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Abstract. It is shown that for gemeration of infrared radiation by stimulated Raman
scattering, the diffraction spread of the Stokes wave can have a significant effect on the
threshold. Compared with an analysis in which gain focussing is neglected, the
threshold powers may be much higher with a corresponding reduction in tuning range.
The design of a Raman oscillator is considerably influenced by these diffraction effects,
and also it is found that the Stokes wave is subject to frequency-pulling which is

dependent on the pump power.
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focussing

It has been demonstrated recently.that stimulated
Raman scattering in gases [1, 2] and atomic vapours
[3-8] provides an efficient method of generating
tunable infrared radiation. The simplicity of the
technique makes it attractive for infrared spectroscopy
[7], and it is interesting therefore to examine the
possibilities of extending the tuning to longer
wavelengths.

The large frequency shifts (20000-30000cm™?)
available from electronic Raman transitions in atomic
vapours can in principle allow wide ranges of
infrared tuning for the Stokes wave, using currently
available dye lasers as the pump source. High
efficiencies are possible when the pump frequency
is close to resonance with a real intermediate level
(resonance Raman scattering). The frequency
dependence of the Raman gain coefficient G is
given by [7]

Grodlo(dw)], (1

where w, is the Stokes frequency, 4w is the detuning
of the pump frequency from the real intermediate
level i, and wj; is the frequency of the transition

between the final Raman state f and level i (see
Fig. 1). Since the gain coefficient is inversely
proportional to (4dw)?, it is' necessary to choose a
system with closely spaced intermediate and final
energy levels in order to produce tunable radiation

9
Fig. 1. Energy level diagram
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at longer infrared wavelengths. The inverse square
law dependence also means that, for a given pump
power, an increase in the Raman threshold will
decrease the available tuning range. Two factors tend
to raise the threshold for long wavelength generation.
Firstly, the gain coefficient is proportional to the
Stokes frequency. Secondly, as the ratio of the pump
and Stokes wavelengths becomes smalil, the diffrac-
tion loss of the Stokes light increases. This diffraction
loss can be large since the pump radiation will
usually be focussed to a narrow beam in the Raman
medium. Only the Stokes radiation which remains
inside the narrow pumped region is amplified and is
therefore observed emerging as a collimated beam
having dimensions similar to that of the pump. It
is this effect which is termed gain focussing, and
this paper analyses the effects of gain focussing on
the behaviour of infrared stimulated Raman
scattering.

The approach taken here is to use the theory of gain
focussing first formulated by Kogelnik [9], and which
has been successful in describing the performance of
certain types of high gain laser [10-16]. Following a
similar analysis, we are able to describe the growth
of Raman scattered radiation within the paraxial-
ray limits of Gaussian beam theory. A small signal
analysis will be developed in which depletion of the
pump beam and saturation of the medium are
neglected, and it therefore cannot be used to de-
scribe the detailed behaviour of the generated beams
when operating well into saturation. However the
theory can be used to analyse the threshold behaviour
from which calculations of the expected tuning
range can be made, and the results have important
implications for the design of infrared Raman
devices.

1. Gain Focussing Theory of Raman Scattering

We begin by seeking solutions for the wave equation
which describes the propagation of the generated
radiation. A uniform Raman active medium is
pumped by a laser beam travelling in the z direc-
tion, and the wave equation (in MKSA units) for the
resulting stimulated radiation at the Stokes frequency
w; is

VEE(wy)+0° E(w)/6z* + K E(w,)+ po; Plw)=0  (2)

where 2 is the transverse component of the Laplace
operator V2. The Stokes field is related to the

complex Fourier amplitude E(w,) by
E(t)=%[E(o,) exp(joy)+cc] ©)

and there is a corresponding equation with
subscript p denoting the pump field. The nonlinear
Stokes polarisation is defined in terms of the Raman
susceptibility as

P((,US)=80 X(a)(_ws; Dy, —Wp, ws)

E(w,) E(w,)*E(,) - )

At first we will consider the case where the pump
and Stokes frequencies are in exact resonance with
the Raman transition,

W= W, — Wy . (5)

The nonlinear susceptibility is then purely imaginary
[17], and may be written

X(s)(_ws; Wy, — Wy, ws) =] xR (6)

with yp real.
For solutions propagating mainly in the z direction
we will substitute

E(ws,p)=Es,p cXp (_jks,pz) (7)

where k; and k, are the real propagation constants
for the Stokes and pump waves, respectively. (In
fact, the following small signal theory can be applied
equally to both forward and backward travelling
waves.) The result of substituting for E(w,) in (2), and
making the usual paraxial approximations [18], is

V} E,—2jk,0E,/0z + jk,GE,=0 (8)
where
G=w}yrE pE;‘/ksc_z ) )

Here, G is the plane wave power gain coefficient
which is sometimes written as gI, where I, is the
incident pump intensity [7]. Since the pump field
varies over the beam cross-section (transverse to the
direction of propagation z), then through (9) there is
a corresponding variation in the Raman gain profile
which gives rise to focussing and guiding of the
Stokes light [19]. No straightforward analytical
solutions for (8) exist for the most interesting
practical situation in which the incident laser beam
has a Gaussian radial field distribution,

|E|=|El exp(=r?/W3). (10)
In this case, it follows from (9) that

G=G, exp(—2r}/W}). (11
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However, if squares and higher powers of (2r*/W})
are ignored in the expansion of (11), it folows that
close to the z axis where the fields are strongest, G
has a parabolic radial dependence. The Raman cell
then appears like the generalised lens-like medium
considered by Kogelnik [9], and the resulting wave
equation has exact solutions. We use this approach
to make useful first-order calculations, and the
results obtained by approximating the gain profile
in this way are justified later by comparing with the
results of a numerical analysis for an exact Gaussian
profile.

To simplify the explanation at first, we take a
constant 1/e pump field radius W, throughout the
medium. Then assuming circular cylindrical symmetry
for the Stokes beam, (8) becomes

10 (’_ 6ES) i CEs
rar\ o) 7 (12)
+jkGo(1 =212 /W2) E;=0.

Exact solutions of (12) are the Gaussian-Laguerre

modes, of which the lowest order is the Gaussian
wave

E;=Aexp[—j(¢+30r)], (13)

where the amplitude 4 and phase ¢ are real functions
of distance z, and Q is related to the Stokes complex
beam parameter g [20] by

Q/ky=1/q=1/R,—2j/k,W? . (14)

W, is the 1/e field radius, and the radius of curvature
R; is positive for a beam whose wavefront is convex
in the direction of propagation.

Substituting (13) in (12) and separating the terms
with equal powers of r gives the pair of equations

Qz/ks+dQ/dz+j2G0/W§=0 (15)
and
jO/ky+(j/AYdA)dz +dp/dz — jG,/2=0. (16)

Kogelnik [9] has shown that there is a matched
Gaussian mode Q,, whose beam parameters remain
constant whilst propagating through the medium.
Postulating dQ,,/dz=0, (15) gives

On=—j2k,Go/W;. (17)

Selecting the root which gives a real and positive
spot size, and separating the real and imaginary
parts gives

Rsm = (ks Wf:/GO)% (18)

and
WZ,=2(W3/Goky*t (19)

for the matched values of the radius of curvature
and spot size.

The development of a Stokes beam having an
initial beam parameter Q, as it propagates through
the Raman active medium is obtained from the
propagation Eq. (15). For the matched beam
(Q,=0,,), the beam parameter Q is stationary
throughout the medium, but if the input beam is not
matched, then the beam diameter and radius of
curvature fluctuate with distance z, tending towards
the matched values [Ref. 9, Eq. (34)]. From this
equation, it follows that for any initial value Q,,
Q converges with the matched value Q,, after a
distance of about 3Ry,.

The imaginary part of (16) gives the result

(1/4) dA/dz=Go/2— /R, (20)

which shows the relationship between the Stokes
field amplitude and the parameters of the pump and
Stokes beams. The final term in (20) represents the
reduction in amplitude which results from the
diffraction spread of a Gaussian beam. The net
increase in the amplitude of the Stokes field over a
length L is obtained by integrating (20), and for a
matched beam (@ =Q,,) for which R, is constant, the
result is

A(L)/AO)=exp[(P,—2)/P,) L/2kW1], (21)
where we have introduced the expression
P,=GokW2. (22)

From (9) and (11), it may be seen that Pp is a
dimensionless quantity related to the incident pump
power P,

P,=4poyrw,0? P,/nk,c*. (23)

In a gas or vapour where refractive indices are almost
unity,

P,=4poxrr?w? P ,/nc (24)

where k =ky/k,. Equation (21) shows that there is an
overall gain for the matched mode only if the
pump power P,>4. If P, is less than this, then the
loss due to diffraction spread exceeds the gain which
the Stokes wave receives from the scattering process.
This represents a fundamental gain threshold, which
differs from the usual experimental threshold
criterion referring to the point at which the Stokes
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wave has built up to a detectable level (detector
threshold). This will be discussed more fully
later.

In order to justify these results obtained by using
a parabolic approximation to the gain profile, we
also obtained numerical solutions in the case of a
Gaussian profile. Equations (8) and (9) are recast in
dimensionless form, and the corresponding finite
difference equations are solved using a computer [19].
Figures 2 and 3 show typical results for Stokes wave
propagation in a medium with a constant pump

Is(r')/ Is( 0)
1-0

RADWUS r/ Wsm
Fig. 2. Matched Stokes intensity profiles are shown for two
values of the normalised pump power 15,,. The computer results

(solid lines) are compared with the Gaussian profile exp(—2r2/W2)
(broken line)

100 1

10 1

PEAK STOKES INTENSITY (arb.units)
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Fig. 3. Computer results showing the growth of the peak
intensity of matched Stokes beams (for various values of
normalised pump power P,) as they propagate through the
Raman medium

beam radius. Figure 2 exhibits the field distributions
that were obtained for steady state (matched) Stokes
modes, and demonstrates that even with pump
powers close to the gain threshold, the Stokes fields
are almost Gaussian with a 1/e radius of ~W,,.
Figure 3 illustrates the growth in peak intensity of
Stokes light beams that were matched at the input
of the medium, and indicates that growth occurs
when the normalised pump power P is greater than
about 4, whilst for values of P,, less than this, the
intensity actually falls. These results appear to justify
the simple analytical approach.

The theory can be extended to cover the case which
is of practical interest, in which an incident TEMg,
mode pump beam, with confocal parameter b,, is
focussed to a waist W,, at a distance z, inside the
medium. The pump field 1/e radius is given by

W,=W,o(1+&), (25)

where £=2(z—z,)/b, .

The earlier analysis can be repeated with the addition
that W, can vary in the z direction, to give equations
similar to (15) and (20),

Q(2)*/k,+dQ(z)/dz +j2P ,/k W,(2)* =0 (26)
and

[1/A()1dA(z)/dz= P ,/2k,W,(z)* — 1/R(2) 27

noting that in this small 51gnal analysis, the pump
power P remains constant. In this case, one can
again defme a matched beam parameter Q,(z), but
in a more general sense than before; an input beam
not having the matched parameter will tend to the
matched beam as it propagates through the medium.
A very good approximation to this matched
parameter for a generated Stokes beam is given
by

Om=[2k&+(1=)) |/ P, Y/ W3, (1+&?) (28)

Then, as before, one may integrate (27) to find the
increase in the matched Stokes field over the cell
length L, and if, as is usual, the pump beam is
focussed at the centre of the cell (z,=iL), then the
result obtained is

A(L)/A(0)=exp{[(P,—2)/P,)/2x] arctan(L/b,)} .
' (29)

We now apply these results to single pass Raman
generation, in which one pass through the scattering
cell is sufficient to amplify the spontaneous Stokes
signal to a detectable level. For generating radiation
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which can be tuned in frequency, one wants to be
able to predict the pump power P, which would be
required to reach detector threshold (i.e. to generate
some minimum detectable Stokes power P(L),) at a
particular wavelength, Alternatively, for a given
available pump power, one may wish to calculate
the tuning range over which the generated power
will exceed the detectable minimum. For a given
value of the Raman susceptibility yg, the threshold
pump power [Watts] calculated from (24) and
(29) is
ne[1+ {1+ [x/arctan(L/b )} In[Py(L)w/Ps,1} 1%,
410 xrW @] (30)
where P, is the spontaneous Raman power coupled
into the matched Stokes mode. This equation shows
that to minimise the threshold, the pump beam
should be strongly focussed in the cell (large value
for L/b,). In any particular case, the optimum
focussing will depend on the breakdown and satura-
tion characteristics of the medium. If the Raman
shift is small (x=ky/k,~ 1) then for typical threshold
power gains of exp [30] and higher, (30) can be
approximated by

neln[PyL)y/Py,]
4poyrrwiarctan(L/b,)’

pth —

pth = G
Equation (31) is the result that would be obtained by
ignoring gain focussing effects, and implies a 1/«
threshold power dependence. This would apply for
example to Raman scattering of visible radiation in
liquids. However, for generating infrared radiation
using visible and near infrared pumping sources, k is
in the range 0.001-0.25 [3-8], and (30) predicts
significantly increased threshold pump powers
resulting from the infrared diffraction loss. For
example, radiation at 20pum has been produced using
the 65— 10s electronic Raman transition in caesium
vapour [5], and in that case (x=0.017), taking
L/b,=1typically, the necessary pump power predicted
by the gain focussing analysis (30) is about 8 times
greater than that estimated using (31). The difference
between (30) and (31) becomes increasingly pro-
nounced at longer generated wavelengths as (30)
tends towards a 1/x? threshold dependence. For
small x, the detector threshold condition given by
(30) tends to the condition 15,,:4, which is the
gain  threshold condition given earlier. This
illustrates that diffraction loss is the dominant factor
in determining the threshold for long wavelength
generation.

Finally in this section, we briefly consider the effect
of the real part of the Raman susceptibility, which
represents a contribution to the Stokes refractive
index which is proportional to the intensity of the
incident pump radiation (optical Kerr effect). This
gives rise to a pump-induced focussing or defocussing
of the Stokes light, and has recently been observed
experimentally on a Raman transition in benzene
[21]. Taking as an example homogeneous (Lorentzian)
dispersion of the Raman susceptibility, then

X(3)(—(l)s ; wp’ _wp’ ws)=XR/(a)~s _j) » (32)

where @&,=2(w,+w,;—w,)/I’, I' is the spontaneous
Raman linewidth (FWHM), and yxz is real as
before. On the high frequency side of the Raman
transition (w,>0), there is an increase in the Stokes
refractive index at the centre of the beam where the
incident radiation is strongest. This tends to reduce
the divergence of the Stokes wavefront, and so lowers
the diffraction loss. There is a corresponding increase
in divergence on the low frequency side (&, <0). One
therefore expects the net Stokes gain to be greatest
at some frequency displaced to the high frequency
side of the exact resonance given in (5). This is very
similar to the frequency pulling effect which can
occur in gas lasers due to the real part of the
susceptibility associated with the laser transition
(dispersion focussing) [14]. Repeating the previous
analysis, but including the contribution due to the
real part of y**, Eq. (29) now becomes

P, (ﬁp((l +dY - (;)S)ﬂ
1+d; 1+ @}

A(L)/A(Q)=exp {[

arctan(L/b p)/2rc} . (33)

A similar expression can be derived for a Doppler
broadened Raman transition [14]. Fig. 4 shows the
Stokes gain given by (33) plotted as a function of
frequency @, for various values of the normalised
pump power ISP. The frequency for maximum gain
shifts increasingly to the high frequency side of the
transition as P, is reduced. Eventually the gain
threshold (the point at which the diffraction loss
exactly equals the gain) is reached when 15p= 3.08, at
the frequency @,=0.58. (Previously when we
neglected dispersion focussing, the gain threshold
was ﬁp=4).

These results indicate that as the pump power is re-
duced towards the gain threshold, there is an increasing
frequency pulling effect which can result in the
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generated radiation being shifted by as much as a
quarter of the full-width spontaneous Raman
linewidth. As already pointed out, for longer
wavelengths there is a decreasing margin between the
detector threshold and the gain threshold, and so the
frequency shift of the output becomes increasingly
severe. To take an example, for generating 3.0pm
radiation using the 4s—3s electronic Raman transition
in potassium vapour (x=0.137) {7], the pump power

, required to reach exp [30] Stokes power gain,

calculated from (33) assuming L=b,, is P,=118.
The corresponding shift would be @,=0.19 shown
as point a on Fig. 4. A second example at a longer
wavelength is that of 20um generation using the
6s—10s transition in caesium vapour (k=0.017) [5].
Taking the same experimental conditions as in the
previous example, the detector threshold calculated
from (33) is P,=4.6, and the frequency shift is
®,=0.38, indicated by point b on Fig. 4. If the
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Fig. 4. Stokes gain spectra are shown for different values of
normalised pump power P,. As the pump power is reduced,
the frequency for maximum gain (broken line) shifts increasingly
to the high frequency side. The gain threshold (point x) is
reached when P,=3.08, at &,=0.58
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pump power is now increased above the detector
threshold, then the frequency shift will be reduced.
Provided our small signal analysis is not violated,
Fig. 4 indicates that in the second example given
above, an increase in pump power by a factor of 2
above the detector threshold will decrease the
frequency shift from &,=0.38 (point b) to &= ~0.22
(point ¢). This means that a variation in power
during the incident pump pulse can result in a
corresponding rapid variation (chirp) in the Stokes
frequency. These examples illustrate the way in
which gain and dispersion focussing can limit the
ultimate frequency purity of the generated
radiation.

2. Raman Oscillator

It is well known that the modes obtained in high
gain lasers may depart appreciably from those
predicted by empty resonator theory [20], and this
has been successfully explained in certain cases by
taking into account the spatial variations of gain
and refractive index found in such lasers [10-13].
Recently a number of papers have been devoted to
extending Kogelnik’s analysis of propagation in lens-
like media [9] to predict the modes and stability
of optical resonators in which gain focussing
mechanisms are present [10-16]. In the same way,
the Raman gain focussing analysis developed here
can be used to investigate the behaviour of a
Raman oscillator. The oscillator is assumed to consist
of a scattering cell between a pair of mirrors which
partially reflect the Stokes light whilst wholly
transmitting the pump light [1]. Repeated reflection
of the Stokes wave increases the overall amplification
and hence the available tuning range. We show here
however that for infrared generation it is important
to take diffraction effects into account when making
theoretical predictions of threshold.

It is assumed in what follows that the oscillator mode
is wholly confined (the dimensions of the beams
remain finite inside the cavity) [15], and so may be
completely described within the limits of Gaussian
beam theory. It is then possible to integrate (27) to
calculate the round-trip gain experienced by the
Stokes wave. Hence the resonator can only sustain

continuous (cw) oscillations if
(P,/ky) [6dz/W?3 >§dz/R,—Inr, (34)

where L is the distance between the mirrors, r is the
average field reflectivity at the Stokes wavelength,
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and from (23), ﬁp is zero outside the Raman medium
(xg=0). It has been assumed in (34) that the gain
coefficients for the forward and backward travelling
Stokes waves are equal, although there is an obvious
extension in cases where this is not true [22]. The
loop integration on the right hand side of (34) is
carried out over a complete round trip of the
cavity using the sign convention for R; defined
earlier. This integral, which is non-zero in the
presence of gain focussing and represents the
diffraction loss from the generated radiation, can
substantially increase the oscillation threshold. If the
threshold condition is not satisfied, the amplitude
reduction due to losses and diffraction spread
exceeds the gain which the beam receives from
the scattering process, and the resonator is incapable
of sustaining oscillations. For pulsed operation, the
overall Stokes amplification must be sufficient for the
Stokes wave to reach some minimum detectable level
within the duration of the pumping pulse, and for a
threshold power gain of 10" per round trip,

(P,/k) 5dz/W2= (n/2)In 10 +§ dz/R,—Inr . (35)

In a low-loss cavity, the cw oscillation threshold
will be close to the gain threshold described in
Section 1. In that case, and for small Raman shifts
(kx> 1), our result (34) agrees closely with that of an
analysis in which gain focussing effects are neglected
[23]. However, for infrared generation the results
obtained using (34) and (35) differ considerably.

To evaluate (34) and (35) it is first necessary to know R,
the radius of curvature of the Stokes wavefront,
throughout the cavity. For any particular case, the
propagation equation (26) together with the
appropriate beam transformations corresponding
to reflection at the mirrors can be solved numerically
to find the self-consistent Gaussian mode of the
resonator. Following this procedure, the threshold
pump power can be calculated and optimised with
respect to the parameters of the medium, mirrors and
pump beam focussing.

By way of illustration we consider a particularly
simple example (not requiring computer analysis) of
a plane parallel resonator in which the incident
pump beam spot size W, is assumed constant
throughout the medium. Also we assume that the
scattering cell fills the space between the mirrors.
By considering the unfolded resonator it can be
seen that this corresponds to a uniform lens-like
medium of infinite extent. From Kogelnik’s analysis
[9] it then follows that the Stokes light is simply

confined in the matched mode Q, given by (17).
(Although this resonator is unstable in the con-
ventional sense [20], the focussing due to the
Raman gain profile results in stable confined modes
of oscillation [15].) Integrating (35) in this case
gives the detector threshold criterion

LLP,~2(P,)!Yxb,>(n/)In10~Inr, (36)

where k=ky/k,, and our assumption of eonstant-
pump beam spot size implies that the confocal
parameter b,2 L. The square root term on the left-
hand side of (36) represents the additional loss due
to diffraction of the generated wave. The effect of
this loss can be demonstrated by comparing the
threshold calculated from (36) with the detector
threshold for single-pass generation in a cell of the
same length. In both cases we will take a pump
beam confocal parameter b, equal to twice the
cell length, and so our assumption of constant
pump spot size is reasonable. We will also assume
that a threshold power gain of exp [30] is
required, and take the following typical oscillator
parameters; r=095 (representing ~90% Stokes
intensity reflectivity for the output coupling
mirror), n=0.5 (implying ~ 26 round trips necessary
to reach threshold). For Raman oscillation on the
first Stokes line in hydrogen gas using a pump
wavelength of 580 nm (x=0.76) [1], the threshold
calculated from (36) is P,=58. Whereas the
corresponding detector threshold for single-pass
generation calculated from (29) is Isp=6l, and so in
this case an oscillator configuration can reduce the
threshold pump power by about an order of
magnitude [1]. However, for Raman oscillation at
20 um using the 6s—10s electronic Raman transition
in caesium (x=0.017) [5], the situation is quite
different. In that case the threshold calculated from
(36) is 15,,=4.05, whereas the single pass generation
threshold from (29) is P,=59, representing a
reduction of only some 30% by using an
oscillator.

These examples have been given simply to illustrate
that our analysis suggests that, because of the
limits imposed by the diffraction loss particularly
at longer wavelengths, an oscillator configuration
does not necessarily result in a substantial reduction
in the threshold pump power (and corresponding
increase in tuning range) when compared with single-
pass generation. However, there are some situations
where an oscillator could be of value, even for
long wave generation. For example, if a very high
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pump power is available, it may be necessary to
use a large pump beam spot size W, in the medium.
This can imply either that a very long cell should
be used (thus keeping L/b,~1), or it may prove
more convenient to use a short cell in an oscillator
configuration.

In order to clarify the explanation, throughout this
section we have ignored the effect of the induced
focussing which arises from the real part of the
Raman susceptibility. However, following the
outline given in Section 1, the theory can be
extended to take this into account. In the example
we have considered, a plane parallel resonator with
weak pump beam focussing, the frequency
dependence of the single pass gain will be that shown
in Fig. 4 For a given pump power ﬁp, the
longitudinal mode which is nearest in frequency to
the maximum on the gain curve will be the one
which oscillates [14].

Conclusions

The theory of gain focussing has been used to analyse
the growth and propagation of stimulated Raman
radiation. It has been found that for long wavelength
generation, diffraction effects can become dominant,
and lead to a considerable decrease in the effective
gain. This raises the threshold and reduces the
available tuning range. Frequency pulling due
to the dispersion of the Raman susceptibility has also
been analysed, and under some conditions can be a
significant fraction of the spontaneous Raman
linewidth. Finally, it has been found that an
oscillator configuration will not necessarily produce
a dramatic reduction in threshold.
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