore that (16) be satisfied—there is no need for a selection rule on the
components labelled by Q.  This is to be expected, for (14 a) and (15 a) describe
orientation averaged media and so all operator components labelled Q are involved.
For example, in electric dipole radiation it might be possible to assign (, y) and =
to separate IR’s. However, in a gas, components of electric field exist along all
axes x, ¥, 2 and so it is only necessary to know the aggregate of IR’s to which
(x, ¥, 2) belong, i.e. {D,X}. (In fact the sum over Q must occur for an orienta-
tion averaged expression—it forms a scalar product of the two polarizabilities and
this is needed to provide the required invariance under all proper rotations.)

Degeneracy of [a), |f) does not affect (16) as only the IR’s T(f), I'(a) are
needed. For simplicity we shall ignore degeneracy (except in § 5 on rotational
structure) as it does not affect our main line of argument.

The selection rule (16) is rigorous within the electric dipole approximation.
However, more detailed physical considerations will often allow one to
‘ factorize ’ (16). For example, if it is a good approximation to write both the
initial and final states in the form of a product of a vibrational (v) and electronic
(e) part, then (16) becomes

Irel(e)* x {D,K} x I'(e,) (17 a)
for pure electronic scattering. For vibrational scattering (e;=e,)
Fgel(v)* x {D,K} x T'(v,), (17 )

provided e, is non-degenerate. In the latter case only K =0,2 should be used.
If level e, is degenerate, or if electronic scattering is considered (i.e. e;#e,), then

t An exception to this is that in the factorization approximation (discussed in § 3) and
with a non-degenerate initial electronic state, the K=1 term vanishes.
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K =1 may be allowed by (17 a). From table 1 it can be seen that if only the
K =1 term is present, then with a linearly polarized pump the Stokes radiation is
linearly polarized perpendicular to the pump.

In the case of resonant Raman scattering it is well known that the approximate
selection rules (17 a, b) break down and the rigorous rule (16) must be used. The
same is true of resonant CARS and important consequences of this are discussed
in the next paragraph. First, however, we give an example from electronic
Raman scattering in alkali atoms which illustrate very clearly the effect that an
intermediate resonance can have in the selection rules. We assume the scattering
to take place between %S, initial and final states, and the intermediate states
(see (2 b)) can therefore only be 2P, j, 5/, doublets. 'The selection rule (16) leads
simply to the requirement that the three numbers (J,=1}, K, J;=1) should
satisfy the vector model triangle rule, so that K=0, 1 only are allowed. How-
ever, the absence of spin—orbit interaction in a %S, , state tempts one to write the
wave functions for this state as a product of an orbital function and a spin function
even though this may not be a good description of the intermediate state. In
fact it is not immediately obvious that the mode of description of the intermediate
state is of any relevance since it does not appear explicitly in the selection rules
(16) or (17). 'The operator (G )X does not operate on the spin part of the wave
function and the selection rule (17) then leads to the triangle rule on (L, =0, K,
L;=0), i.e. K=0 only is allowed. In fact a study of (2) in the case of alkali
atoms [8] shows that the K =1 term vanishes when w, is well removed from the
28112 >2P; 5 35 transitions (off-resonance case), hence the approximate selection
rule, K=0 only, is well satisfied. However, when w, is close to resonance with
the 28,,, %P, 55, transition the K=1 term becomes large and can actually
dominate the K=0 term. This has been verified experimentally in the case of
stimulated electronic Raman scattering in caesium [14] and leads to a flipping
over of ¢ from €|/ €, to €, | €,. Put in a more general way, the operator (&z)* is
to a good approximation spin-independent if non-resonant, whence the orbital
selection rule is satisfactory. When a resonance occurs, the operator becomes
strongly spin-dependent inasmuch as the intermediate state multiplet structure is
important, and so the selection rules must involve the multiplet description of
initial and final states. This shows that the description of |a) and |f) used in
(16) or (17) must be of a form compatible with the description of the intermediate
states, and in the resonance situafion considered above the intermediate state is
not well described as a product function.

Now it has been proposed [4] to increase sensitivity in CARS by resonantly
enhancing ag Or acagg 80 that I, is increased and the effects of background
diminished. It is quite possible then that the selection rules for CARS will
effectively be different from Raman scattering. Because of the resonance it may
be necessary to use (16) for ap (or ac,sgg), whereas (17) is adequate for agypg
(or ag). This combination of (16) and (17) can change the selection rules.
Consider again the case of alkali atoms. Resonant Raman scattering allows
K=0, 1in ag, by (16). If for the CARS process a4prg is non-resonant, (17)
allows K=0 only. Hence to a very good approximation ac,pe*ag is non-zero
for K=0 only, and the selection rules for the two processes are different. If
however o g Were resonant but not «p, then for both processes K=0 only
would be allowed by (17) and the (approximate) rules therefore are the same.
Thus, while (16) is always exact, showing the selection rules for Raman and CARS
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to be identical, physical information about resonance may effectively alter the
application of approximations such as (17) to the extent that the rules may appear
different for the two processes. Additionally there obviously is no reason for
ap and oc,pg to have the same magnitude when resonances occur.

The value of the geometrical selection rules is that they provide information
on the appropriate choice of geometry and polarization for a Raman or CARS
depolarization measurement, which in turn provides information on state
symmetries. ‘The results for Raman scattering are usually summarized in the
form of depolarization ratios. The connection between the spherical tensor
polarizability (x5 )* and the usual isotropy (2) and anisotropy (y?) terms is

= | (am)o %, (18 2)
7t=13 [l [ | (18 5)
ri=1 Y len)o (18¢)

where y,® and y,? are the antisymmetric and symmetric parts respectively of 2.
Thus from (14 a) we see that the angular dependence of Raman scattering is
given by

[ [*= 302047+ §7,%051 + 17,102 (19)

Use of (19) and table 1 give the depolarization ratios immediately. For example,
considering a linearly polarized pump, then the ratio of intensities of Stokes
radiation polarized | and || to the pump is given by

_IR(—L)_S')'&2+3792
PITT(D) Bt dy

When y,2= 0 (the usual case for non-resonant ro-vibrational scattering) then (20)
reduces to the usual textbook value. If y,? only is non-zero (i.e. K=1 only is
allowed), then p, is infinite.

For CARS one can, by analogy with (18) define &2, 7,2 and 7.2 where the
correspondence |(ap)oX |2 >(xcars)o*(ag)oX is made. Then the angular

dependence of the CARS intensity is determined by the expression

(20)

13820 cans® + 37,20 cans' + H7.20 0 ans? 2. (21)

If for linearly polarized light we write I,,= I, (8., B..), where B, is the angle
between the polarization vectors €, and €, and B, the corresponding angle
between €, and €, with all three vectors in the same plane, then from (21) and

table 2, we have
2

(22)

Ias(—l—’ —L) { _S‘}-’a2+3‘}7s2

LA ~ | 45a2+472

If we consider the most usual situation of 7,2=0, it is seen that the depolarization
ratio defined in (22) takes the value zero for a completely polarized line and &
for a depolarized line (5®=0). The latter is to be compared with the value of
{ obtained for a depolarized line in Raman scattering. The ratios defined in (20)
and (22) are rather similar and suffer from the disadvantage that it is difficult to
determine whether a line is depolarized or partially polarized. However, using
the freedom of the extra geometries that CARS can offer (three polarization




Coherent anti-Stokes Raman spectroscopy 679

vectors at our disposal rather than two in the case of Raman scattering) other
depolarization ratios can be defined. For the remaining ‘ 90°’ geometries, we see
from table 2 that I, (]|, 1)and I,4( L, |) vanish. This follows from the isotropy
of the medium introduced by orientation averaging. For example, if one chooses
the particular polarization vectors €,=¢,=e, and €,,=e, then ac, pg*ap=
(2cars)e*(@r).; and hence xcars=(Xcamrs)ez But this component of a
fourth-rank tensor vanishes in an isotropic medium, as is well known (see, for
example, [15]).

The use of circularly polarized radiation can offer some advantages in Raman
scattering depolarization studies [16] and it is therefore of interest to consider
if this is also true for CARS. It can be seen from table 2 that, when using
circularly polarized light, I, is non-zero only when the polarizations all have the
same sense, i.e. €, =€, =¢€,,=€,;. This requirement can also be deduced using
an argument based on conservation of angular momentum. For if e,=e,
(go= £ 1), and so on for €, €, then the net change of angular momentum of the
molecule as a result of the CARS process is (2¢, — g, —¢.5)h- As the molecule
ends up in the same state as its initial state (CARS is a parametric process) this
change of angular momentum must be zero. Then as 2¢,, = + 2, one must have
¢s=gas=9,. Clearly no ratio where all vectors are circularly polarized (and for
collinear propagation) can be defined.

Returning to arrangements using linearly polarized light, and taking B;=
tan~1(4) and B,,= + 7/4, we can define a ratio

I, (tan—1 (%), —74)= I 4552+ (20/3)7,2 ? (23)

T 4552 —(20/3)7,2+ 892 | °
fo (17 (4.5 (G0R)7*+ 87

Now if 7,2=0, then we see that in (23) the roles of &% and #,? are interchanged
compared to (20) and (22) and measurement of this ratio could perhaps provide a
better discrimination when nearly depolarized lines are being investigated. It
should be emphasized however that the usefulness of CARS depolarization
measurements through (22) and (23) will ultimately depend on the magnitude of
the background yyy since the term corresponding to the background contribu-
tion must be added to numerator and denominator in (22) and (23). Other
ratios may of course be defined and the use of table 2 makes their evaluation
straightforward.

4. ROTATIONAL STRUCTURE

For a free molecule, any of its states may be written as |7JM ) where J is the
total angular momentum, M its projection on the space-fixed z-axis and = labels
any additional quantum numbers. Then from the Wigner—Eckart theorem

1\24: % [<m M| (8r )™ | TatuM o> |?
i

=(2J,+ 1) Kr(@r)< [ 7al> B (24)
where the Y in(3) has become the ), in(24). Since from the right-hand side

deg f My
(24) can be seen to be independent of M, it follows that if the summation
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operation g,”* Y =(2J,+1)! Y is carried out it simply multiplies each side by
deg a Mo

unity. It is of interest to note that the orientation average for an atom or

rotating molecule is usually carried out by this last sum and the fact that this

summation leaves (24) unchanged confirms that an orientation average has

indeed been carried out.

A further reduction of (24) can be made by refining the state descriptions.
For example, given a symmetric rotor with states |yJKM ) it may be shown that
(24) is

(2J,+ 1) LE(f, a)SX(f, a) (25)

where the rotational structure factor ZX(f, a) is (assuming totally symmetric

vibronic states)
J, K Ja>2

-k, 0 K,

LE(f, a)=(2J,+1)2J,+1) < (26)

and the Raman line strength SpX(f, ) is

SpX(f, a)= f<)’/l(&R)oKl}’a>lz- (27)

The matrix element in (27) is evaluated in the molecule-fixed frame. Note that
the quantum number K|, is not to be confused with the tensor rank, K.
By analogy with (27), we write for CARS,

Scars™(f, a)= {vy |(&cars)o® |7a>*<)’f I(&R)OK |)’a>- (28)

Then from (5), (14 @), (24) and (25) it can be seen that the Raman scattered
intensity is proportional to

(2Ja+1)7p(valaKa) 3 QK+ 1) £K(f, a)SpX(f, a)Op¥ (29)
K
and from (9), (15 a), (24) and (25) (with S, rs® (f, @) replacing SpX(f, a)), the
anti-Stokes intensity is found to be proportional to

(270 + 1) p( e Ko) Y CK+ 1) 25(f, a)Sosrs™(f, )Ocans® |* (30)

From (26) we see that (J,, K, J,) must form a triangle and this selection rule is
supplemented by the vibronic selection rules on (27), (28). The remarks made
above concerning (16), (17) apply here of course—the factorization implicit in
the labels yJKM may not be possible. (The triangle rule is a consequence of
an equation (17 ¢) for rotational motion, viz. I'g=D,€ D, ,,/sx DX x D, ,,'=
where (g, u) is needed if the molecule possesses a centre of symmetry.)

We have assumed totally symmetric vibronic states (apart from g, u labelling),
but this is not necessary. Then the main differences are that the 3 symbol is

replaced by
J; K Jo\2
< - K/ Kf -K, Ka>

and that in (27) and (28) the Q' =K, — K, components of the tensor operators
appear (rather than Q’=0). Thus despite the fact that (24) was summed over



Coherent anti-Stokes Raman spectroscopy 681

0, (27) and (28) depend on the Q' = K, — K, components of the Kth-rank tensors.
This follows from the factorization of the states and the evaluation of the reduced
matrix elements : Q' is not the Q in (24). Then (17) is supplemented by the
rules on K, K, implicit in the 3j symbol in (26) and any rules imposed by y,, v,.
However, in some cases (not treated here) of non-totally symmetric vibronic
states the factorization (25) cannot be made so simply.

For atoms & ;o ®(f, @) =1, the matrix elements in (27), (28) become reduced
matrix elements like {y,J;[(&g)¥|y,/,> and the triangle rule is of course the
embodiment of the rigorous rule (16).

The results of (29) and (30) show the power of the spherical tensor technique,
for one sees that the intensity structure is the same for both Raman and CARS
and indeed for the Kth-rank part of any non-linear process which can be written
in the form (7).

By comparing (24)—(29) with other treatments (e.g. [17]) there should be no
difficulty in writing down expressions analogous to (25) for other cases, such as
diatomic molecules with electronic angular momentum. These factors and the
absolute calculation of the line strength (including intermediate state rotational
structure) will be discussed fully in a later paper dealing with nth-order non-
linear processes.

5. DiscussioN

We have used spherical tensor techniques to treat the coherent anti-Stokes
Raman scattering process and have derived the orientation averaged susceptibility,
the selection rules, and the angular dependence on polarization vectors. A brief
discussion of rotational structure in CARS has also been given. For comparison
the well-known case of Raman scattering was also treated, with the advantage
that many results from Raman work can be used in CARS. The selection rules
for CARS were discussed in detail, as they have been a source of confusion in the
past. One can summarize these by saying that the rigorous rules are the same,
but that in making the usual approximations to these rules (such as separation of
vibrational and electronic states) care has to be taken if resonances occur. In
the presence of resonances the same approximations cannot always be made for
both processes, with the result that effectively the rules may differ.
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Addaldum to Mcl Phys 33 671-682 1977:
Fox CARS f:.tlmulated Raman Scattering and Two Photon Absorptlon/

En1551on, {D(d) should be replaced by g f)(a) - gf /j(f) This

' correcti.on is particularly important in rotational CARS, and this

can linit some applications.




