MODE EXCITATION IN A MULTIMODE
OPTICAL-FIBRE WAVEGUIDE

Indexing terms: Fibre optics, Excitation, Optical waveguides

For normal incidence of a Gaussian beam on a multimode
optical fibre, theory predicts that only HE;, modes are
excited, and this is confirmed experimentally for a liquid-core
fibre of normalised frequency v = 125. Discrete-mode pro-
pagation is observed, indicating that the amount of mode con-
version due to fibre imperfections is thus very small.

Introduction: The launching of Gaussian beams into optical-
fibre waveguides has been considered both theoretically® -4
and experimentally.*: > However, in practice, it is difficult to
observe modes in multimode fibres, because the lower-order
modes rapidly couple to those of higher order, owing to mode
conversion caused by wall imperfections, bends etc.®*7 In
measurements cartied out® ® with liquid-core multimode
fibres, very low values of dispersion (1.6 ps/m) have been
obtained, and the mode-conversion effects which are present
seem to be due entirely to bending of the fibre, with a negligible
contribution from wall imperfections or scattering. In an
attempt to isolate mode-mixing eftects due to imperfections
from those due to bends, we have studied low-order-mode
launching in these fibres over short, moderately straight,
lengths.

Theory: A Gaussian beam launched axially into a circular
fibre excites only HE,, modes, and the excitation efficiency
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is given? by
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where wg, r are the spot size of the Gaussian beam and the
core radius, respectively; Jo, Ko, K; are Bessel functions and
modified Hankel functions, respectively; and U,,, W, are the
dimensionless eigenvalues? associated with the J and K
functions. v is the normalised frequency, defined by:

v = Q2r/d)n r{l—(n/n)?}*

and », and n, are the refractive indices of the core and
cladding, respectively.

‘Fig. 1 shows how the launching efficiency varies with mode
number and with the ratio we/r for a typical normalised
frequency for multimode fibre of v = 120. At wy/r = 0-68,
the HE,, mode is preferentially launched at an efficiency
of 979, with only a very small amount of power entering
higher-order modes. If a Gaussian beam is incident on the end
of a fibre under this condition, any higher-order modes
observed along the fibre must arise from mode conversion
due to imperfections in the interface, bending of the fibre
or scattering in the core, due to either fundamental Rayleigh
scattering or gross inhomogeneities.

Experiment : A plane-polarised helium—neon laser operating
in the TEM, mode at 0-633 um was used to excite centrally,
and at normal incidence, a liquid-core optical fibre® consisting
of hexachlorobuta-1, 3-diene in tubing* having a bore of
57 yum. For this combination, n, = 1.551 and n, = 1-485,
so that v = 125. The waist of the Gaussian beam was located
at the entry face to the fibre, but, with the lenses available,
the ideal launching conditions were not achieved, and, in the
experiment, wo/r = 0-86. Even so, the predicted launching
efficiencies were 89, for the HE,; mode and only 1.3% for
the HE, , mode.

For these launching conditions, and lengths of a few
metres, the output pattern was found to comprise mainly
the HE, ; mode with a fainter surrounding ring due to HE,,
and higher modes, as shown in Fig. 2a(i). The photograph is
rather overexposed to show the higher modes, resulting in
severe saturation of the central spot. A corresponding scan
using a p-i-n photodiode across the far-field pattern is
shown in Fig. 2a(ii). The relative mode content may be judged
from the fact that the central intensity is more than ten times
that in adjacent peaks, and, furthermore, the intensity
distribution in the central spot is close to Gaussian. The angle
at which the first minimum occurs also corresponds to that
of the HE ; mode.

For the above measurement, a lens of 10cm focal length
was used, which was then changed to microscope objective
lenses of magnifying power x 10 and x 20, to mismatch the
input beam and set up higher-order modes. The resulting
far-field patterns are shown in Figs. 2A(iii) and 2A(iv), res-
pectively, and confirm that the transmitted radiation consists
primarily of HE,,, modes, despite the fact that the effect of
mode conversion should be greater with very divergent beams.

The principal maximum in the radiation pattern of a mode
is contained within an angle 6, which is given theoretically as:
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In Fig. 2B are plotted values of # from eqn. 2 for various
modes, together with experimental results obtained from
angular-intensity scans such as that shown in Fig. 2a(ii).
Despite the fact that one might expect the patterns to be
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aﬂ"e.cted by superposition of the subsidiary maxima of the
various modes, the agreement betweem the predicted and the
measured angles is good.

Conclusions : Identifiable mode patterns have previously been
observed'® in multimode fibres over lengths of a centimetre
or so and we have now greatly extended this length. The
results indicate that, in the fibres used, the amount of mode
conversion due to wall imperfections is negligible, and it is
expected that effectively single-mode operation will be possible
over much longer lengths. Hitherto, it has not been possible
to compare theoretical predictions of mode conversion
arising from curvature of the fibre with experiment, because
of the overriding effect of mode scattering due to inhomo-
geneities. This comparison can now be made and will be
reported elsewhere.
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