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Abstract. Starting with well known formulae for nth-order atomic susceptibilities,
irreducible spherical tensor techniques and Racah algebra are used to put these in a
form suitable for the treatment of complex nonlinear processes, e.g. where fine and
hyperfine interactions can be included and the interacting fields can have quite general
polarizations. By way of illustration the susceptibilities are calculated in detail for third
harmonic generation and Raman scattering in alkali vapours, taking into account the
effect of spin—orbit coupling.

1. Introduction

Interest in the nonlinear properties of atomic vapours has increased considerably with
the demonstration of their device potential as frequency converters. Possible applica-
tions include ultraviolet generation by harmonic generation (Ward and New 1969,
Miles and Harris 1973, Leung et al 1974), sum frequency generation (Hodgson et al
1974), up conversion of infrared radiation (Harris and Bloom 1974), and generation
of infrared radiation by four-photon parametric mixing and stimulated Raman
scattering (Sorokin et al 1973, Sorokin and Lankard 1973, Rokni and Yatsiv 1967,
Carlsten and Dunn 1975, Cotter et al 1975). Other nonlinear processes of interest
include self-focusing (Lehmberg et al 1974) and multiphoton absorption and emission
(Barak et al 1969, Bebb 1966). The exact calculation of the various susceptibilities for
these processes can be a tedious exercise. A number of simplifications are usually
introduced to keep the calculations down to a reasonable length, for example the
assumption that all the interacting waves are plane polarized. Often the fine structure
is neglected (although see Bebb 1966, Vriens 1974 and Eicher 1975). Since many of the
proposed applications involve interactions which are resonantly enhanced by tuning
one or more frequencies close to a resonance transition, it is not always a good
approximation to neglect this fine structure. Also, the use of circularly polarized waves
can be valuable in suppressing unwanted processes (Hodgson et al 1974).

The aim of this paper is therefore to present some rather general susceptibility
expressions in which these simplifying assumptions are avoided as far as possible. The
main restriction placed on this analysis is to confine the treatment to electric-dipole
interactions. Otherwise, however, the expressions apply to any order of susceptibility,
to any polarization of the interacting fields, and include the effects of fine structure.

In §2 the notation for the susceptibilities is established beginning with the
expression for the nth-order nonlinear susceptibility as given by Butcher (1965). To
keep this expression in compact form, no damping is included but damping terms can
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be introduced quite simply into later expressions. The susceptibility formulae contain
products of matrix elements of the dipole operator Q =er, of the form
(yJM|Q|y'J'M"> which connect the initial and final atomic states through a chain
of intermediate (‘virtual’) states.

In §3 we use Racah algebra to sum over the intermediate-state M values. The
susceptibility can then be factorized into two parts, in one of which the relation
between the fields is explicitly displayed; the other contains the physics of the atom
in the form of reduced matrix elements and 6; symbols. The magnitude of the reduced
matrix element can then be related to oscillator strengths and hence to tabulated
experimental data. Once the coupling mode (for example LS or jj) is assumed, the
reduced matrix element can be expressed in terms of radial matrix elements. The sign
of the radial integral (and hence of the reduced matrix elements) can then be found
by calculation.

Finally, the use of these susceptibility expressions is illustrated in §§4 and 5 with
a detailed treatment of third harmonic generation and Raman scattering in alkali
vapours including the effects of spin—orbit coupling.

2. Nonlinear polarization

We take as our starting point the nth-order nonlinear susceptibility for a loss-free
medium of identical, stationary, non-interacting atoms as derived by Butcher (1965)
(see also Ducuing (1969) for an alternative derivation), viz:

(=1yN S: Y 0 al Qb1 <b11Qy, 102> (bul @y, 19

(n) . .. —
sz -'-a,,(_wO’wl. (U,,) = aa
‘ nlh'e 4T, D(aby -+ by; @y )

(M

where
D(ab, b0, w,)
=(Qup, t 0 t o+ -+ ), + 0, + w3 + + W)
= (Qup, + @) )
Here N is the density of atoms, Q,, is the o;th Cartesian component of the electric-

dipole operator Q = er, Q,, is the frequency difference of two unperturbed energy
levels E,, E, of an atom

Qab = (En - Eb)/h ' (3)
and wy, = —(w; + -+- + w,). Sy is the overall permutation operator which indicates
that the expression following it is to be summed over all permutations of the pairs
UWg, 0 Wy, . .., A0, PO, is the equilibrium probability distribution for state |a).

The real electric field at frequency w is written as
E(,rt) = J(eE, (e + € E_,(re™), Ei(r) = E_,(r) ()

where in general the unit magnitude polarization vector € is a complex linear com-
bination of the real Cartesian unit vectors e;, (iex, y, z). In a similar manner the
polarization P at frequency @, can be written as

P(wo,r,t) = %(Gwao(r) eI’ + €§P_, (r) ™), P, = P_, (1) &)

To make full use of tensor -techniques it will be necessary to write the polarization
vectors € in terms of the unit complex spherical vectors e, (€0, +1), instead of the
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real unit cartesian vectors e;, (i € x, y, z). The spherical vectors are defined by

€ = €; (6a)

ery = Fle, +ie,)/ /2. (6b)
Notice that

ef = —e_,. (N

If we assume an e*** dependence in E, , then left and right circularly polarized
waves propagating in the z direction have fields E, , and E_, respectively, where

E, = 3(eE, e " + efE_,e'), g=+1 @)

and where E,, are defined in (4). This may be seen by putting E, = e~ i®~*
(A, ¢ real) and using (6) and (7) in (8). Then for example,

E., = —A[e,cos(wt — kz + ¢) + e,sin(wt — kz + ¢)]

which can be seen to be left circularly polarized. Notice that a wave linearly polarized
in the x direction has its field given by

E.=(E-, — E.)/y2 )

The importance of using € or €* is now clear—a right circularly polarized beam
of positive frequency propagating in the z direction has polarization vector € = e_,,
but if of negative frequency it has a polarization vector €* = (e_ )* = —e,; yet e4,
for a positive frequency describes left circularly polarized light. We consider propaga-
tion in an arbitrary direction in §5. It is assumed in such a case that
E, (1) oc eti*r,

If damping terms are included in the susceptibility expression the susceptibility no
longer exhibits overall permutation symmetry as in (1). However from very general
considerations (see for example Butcher 1965) it is possible to show that the nth-order
susceptibility still possesses intrinsic permutation symmetry, i.e. it is invariant under
all permutations of the pairs o, @, , . .., a,w,. This property may be used with definitions
(4) and (5) to show that the nth-order polarization at frequency w, has uth component o thiee

an _(a)
(€0} PEY() = Puylv) 1o G )
= €oK(—wo;0;"* wy) Z Xids - anl = 00301 Wn)Egyo,(r)** By, (1), X,f“%’i:?
(4,0, - - &, are Cartesian components and we use SI units throughout this paper). fk%o:;i‘ﬂ

The function K(—wq;w, ‘- @,) was introduced by Ward and New (1969) and has Meope
been tabulated for n = 2 and 3 by Orr and Ward (1971); it contains the factors of §
from (4) and (5) and the number 2 of distinguishable permutations of the frequencies
, - w,. If there are no zero frequencies involved,

K(—wp;0, w,) =2'"""2. (11)

From (4), (5) and (10), and using €} .€, = 1 it is clear that
Pm(") = €OI<(_('OO NOTRE wn)X‘"’(—wo sy wn)Ewl(r) e Ew,.(r) (12)

AMP(B) 9/5—cC
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where

(—1)”1\15T Z ‘?a<a|€6‘-Q|b1><b1|€1~lez>'“<b..|€,.-Q|a>'

(n), . -
X —wos0y ) =
’ " n! h"€0 ab, b, D(abl"'b,,;wl"'w,,)

(13)

In this last equation the overall permutation operator now refers to the pairs
€fw,, €, 0, etc.

It should be noticed that the {w;} in (12) can be negative; thus for example, in
the Raman effect where we have a pump field at frequency w, and a scattered field
at frequency ws, (12) contains E, (r), E_,(r) and E,(r). In such-cases (13) should
contain €} corresponding to E_,(r) in (12). Equation (12) may be regarded as a
scalarized form of (10) and this was the reason for the choice of notation
P —wg;w, - w,), a symbol with no subscripts.

Now it can be shown from Maxwell’s equations that the power input to unit volume
of the medium from the field at frequency w, is given by the imaginary part of
twoe* € E_,, (NP, (r). Thus since y™(—w,;w, - w,) as defined in (13) is purely real
it cannot be used as it stands to describe non-parametric processes such as the Raman
effect, or indeed any resonant process in which absorption of electromagnetic energy
by the medium occurs. We therefore follow the usual practice of inserting, by
inspection, damping terms of appropriate sign in resonant denominators (see for
example Butcher (1965), Ducuing (1969) and Orr and Ward (1971)). As discussed above
this must remove the overall (but not the intrinsic) permutation symmetry.

Particular cases of (13) which will be examined in detail later are for third
harmonic generation (THG) and two-photon non-parametric processes, viz the
stimulated Raman effect (SRE) and two-photon absorption (TPA) and emission (TPE).

For THG, (13) gives

N

X(s)(—-”wa’ w, w) = PE o Zpaa'/”mc = h3€0 My (14)
with
M =Y a|€3.Q1by<ble.Q|c){c|le.Q|d){d|e.Q]a)

B bed (Qba - 3w)(Qca - 2w)(Qda - (D)

4 Sale.Q|by<bles.Qlc)(cle.Qld)(d|e.Qla)
(Qu + 0)( Qe — 20)(Q — )

4 {ale.Q|b)<{ble.Qlc){c|ef.Q|d)<{d|e.Q]a)
(Qba + w)(Qca + 2w)(Qda - w)

<al€ Qlb)y<{ble.Qlcy{cle.Qld)<{d|e}.Qla)
(Qba + w)(Qca + zw)(Qda + 3(0) '

where the bar over .#qys denotes the average over initial states made by X,p2,. If
all the fields are linearly polarized in the z direction (14) and (15) together reduce
immediately to the expression for the third harmonic susceptibility glven by Miles and
Harris (1973). '

The Raman susceptibility is obtained from (13) by assuming that the pump field
of frequency w, and polarization vector €, and the scattered light of frequency w, and
polarization vector €,, are in strong resonance with two (possibly degenerate) energy
levels, #Q, and #Q,, of the medium. Thus v, — o, ~ Q,,, where for definiteness we

(15)
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assume Q, > Q.. Then it is found that the susceptibility can be expressed in a
factorized form (Butcher (1965) considers the non-degenerate case):

N 1 -0 =0 2
- M
6h’€) (Q, + 0, — w,) + il degzo.-a degf C(Paa Peo) |- skl
(16)

X(S)(_ws;wpb _wp’ ws) =

where

b

j,mEZ(<c|er.Q(|21:><_bZ:.Q|a> N <c|ep.QAl:>ib!U5:.Q|a>>_ 0

I'.. is the phenomenological damping term introduced for reasons discussed above.
The sums X, orar Zaegor are taken over the degenerate states of energy hQ,, hQ,
respectively, and p2, po are used to indicate the fractional populations of the
degenerate states of these energies. It can be seen that (16) takes into account all
transitions between the lower and upper levels which contribute to the resonant
susceptibility. For the remainder of this paper it will be assumed that degenerate states
of a given energy are equally populated.

To obtain the equations for TPA and TPE one merely makes the substitution in
(16) and (17) of

€ > e, w,— —o, and r,— —T.. (18)

The notation .#1y;, etc, has been borrowed from Loudon (1973), where these
processes are described using a transition rate approach; the resuits of this paper
can thus be applied to his formulae and similar ones. With the transition rate
approach one usually assumes a definite initial energy level which for TPE would be
level ¢, so that one has p2, = 0, p2 = 1. The transition rate calculation then leads to
the result that |.#ypg|® = |.#¥p4)%. Since the expression for .#%,, contains €, €*,
which are associated with —~w,, —w, in (4), it can be seen that this implies emission
of photons at frequencies w, and w,. However, since |##%a|> = | #1pa]l*> we can use
|. #1pa|? for both TPA and TpE; which of these two processes actually dominates is
governed by the sign of the population difference p2, — p2 in (the more general) (16).

3. Reduction of general nonlinear susceptibility

3.1. Recoupling of polarization vectors and summation over intermediate-state
degeneracies

Using electric-dipole matrix elements of the form (yJM | Q |y'J'M’> where the symbols
have their usual meanings, we consider the function W defined by

Wie,..... €71 vadayd)
= Z i Ml €.Q 1y JaMy5 <y, J ;M1 €.Q |y3 T3 M) -
My M,
<'}),,J,,M,,|€,,-Q|'})JM> (19)
The ‘initial state’, [yJM ), is referred to by not using a suffix; if J,,, occurs we write
J instead, and similarly for y,,,, M,,,. By permuting all the ¢ in (19) and

dividing by the appropriate frequency factors one clearly recovers the ‘matrix elements’
# discussed above.



734 M A Yuratich and D C Hanna

For the remainder of this paper we use the notations and conventions of Brink
and Satchler (1971) (BS) and Shore and Menzel (1968) (SM). (Caution should be
exercised in using formulae from the latter reference as the book contains a number
of typographical errors.) It should be noted however that these works differ in their
definition of reduced matrix element, and we have adopted the choice in SM. The
reduced matrix element of SM is (2J + 1)!/? times the corresponding reduced matrix
element as defined by BS.

Tensor products will be written as

Tg()(A(k) % B(k’)) = (A(k) % B(k’))(QK) = (k x k/)g()

k k¥ K
g1 42 —Q
where we use a 3j symbol in preference to a Clebsch—Gordan coefficient. For brevity

we shall use the notation [x, y,...] = [(2x + 1)(2y + 1)---]. Using (20) it is seen that
the dot product of two tensors is

= (2K + )2(=1) 72y ( )AL’?BEJQ" (20)
4192

TOU® = Y (~ 12 TE,UP = (= DX [KJVHTE x UKRYP, 1)
Q

With these preliminaries we return to (19). In appendix 1 it is shown, using (21),
as a basis, that the generalization of the vector relations

a;.b, =b,.a,
a,.bia.b; = i.a,.azbl.bz + Ha, x ay).(by x by) + (a; x ar)?.(b, x by)?
(BS p 149) to nth-order is
a,.b,as.b,---a,.b,

— Z (_I)Kn+n(...((a1 X az)(Kz) X a3)(K3)... % a")(Kn)
K2 Kn

(o ((by x bz)(l(z) X b3)(K3)... X bn)(Kn)’ (22)

The superscripts ! on the vectors have not been included as the meaning is clear.
By identifying a; with €; and b; with {y;J;M;{ Q|y;.1J;+ 1M, ) it is seen that
the fields have been separated from the medium as represented by matrix elements.
Reference to the discussion in appendix 3 shows that this is the basic step in reducing
(1) to spherical tensor form.
Using graphical techniques for clarity it is shown in appendix 2 that

g ZM (K11 M | Qly, M) x <)’2]2M2|Q|)’3J3M3>)(K2) X oo

X (pndaM,| Q Iy M)
= (=1 MK Ky K2 @2 d 20 2 dall Qv dsd

Jy Ky J\JJy Ko T JJy K5 Ja|

{1 Joy Kiof U Ja Ko *)
where

P"'—'(Jl+K2+J3)+(J1+K3+J4)+"'+(J1+K1_1+J[)+"'A
+(J, + K, +J). (24)
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The phase factor P, is just the sum of the top lines of the 6j symbols that appear
in (23).

The angular momenta J,, J,,..., J,, J of the states determine, through triangle and
integer rules in the 6j symbols, the allowed values of K,---K,. The physics of
particular atoms is contained in the reduced matrix elements and thus the dependence
on field polarization vectors for processes in atomic gases and vapours can be
determined with no reference to LS, jj or other coupling modes.

Combining (22) and (23) with the use of (21) we obtain

W(El ”'en;yl']la~'-9’))n']na ?J)
— Z (_1)J;—M1+P,,+K,,+Q,‘+n[K2,“.’K"]l/z

QK2 Kp
J, K, J

x {y,J J o J T"‘"’< RN )

yiJ il @llyad s - <yadull @IV M, 0" M

Ji Ky Ji| Iy K3 Jy J K, J
X {1 J, 1 Hl I5 K, 1 J, K, 23

where
(K..) _( ((51 X €2)(1(2) X €3)(1(3) X )(K("g),, (26)

While it might appear that (25) merely replaces the sum over M,---M, by another,
that over K, -+ K,, it should be realized that in general the latter sum is far more
restricted ; furthermore it has the advantage of the insight given by the separation of
the fields from the matrix elements; this is discussed more fully below.

It is well known that a tensor of odd rank describing a polar property of a medium
with inversion symmetry vanishes identically. This can be seen clearly in (13) applied
to a gas of atoms. Here, as the atomic wavefunctions have definite parity and electric-
dipole transitions are considered, there must be n + ! changes of parity as we go
through the states |a), |b,> -+ |b,», |a). The first and last states are the same, |a), so
they have the same parity, and thus as parity is two-valued n + 1 must be even, ie.
the tensor must be of even rank. For the rest of this paper n is therefore taken
to be odd.

This property is a consequence of the inversion symmetry of a single atom. The
average over degenerate states implied by X, p%, in (3) introduces the macroscopic

isotropy of the medium. Writing
J

Y Pas = Z P2, y @7

[J Tuss,
(13) and‘(19) can be combined to give

1N~ wos0, - ,)
(—1"N 1
=" 8§ T
nl teg T,Z,”«’ ]
Wiet.e,,....€.;70, 7101, s Vudws 7)
M==J yiJy = yndn D(VJ’lel”'yn']n;wlv""wn)

J

. ' (28)

X

We have had to go to n + 1 matrix elements and renumber the labels in (19) on
passing to (28) so that €, *€,,; — €3, €, "€, and y;J; Y 1 Jpu 1, ¥ 2001y
Yndu» ¥J. Then using this relabellmg in the explicit form of W given in (25), it is clear
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that the average .o/ given by

J-M J Kn+1 J) 29
[JJMZJ( D (—meﬁlAl @)

needs to be evaluated. The 3j selection rule gives Q,,., = 0. It can be shown in
several ways (for example by explicit reduction and summation of the formula for the
3j symbols) that

1

e,d = Ejjl_/zék"*l’o 5Qn+h0'

(30)
From the 6j selection rules K, ., = O implies K, = 1. After a little tidying up, we
finally have
2Ot wosw, - @,)
—N _
== —8 Z Z (=12 T lp;(')J—-yJ[']] !

n! h'e, oo indn Ky Koy
x [Ky  Kue V2N QI T - vadull Q1D
X“”@Exﬂw”XQW”X“XG—J“XGW%{Kzh}

D(yJ,yiJy yudns 010 @) 1 J; 1
J K, J, JK,_, J,_,) (J1 Jn
X{IJZKJ {1thKr, L duey Kooy Gla
where
¢n71=(J+K2+J3)+(J+K3+J3)+"'+(J+Kn_l+J,,_1). (31b)

This is the simplest working formula for the nth-order nonlinear susceptibility.
From this equation we can write down at once as detailed an atomic structure as is
required for describing a particular process. The fact that K,,, =0 is not a
coincidence. It can be deduced as a consequence of symmetry by the use of group
theory, and this is shown in appendix 3. It is also shown in this appendix that (31)
represents the reduction of the susceptibility tensor to irreducible spherical form,
where K, - K,_, label different spherical tensors. Reference to (31) shows another
physical interpretation of the K, --K,,,(=0). This is that K, is the total angular
momentum of ! coupled electric fields. Thus €} is a tensor of rank one, transforming
as a field having an angular momentum of one. Two fields €, €, can couple to give
a total angular momentum of 0, 1 or 2. In making a dipole transition from
[¥1-1Ji—1> to {y.J,> we use a field of angular momentum one, and so get the triangle
rule from the 6j symbols on 1, J; and J,_,. But in getting to the state |y,J,>, [ dipole
transitions have been made from the state [yJ) to |y,J,> and then to |y,J,)> up to
[vJ;>. and so have involved [ fields of total angular momentum K,. Hence the 6j
symbols contain a triangle rule on K;, J and J,.

3.2. Calculation of reduced matrix elements

In equation (31) it can be seen that the physics of the atoms is expressed in the form
of reduced matrix elements. It is customary to obtain the values of the reduced
matrix elements from experimental data, through the relationship to electric-dipole
oscillator strength:

1 _
ounQnyJ>2—3f—[]f“ v (32)

yl—v-’



Nonlinear atomic susceptibilities 737

The sign of the reduced matrix element may be found by assuming a particular
coupling mode and then writing it in terms of radial integrals. The signs of the
integrals (and hence of the reduced matrix elements) are then obtained from
theoretical calculations where available. Vriens (1974) has used a combination of
experimental and theoretical results to deduce these signs for indium and thallium.
In view of the considerable interest in alkali vapours we give the reduction using LS
coupling for one electron:
IR T = Lnlsd | Q [In'T's] ">
I D A A
=[LJP (=1 *f{l v

2

the greater of [ and I’ we find, using (SM p 298)
nll| QIn' Ty = e(—~ 1> /L, (nljrin'l) (34)
and (33) that

1JJ
INQIYTS = e[, 15 3 (= 1)+ {1 I l}<nllr!n’l’>- (35)

The radial matrix element may be related to the #,,,,,- used by Miles and Harris (1973):

(4% — 112
I,

The state |nl0) is a hydrogenic orbital [nlm; = 0>. As tabulations of {nl|r|n'l'> are
available for the alkalis (see for example Miles and Harris 1973, Eicher 1975) we
shall use the coupling (35) in the examples of §§4 and 5, rather than leave the results
in terms of reduced matrix elements.

Gl rlpl'y = (412 — 1) R,y 0 = nl0] z |n'1'0). (36)

4. Third harmonic generation in alkali vapours

From (15) and (31) we may immediately write

7 a— l
My = 2 Z—PSJ—;'J(—'1)J+K2+JZ[K2]1/2 {‘{ Ijl ‘1]2}{'] 1 J3}
1

x QT > i il @Iy2d 2> <y2 a1 @lysds)
x {y3 5l @lIyJ> F(K3) (37)

1J, K,

wIodiyatavads Ky [J]

where
(((e3 x €/ x &)'" x €)”

Q4,0 — 30)Q,,,.5 — 20)(Q,,4,,y — ©)
(e x €5)*? x €)'V x €)”

(5,0 + 0N,y — 20)0(Q,,5,, — ©)
(((e x €)% x e})V x €)Y

Q5,0 + O)Q, 4,5 + 20)(Q,,5,.5 — ®)
(e x €)%Y x &)V x e})p”

Q0 + O Qg0 + 20)(Q,,,0 + 30)

F(K,) =

+

+

+

|
} <nlll QUIn'T (33)

(see for example SM p 299). Here s is of course §. Using the notation [, to mean
(38)



738 M A Yuratich and D C Hanna

Study of the polarization vector coupling soon reveals that F(K, = 1) = 0, and so
only the cases K, = 0 and 2 need be considered. It is an easy matter to retain this
coupling in the examples below; however, since experimentally it is usual to use
collinearly propagating linearly polarized light, we restrict the analysis to this case
and put € = €% = ¢,. (If the vector coupling is kept it soon becomes clear that # ug
vanishes if € is circularly polarized; this is a well known result.) Assuming linearly
polarized light and defining a frequency factor

F(y1d172J273J3) = F(K;) with numerators put equal to unity, (39)

it is soon found with the aid of (20) that

F(0) = %9—(?1J1?2J2?3J3) (40a)
and

2
FQ2)= \/ F(71J172J27373). (40b)

4.1. Alkali atom with no spin—orbit coupling

As an example we start with the simple case of a gas of alkali atoms all in the
ground state, neglecting fine structure. The state labels used are |y'J’) = |n'l') where
it is understood that the spin is s = 4 for all states. As the ground state is |ns), the
6j selection rules imply J, = I, = 1 {=p)=J; =lyand J, = I, = 0 or 2 (s or d). This
is a manifestation of the well known electric-dipole selection rule. Using (34) and (40),
(37) becomes, after the simple task of evaluating the 6j symbols,

4

— ¢
Mo = — Z {ns|r(nypy (Knyp|rinys)<n,s|rinsp) F(np,n,s, n3p)

9 ninan3
+ ${nyplrinyd) <ny d|r [n3p)F(nyp, ny d, n3p)) {nsp| r ns). (41)
Application of (36) to (41) gives the expression used by Miles and Harris (1973).

4.2. Alkali atom with spin—orbit coupling

The ground state is now |n*S;,,), and we use state labels |y'J’ > = [n'I'}J’) where the

1 refers to spin. Again [, =l; =1, and I, =0 or 2, but now there are 9 possible

intermediate state I'J’ choices, with K, = 0 or 2 to take into account. Enumeration of

the possibilities (of which there are less than 18 due to limitations on J’, K, imposed

by the 6j symbols) and using (35) for the reduced matrix elements leads directly to
4

My = 8_1 Y. <ns|rlnypy<nyplringsy {nys|rnsp)<nsplrins)

X (y("lp%, nzs%, n3p%) + 23‘7("113%,”25%, ”3P%) + 29("11’%,"23%,"&%)

2e* ‘
ETE Z {ns|r|n;p)<{np|rin,d>

+ 4F(n,p3,n,55,n3p3) +
X <n2d|r|n3p>(n3p|r|ns>(.97(n1p%,n2d%, n3p3)
+ $#(n,p3,n,d3,n3p3) + $F(n,p3. n,d3, nypd)

+ 25 F(n,p3,nyd3,n3p3) + 32 F(n,p3,n,d3,n3p3). 42)
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(We have not used a label for spin in the frequency factors as this is unnecessary;
the argument reads %F(n,l,J,,n,1,J,,n313J3).) If the coupling is now ‘turned off’,
each frequency factor with [, = s becomes the %#(n,p,n,s,n;p) of (41), and similarly
for I, = d. Adding up the result leads back to (41) as expected.

From (37) and (38) it can be seen that it is only necessary to alter the frequency
factors in (42) to obtain the susceptibility for four-wave mixing.

5. The Raman effect

An ab initio treatment of Raman scattering can start directly from (31) in the same
way as already illustrated for the case of THG. However since it is possible to put
the expression for the Raman susceptibility in a factorized form as in (16) we shall
start with this form and use (25) directly. Unlike the treatment of THG given above,
we retain the general dependence on polarization vectors since the angular scattering
distribution of Stokes radiation is of experimental importance.

From (16), (17) and (25) we find, if all the atoms are in the lower state so that
pY =[J] tand p% = 0,

Z m)a’/%srtdz = lﬂSREIZ

degof a degof ¢

! J K J
= —— -1 Q K 1/2 1
G PRR S (-—Ml QM)
Ji K J
X{l‘ p 1}<m,nQ||v212><v212|lanJ>
2 .

2

: (43)

y ( (€ x e)%) . (€ x €)%) )
.(Q}'zlz',v.l - (Dp) (QYZJZYJ + (Ds)
(Use has been made of the square modulus to remove most of the phase, and the
subscript on K,, Q, omitted as it no longer serves any purpose.)
Now the nth-order tensor coupled fields do not in general admit of simple
permutation properties; however, for two such vectors we have the result from (20) that

(€F x €)% = (=1, x e)®. (44)

The 3j symbol can be eliminated from (43) as follows. Considering (43) in the form

J, K J 2
S 09(_yrt  ar K1 @) d(Kwprdond )

)}

MM,

in which (44) has been used, the square modulus may be expanded by multiplying
out the terms in the sum over K. Then the sum over M, M, may be carried out by
using the 3j symbol orthogonality relationship

J J, K J J1 K’ _ 1
M,ZI\:lu(M -M, Q)(M —M Q’>— mé"-K’éQ,Q" (45)

This removes the cross terms and leaves

—_ 1 JLKJ '
I'/”SREIZ_ '—Z ZJ {11 J 1}<V1J1||Q||72J2><Y2J2||Q”?J>

1%

2
e® (46)

( 1 (=¥ )
x +
(Q‘/zlz‘/-’ - wp) (Qn.ler + ws)
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where the angular dependence is contained in the factor
O = %:l(e;" X €,)0012. (47)

Equation (46) applies for any atom, provided the total angular momenta J; remain
good quantum numbers. It is shown in appendix 3, using arguments based purely on
the symmetry of an isotropic medium, that any process described by a third-order
nonlinear susceptibility can only have an angular dependence on the fields involved
given by linear combinations of

(€3 x €)% x €)'V x &)§ : (48a)
(see (A.3.4)) which may be shown with the aid of (20) to be equal to
1K
ET(]I_‘)E (€% x €)®.(e; x &) (K=0,10r2). " (48b)

Then for the Raman effect in any isotropic medium, we put €, =€, = ¢,
€, = €} = ¢, (this follows from the expanded form of (16) and (17), as discussed
above) and find that (48) is equal to ® ®)/[ K]/, again by use of (20).

Thus although the particular examples discussed below are concerned with alkali
atoms, the results for @® apply to any isotropic medium, for example a molecular
gas or liquid. The study of the angular distribution of Stokes radiation from such
media is of interest since it can yield information about the symmetries of the initial
and final molecular states involved (see for example Damen et al 1965).

For the remainder of this section we will deal with hydrogenic atoms, and it is
convenient to introduce the definition

1 (—1¥ )
D(n,1,J,K) = {nyly|rnydyd{nyls| v |nl + . (49
(n212J2K) = (il |nyly ) (nply| v ><(Q..2:212nu—wp) R (49)
Then (46) becomes
— 1 J, K J
M| = — ! }CbnlJK
I SREI [J]; nzgjz{l J2 1 (22 2 )

2

x <n111%-]1“ [0 H"zlz%-]2><nzlz%-]2” [0 “”I%J> QK (50)

Cnylylr (nyly ) <nply| rindy
where the 4 refers to spin.

5.1. Alkali atoms with no spin—orbit coupling

We put J; — [;; then assuming an [ = O initial state we can only have [, = 1 and
K =1,, as a consequence of the 6j symbol selection rules (see §4.1).
Using (35), (50) now becomes
el

Z ntvee = o 51
I'/”SREISpm-free 3[[1] ( )

Z (D(n2p9K = 11)

n

where I, in (51) is the greater of [, = 1 and I, = 0 or 2. (As J, = I, the label [, in
(49) is redundant here, and so is omitted.)

~ In order to discuss the dependence on propagation and polarization directions
of the pump and Stokes radiation contained in (47), and therefore (51), it is convenient
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to express €, with respect to axes e, (me0, £ 1) and to express € with respect to
axes e, (ne0, +1) in a rotated frame. Thus

e, =2 enDL)R) . ' (52)

where e, is chosen as the z axis and R is a proper rotation. Then for cases of greatest

practical importance, €, = €, in the fixed frame and € = (e,)* = —e”, in the
rotated frame. Equations (20), (47) and (52) together give

11 K 2
® = [K DV (R 53
| ©® =K1 zj.(qqp _Q> e (R) (53)
1.€.
K) — ! 1 K>2 dwm 2 54
© [K]ZQ:<Q ~ 4% 4% '_Q ( &_qp'_%(ﬂ)) ' ( )

In view of (9), to describe linearly polarized light propagating along the positive
z axis (in the fixed or rotated frame), one should strictly use for example €, = e, =
(e—y — €41)/+/2. Then (53) would be summed over g, = +1 inside the square modulus.
However, it is easier to choose the polarization vectors in this case to lie along the
fixed or rotated positive z axis, for then only one angle, §, in (54) is used. The angle
will now vary in physical meaning depending on the polarization vectors involved,
but this presents no difficulties.
If both beams are linearly polarized (Ip), g4, = ¢, = 0, and so

09 = 1cos® B, (55a)

where f8, is the angle between the polarization vectors. When they are both circularly
polarized in the same sense (ss), g, = q, = 1,

O9 = L(cos B, + 1)* (55b)
or in opposite senses (0s), —q, = q, = *1,
O = f5(cos B, — 1)° (55¢)

where B, is the angle between the directions of propagation of the two beams.
Finally, if one beam is linearly and the other circularly polarized (Ic)

O = 4sin’ B . (35d)

where fB; is the angle between the linear polarization vector and the direction of
propagation of the circularly polarized beam.

Returning to (51), ®'” gives the angular distribution when the absorption and
emission process leaves the atom in an s state (the same angular momentum as the
initial state). Equations (55b) and (55¢) show conservation of angular momentum, as
is seen by considering the special case of collinear propagation,.f, = 0, when there
is no emission of oppositely circularly polarized radiation. This is because the atom
has not changed its angular momentum in the Raman transition and so neither can
the radiation field. The pump and scattered light must have the same sense of circular
polarization or both be linearly polarized for emission with f, = 0. To discuss TPA
or TPE one uses (18), so that (55b) and (55¢) need to be interchanged.
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Though (51) only allows the intensity distribution to be given by @@ or ©1), it is
convenient at this point to also give the formulae for ®@'V; then as can be seen
by applying the triangle rule to the 6j symbol in (46), these, (55) and (57) below
enumerate all the possible angular distributions involved in two-photon and Raman
processes.

Accordingly we find
Of) = sin? B, . (56a)
O ={(3 + 2cos B, — cos’ B,) (56b)
O =13 — 2cos B, — cos? B,) (56¢)
b = Lcos? B; + 1) ‘ (564)

where the notation introduced above has been used.
When in (51) the final state is a d state we require @', given by

O =13 + cos’ §;) (57a)
O = L(13 — 10cos B, + cos? B,) ' (57b)
0P = (13 + 10cos B, + cos? B,) . (57¢)
O = (6 + sin? f) (57d)

again with the same notation used above. From (57¢) the emission of Stokes
radiation circularly polarized in the opposite sense to the pump, leaving the atom in
a d state, is a maximum when the beams are propagating collinearly in the positive
z direction, f, = 0. This is the opposite to that found when the atom is left in an s
state. Physically the reason for this can be seen by considering a two-step absorption
and then emission process. Absorption by the atom of a circularly polarized photon
prepares it in a p, m; = 1 orbital. Subsequent emission of a photon polarized in the
same sense takes the atom to a d, m; = 0 orbital, but if of opposite sense, to d,
m; = 2. As is apparent from a consideration of the electron probability distribution in
these orbitals, or mathematically by an elementary application of the Wigner—-Eckart
theorem (in the form given in (A.2.1), appendix 2), |p,m; = 1> to |d,m; = 2) is the
stronger transition, in agreement with the result (57¢).
It is interesting to note that the @® satisfy a normalization,

yO® = | ' (58)

which is easily verified by adding corresponding terms in equations (55) to (57).
Consider an alkali atom with no spin—orbit coupling, with p orbitals as the initial
and final states, so that [ = [, = 1, and with the pump frequency strongly resonant
with a transition energy Q,,.,, from the initial state. In this case all other intermediate
states, and the anti-resonant part (—1)*(Q,,.,, + @)~ ' of ®(n,,l, = 0,K), may be
ignored, making it independent of K. Further, the 6j symbol in (50) depends on K
only through a phase factor which is removed by the square modulus. Hence the
angular distribution of scatteréd radiation is proportional to (58), i.e. is isotropic.
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This may be understood easily, because absorption of light of any polarization from
the initial p state leaves the atom in a spherically symmetric intermediate virtual
state, effectively destroying knowledge of this first beam. Emission of light leaving
the atom in a final p state may then be observed equally well for all polarizations.

5.2. Alkali atom with spin—orbit coupling

The introduction of spin-orbit (LS) coupling is now only a marginal extra
complication. For a comparison with the results of the previous section we consider
a |n®S,,,> ground state with each of the three possible final states, viz |niS, >,
[niD;),> and [niDs;,>. The details of the calculation for the first case are given,
and the results for the other two cases quoted.

From the 6j symbol in (50), if J = J; = § then J, =4 and 3, and K =0 and 1.
Using (35) and (50) with [, = 1 = 0,1, = 1,

zlaf il

I'/”SREIIZ‘S =2¢*

1
;} ®(,p30)

0
2
} (D(nzpzo):l

TR NIEEINIEE o
_[ﬂ{il}{%lo{%OI ©
+ similar term with K = 1
e ? (0)
= 0]
3
Ze 3 1 2 ) 1
+ 3|2 Z [@(n,p31) — ®(np31)] | © (Jy = 3). (59)
The other results are
— 224 2
| Msr|fs = 55 Z‘D(nzpi o (J, =3) (60)
and
- 2
| Mege:|Fs = a1 31) — d(n,p} ew
2
1 ®d(n,p32) + 2P(n,pd ow (Jy =3). (61)

Clearly, if the spin—orbit interaction is ‘turned off’, the difference terms vanish
and the sum terms coalesce; then (59) reduces to (51) with /; = 0, and the sum of (60)
and (61) reduces to (51) with I, = 2. When o, is away from any energy differences
Q,,,7.ms4 there is no resonant denominator in ®(n,pJ,K) so that the difference terms
are negligible, and then the angular distributions are similar to the ‘spin-free’ cases
considered in §5.1. One is in effect disregarding the doublet splitting of the energy
levels. As w, approaches a resonance the difference terms cannot be neglected in
general and the angular distribution becomes a complicated function of frequency. In
the extreme of near exact resonance with one energy level only, there is a contribution
from just one term in the sums over n, and J,. The anti-resonant part of ®(n,pJ,K)
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can then be dropped and this allows its label K to be omitted. Then for example, if
J, =1, (59) approaches

2
D(np3)| [0 + 301, (62)

e4
27
When both beams are linearly polarized (55a) and (56a) give the ratio of the second
to the first term in (62) as tan? B,. When the beams are polarized in the same direction
then the second part makes no resonant contribution, and in fact one can see from
(56a) with f; = 0 that this conclusion remains valid for the exact expression (59). This
result applies to TPA since (18) provides the prescription for converting SRE
expressions to TPA ones.

As w, is tuned between a doublet, it is seen from (59) and (61), for example,
that destructive interference occurs and the Raman susceptibility will become
extremely small at some point. This has been seen experimentally in the case of TPA
in sodium vapour by Bjorkholm and Liao (1974). One would expect the cancellation
in the (stimulated) Raman susceptibility to be more difficult to observe experimentally,
due to the large gain narrowing of the dip in this case.

When the beams are linearly polarized the existence of spin—orbit coupling means
that even if B; = in some emission should still occur, and in the most favourable
case, that of resonance, this is only 259 of the usual arrangement where f, = 0,
from (62). However in stimulated Raman generation where the Stokes radiation is
generated from noise, only that frequency and polarization of emission for which the
(exponential) gain is largest will appear at the output—there is a ‘gain narrowing’ of
the angular distributions as given by (55) to (57).

6. Discussion

The results presented in this paper can be viewed in a number of ways. Firstly, a
purely algebraic procedure has been used to sum over all the degenerate intermediate
states in the nonlinear susceptibility (1), and also to average over the initial- and
final-state degeneracies, the first sum being equivalent to an orientational average. The
resulting formula, (31), represents the simplest possible form of (1) for a gas of atoms.
It contains essentially only reduced matrix elements, which describe the physics of
particular atoms, and a separate factor describing the dependence of the macroscopic
polarization on field polarization vectors. By starting from (31) rather than (1) one
can immediately write down the susceptibility for any nonlinear process in full
generality. The more usual procedures, either of explicitly writing out in full, say,
the LS-coupled wavefunctions using 3j or Clebsch—-Gordan coefficients, or of using
the Wigner—Eckart theorem to get a result more quickly in terms of these same
coefficients, are rather tedious. Hence special choices of polarization vectors are
usually made to simplify the working. The expression (31) is quicker to use than
either of these approaches even without making such restrictions. Clearly in some
cases, such as for third harmonic generation with no spin—orbit coupling, this
generality is superfluous. The point we wish to emphasize is that even then (31) is
just as easy to use as (1). When angular dependences are of importance, as in the
Raman effect, then (31) gives the required results very directly.

This is clearer when one considers the discussion in appendix 3. There it has been
shown by the use of group theory that the major features of (31) may be predicted
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on the basis of symmetry, and that this expression is in fact the reduction of (1) to
irreducible spherical tensor form. Thus it is to be expected that (31) should contain in
the most compact manner all the physics of the atomic susceptibility.

As can be seen from §4, equation (46) for the Raman effect (which can be made
to apply to two-photon absorption and emission by use of (18)) leads to the angular
dependences on polarization vectors given by (55) to (57). These angular factors
follow from the conservation of angular momentum and explicitly display this. They
are the two-photon analogues of angular momentum conservation as described in most
standard quantum theory texts for single-photon processes.

Appendix 1
The proof of (22) is most simply carried out by using the relation (Soo 1971,
equation (8a)):

((a x b)(e) x (C x d)(e))(O) — Z(_l)b+c+e+f[e’f]l/2 {Z i ;} ((a x C)(f) % (b X d)(f))(O)
S
(AL1)

where a, b, ¢, d represent both tensors and their respective ranks. Using the vectors
a, --a, b, b, each a tensor of rank one, (21) and (A1.1) give

110

{a; x bx)(o)(az X bz)(o) = Z(_I)K:[Kz]l/z
< 11K,

} ((a; x a)®? x (by x by) ¥,

(Al1.2)
Assume

Rn = (al X bl)(O)(aZ X bZ)(O).“ (an X bn)(O)

= (— l)n Z (_ I)K"[KZ""’ Kn]l/z

K> K,
. {1 1 0}{1(2 K, o}m{K,,_l Koo 0}

11LKf11 1 K, 11 K,
X (@1 x a)*? o @) x ((by x by)*P x -+ x b ) KN (AL3)

Now by (Al.1),

((al X oo X an)(K") X (bl X X bn)(K"))(O)(an+1 X bn+l)(0)

K, K, 0O
— __1 1+K,,+K, 1 K 1/2 n n
K;l( ) [ n+1] {‘1 1 Kn+1}
x (@) X = X @y )R X (g X e X by ) B YO, (A1.4)
Substitution-of (A1.4) in (A1.3) shows
(an+1 X bn+l)(0)Rn = Ry+1. (AIS)

Hence if R, is true, R,,, is true, but R, is correct by (A1.2), and so (A1.3) is true
for all n = 2 by induction.
Using

{Z b 2} = (= 1y**<[a,b]"1" (AL9)

and (21) in (A1.3) gives (22) and this completes the proof.
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Appendix 2

In this appendix we prove (23) and (24) using graphical techniques. These have been
extensively developed in recent years; for the purposes of what follows the material
in BS is adequate. An algebraic procedure could have been used, but this is longer
and much less clear.

Using the Wigner—Eckart theorem in the form

J1J

GIMIQ Iy T My = (—1)"“(_ Mg M

)(?JII QllyJ > (A2.1)

and (20) it is seen that

Z Ky 1M Qly I, My ) x <V2J2M2|Q|V3J3M3>)(K2) X e
M;M,

x (ynd oM, Q Iy IM )G

= ¥y Y Y [Ku. KJP=1D0000000Q100:00)

MMy my oy Q2 Ot

. 7 5
x <72J2||Q||'}’3J3>"'<y,,J,,||Q||yJ>< 1 4 2)

-M, m M,
N Jr ay J3\ Jo a, J\(a; a, K,
—M; my, M, -M, m, M)\m m, —Q,
K2 as K3> <Kn—l ay, Kn)
X A2.2a
<Q2 ms _Q3 Qn—l m, —Qn ( )
where
¢1 =(J1 + M1)+ (Jz + M2)+ o+ (J,+ M)+ (Kz + Q2)+ (K3 + Q3)+
+ (K, + Q) (A2.2b)
and
o, =2+, + - +J)+ K, + @, +a,+ -+ a,) (A2.2¢)

Here the g; are each numerically equal to one, as they represent the rank of the
tensor Q. These labels are needed in order to follow the individual symbols in the
diagrams below. In these diagrams unmarked nodes are taken as positive. Equation
(A2.2a) is, less (— 1)*:[K, - - K, ]/ and the reduced matrix elements,

a, . Kp -2 Ko
x x x
Kz Kn—1 Kn
a, a,_q an
MZ ces My
my-- mp, a, a, a o
Q- Gpno
x X X - X X
A 52 In_1 In
i /3 I J
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Performing the sums by joining appropriate lines. (A2.3) may be deformed into

'
[
4 L d - i S,
[ LI | -
o K2 \Kal L 5'1 \KI I L \K”'1 -
- > > I > e B > i | K
n
|
|
aZ 03 94 a a1 a, 1
1
!
1
< & <l L > ] 1 — N
< p—— — - <] ! ——T \
J2 J3 JL JI ‘/I"I Jn i J
1 (A24)

The part to the left of the dotted line is an invariant as may be seen by drawing
three arrows into each unmarked (positive) node in (A2.4):

)
1
d L J L ! J1
1 T 1 ! >
- 9 \Kz fs, , K K ) \K,,.1 !
> > o i, o] [ > K.
]
}
a; a, ap-q g, Gy a,
A A A A A A
L}
[}
< € < o ——— —————
JZ - J3 - JL - Jl - J[ﬂ A I J
(A2.5)
Thus a 3j symbol may be separated off:
‘/1
| L ] L
LR A T r
) S R SN, Yy S C Ry SRR J
a a3 /] g, Try a, x 4
\
\ \ \ /
< f el + <
/; T4 T T T T 4
(A2.6)
The invariant can now be split up along the lines (J,, K, J3), (J1,K3,J4) and so on
to give
_ ‘/1 J1 _ J1
Kn X J J X X - « < X
: : J J, J, J
J‘I

(A2.7)

AMP(B) 9/5—D
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Now
e

dc f

[+ a

(A2.8)
Thus from (A2.7) and (A2.8), (A2.2) is

(K, K3V 10111 QUvad 2> <yad 2l @llyads) -+ Kyudal @Iy I (= 1) 7M1 7 Fn
L Ky I\[J Ky I3 (I Ky J [T K, T
X (-M1 0, M){l J, 1 }{1 I3 Kz} {1 J, K,,_l} (A29)

P,=(J, + K, +J3)+ (U, + Ky +J)+ -+ (J, + K, + J). (A2.10)

In order to obtain P, one has to use the 6j symbol integer rules extensively, after
transcribing (A2.8) to algebraic form, and using (A2.2¢c).

where

Appendix 3

It is stated in most texts on basic group theory that a Cartesian tensor can be
decomposed into irreducible spherical tensors. The actual procedure has been dis-
cussed by Coope et al (1965), Jerphagnon (1970) and Yuratich (1975, unpublished), but
for the purposes of this paper the following is adequate, and deals in particular with
the results for isotropic media.

A general nth-order nonlinear electric susceptibility tensor transforms under the
full rotation—reflection group R(3) as the direct product of (n + 1) polar vectors,

DW(R) x DYYR) x -+ (n + 1) times (A3.1)

for a (possibly improper) rotation R. Here the irreducible representations (ir) of the
proper rotation group R*(3), D®, used in the body of this paper, become D and
D% for R(3); (R(3) = R*(3) x i where i is the inversion group). DX and D™ are
respectively even and odd under inversion. The direct product may be decomposed
(see for example Tinkham 1964 pp 127, 140):

DY x DU = D) 4 DY) + DO
DY x DU x DU = p® 4 2DP 4 3pW 4 DO (A3.2)
DY x D x DD x DO = p® 4 3DP + 6DP + 6DP + 3DV

and so on.

The implication of (A3.2) is that linear combinations of the Cartesian tensor
components can be found which form irreducible bases for the D). These combinations
transform as the components of spherical tensors of rank K. As an example, in the
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notation used in this paper the third-order nonlinear susceptibility would lead to an
expression of the form

E_op PG = ) €Ky K)* ) (E-uy X Eo,)*? x Ep,)*9 x E, %9 (A3.3)

K2K3Kg4

“where E,, = € E,(r). Here y(K, K3)*# is a spherical tensor of rank K, transforming as
D*9 and K,, K5 label any inequivalent spherical tensors.

Now it is well known (see for example Lax 1974) that the number of independent
components in an (n + l)th-rank tensor describing some property of a medium with
symmetry group ¥ is equal to the number of times the identity representation of ¥
is contained in (A3.1). Consider a medium which is both isotropic and has inversion
symmetry ie. ¥ = R(3). The identity is D'® (even under inversion) and so from
(A3.2) odd rank tensors (which decompose into IR odd under inversion) vanish and
this is thus a consequence of inversion symmetry alone. As the third-order nonlinear
susceptibility contains 3D'Y it has three components. When written in spherical form
only the scalar term (K, - K,)® of the (n + 1)th-rank tensor is non-zero, as DY
is, by definition, not in D'V, D'?, etc. Thus K,,.; = 0, and

E_,.P? = Y €Ky Koy Ky = DO (B, x Ey )X x -+ x E, )
Ky Kn-1
(A3.4)

This result is completely general for an isotropic medium. Going back to §2 it is seen
that the average ., in (29) and (30), which makes the medium isotropic leads to
K,+; = 0; then we finally obtain the resuit (31) which can now be seen to be the
reduction to spherical tensor form of the susceptibility indicated in (A3.4).

Inspection of (31) for n = 3 shows that the only allowed values of (K,, K3, K,) are
0,1,0), (1, 1,0) and (2, 1, 0)—this agrees with the conclusion above that there are only
three independent components of 3, .. (+@o; 0y, ®,, w3).

The above argument needs modification for a gas of molecules which do not
possess inversion symmetry. In this case ¢ = R*(3), as the medium is isotropic, and
so the identity is D'©. As the rotations R e R*(3) are proper, the characters of D'
and D' are the same for these R, and so tensors of all ranks are allowed. Hence in
using the formulae presented here, in such cases we can remove the restriction on
allowed orders of nonlinearity. It might be noted that for the second-order nonlinearity
in optically active liquids (isotropic, but no centre of inversion) it can be concluded that

E_,..P3)= - —éox(Kz = g NE_,, x E

V3

using (21). As (€, x €,)'") = i(€; x €,)//2 and the dot and cross can be interchanged
in a scalar vector triple product, we find

Y1.E,,

1

PY = eoz(Kz— )E=E  x E, . (A3.5)

©p \/ 6 w3

This is exactly of the form obtained by Giordmaine (1965) after averaging over all
proper rotations, in his discussion of second harmonic generation (w, = 2w,
w; = w, = w)in optically active liquids.
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