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Pulse dispersion in a lens-like medium
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An analysis is given of dispersion in an optical fibre waveguide having a continuous
radial variation of refractive index using the scalar wave approximation. Solutions are
presented for the particular case of Selfoc fibre taking into account mode dispersion,
material dispersion and group delay. It is shown that for a correctly matched input
Gaussian beam the pulse dispersion is small although in practice it is likely to be

~ 1 ns over a length of 1 km.

1. Introduction

Computation of the bandwidth to be expected in single-mode cladded fibres [1, 2]
predicts values of tens of gigahertz over tens of kilometres although experimental
measurements have not yet been made. On the other hand for multimode cladded fibres
dispersions corresponding to bandwidths approaching a gigahertz per kilometre have
been measured [3] with a mode-locked helium/neon laser and are in agreement with
theory when the lossy nature of the cladding is taken into account [4, 5]. Another type
of fibre is that having a continuous variation in refractive index, of which Selfoc [6] is
the best known variety, for which some experimental measurements have been made
[7, 8]. This paper presents the corresponding theoretical analysis.

2. Field distribution in a lens-like medium
Consider a continuous cylindrical medium (r, 6, z) in which the dielectric constant
varies only in the transverse (radial) direction r as

e«(r) = «O)[1 — (gr)* + blgr)*] 0]
where «(0) is the dielectric constant on the axis and b, g are constants. Using a scalar
wave approximation the wave equation for the transverse electric field £ in an axially
symmetric system is

1 0 oF O E
(r —) + 25 ko) 11— (g2 - (e E = 0 @

roor or oz?
where k(0) = w[pe(0)]*.
If bg* in Equation 2 is small then the equation can be solved using the stationary
perturbation theory. By putting bg* = 0 and after separation of the variables it is found
that the characteristic mode is of Laguerre-Gaussian form and may be written
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where
B.M = [k*0) — 2(2n + 1) gk(0)]* . 4)

wo = [gk(0)]~* is the characteristic spot size for the fibre and L,(r) is a Laguerre
polynomial of degree n. The three lowest degree polynomials are

Lyx) =1
Lix)=1—x
Lyx) =1 —2x + ix2.

The transverse field distribution of mode » in the perturbed medium can now be
expressed in terms of the normal mode of the unperturbed medium. It is assumed in
what follows that the perturbation changes only the phase constant and that the
transverse field distribution remains the same as that for bg* = 0. For the first order
perturbation the characteristic modes E . (r, z) of Equation 2 become (see for example,
reference [9]):

E(r, z) = 77 wo ' [L(r¥/wo?) + v, ] exp(—r¥/2wo?) exp( — jBaz) (5)
where
Bn = k(O)[1 — 2(2n + 1) g/k(0) + 2(3n> + 3n + 1) bg*/k¥0)]* (6)
je o) r2

b 23p + 2 [(p + DI*
e O R UL 2z

(p+2)1
8n,1)+1 + 2 W 8n,p+2:|

Ay =

and §,, = Kronecker delta.

It can be shown that v, is small compared with the corresponding Laguerre poly-
nomial and may therefore be neglected. Thus in terms of the normal mode the total field
amplitude in the perturbed medium may be written

E(r,z) = § An E(r,2). @)

Here A, defines the amplitudes of the various modes and is determined by the radial
intensity distribution of the input beam.,
At the input end of the fibre z = 0 and

E(r0) = S A, Efr,0). ®)

Assuming that the input beam is launched centrally along the axis of the fibre then
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only the axially symmetric modes need be considered. If, as is normally the case, the
input beam has a Gaussian spatial distribution then

l 2
E(r, 0) = (ﬂ*v%>exp (— 2;g> ©

where w; is the spot size of the beam. Since the normal modes form an orthogonal set
it is possible to solve for A4, from Equations 8 and 9,

Lo (ﬂ ﬂ) Wy
n = wo Jo E(I’, 0) Lu M’oz exp m rdr = 1 + wer\w: + 1 ( )

where W = wy/w,.
If the input beam is correctly matched to the fibre then w, — w, so that W = | and
only the n = 0 mode in the fibre is excited.

3. Pulse broadening of mode of order n

The field distribution of mode n is given by Equation 5 which can be re-written as
follows:

Er,2) = E(r,0). S (w) (1
where
Sw) =exp[—/jB.z]. (12)

S.(w) may be treated as a transfer function which completely characterizes the perform-
ance of the linear system. Thus when an input pulse, which may be expressed in terms
of the electric field as f(z) is incident upon the guide, then the output pulse g,(f) is given
by

1 0
q.1) = 12 J Hw) Si(w) exp (jor) dw (13)

where

l o
F(w) = NS f,w S(t) exp (— jwt) dt (14)

and w is the circular frequency of the light wave. Measurements on mode-locked pulses
from a helium/neon laser show that they have very nearly a Gaussian distribution, of
frequency 5 x 10 Hz and of about 1.5 x 10° Hz half-width so that f(r) may be taken
as the Gaussian function:

V(2) S
1) = = exp (— a4 o). (15)
The Fourier transform F(w) is

F(w) = exp [— a¥{w — w.)¥/4]. (16)

Substituting (12) and (16) in (13) gives
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- az(w - wc)2

1 ©
g.(t) = m J‘_m exp |:—4—:| exp (— jBnz + jwt) dw. (17)

As it is very difficult to solve (17) directly, the propagation constant 8, is expanded as a
series; see Equation 6

Bu = k(0) — (2n + 1) g — (g*/k(0)) [2(1 — 3/2b)n* +m) - (3 — B)] . (18)

In practice for Selfoc fibre g is of the order of 1 to 10! mm ! and k(0) is of the order of
10* mm-1, so that the fourth and higher-order terms in Equation 18, which are not
shown, are small compared to the unperturbed value and can be neglected in the
calculation. The first component of the third-order term is proportional to n* and gives
rise to mode conversion. The reason for this is that when the power distribution at a
distance z from the input is calculated by summing the amplitudes of the individual
modes using Equation 7, the terms in n? cause a deviation from a Gaussian distribution.
Equation 18 is expanded as a Taylor series about w, to give

20 =326 +n) + (G — D) Jlu=u, - (19)

As can be seen from Fig. | the refractive index is nearly a linear function of w so that

m—=0
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Figure 1 The variation of refractive index with angular frequency for Selfoc glass.

values of m > 2 can be neglected in Equation 19. Thus the phase constant may be
written

2 (w - wc) "

o= D i (20)

m=0
where

m

g2
G = o [k(O) — @+ g i {200 — 3> + n) + (G — b) }]wwc 21

Substitution of (20) into (17) gives
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1 (Z(xln - t)z \(
qn(t) = at expl— J n 7 ct € - 2 n ) (22)
\/ <— + jzazn> PL= Jzoou o+ foul] Xp{ 4(5:I +jz 5"—22—>)

2

The shape of the detected output pulse contributed by mode # is therefore

2 ] 2(’ — Zo‘ln)2
= ;2 . \/ |:] + <2:O‘2n )3] exXp |: a? <1 + ( 220‘27;)“)} - (23)
a? a?

Equation 23 shows that during transmission the pulse is reduced in amplitude by the
factor 1/[l + (2za,,/a?)?] and the delay time 47 relative to a plane wave is

L q.(1)

noz

dr = + Zoyy — (24)

c
where n, is the refractive index at w, and c is the velocity of light in a vacuum.

4. Total pulse dispersion

Using Equation 23 the pulse dispersion of the energy propagating in a particular mode
can be calculated. However, when light is launched into a fibre the energy is, in general,
distributed between many different modes. A number of factors therefore have to be
considered. If we assume a laser (monochromatic) source is used, it is necessary to take
into account, even for a single mode, both mode dispersion and also the dispersion of
the bulk fibre material. Then, when more than one mode is present, it is necessary to
determine the dispersion due to group delay differences between the modes. In order to
do this the distribution of energy between modes must be found. For a single-mode laser
this can conveniently be obtained from Equations 9 and 10 via the mode amplitude 4,.

Thus the total pulse temporal distribution is given by

2

() | = §0 Ay 2| )

oA [W2—l o 2
U ANrS NZZE \/[1 + <2Z°‘2" )z]
n- a2

where

dk d
= {d—w - d—f n + 1)}10 0 =320 ) G = B

( dk dg}

o Lk de

{gkO) 10 (8O Gl = 2 0 0
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and

dzk g
gy = { £+ 1)} + 200 = 302b)n* + 1) + (3 — b},

de B dwz o T oy,
%k dog dk dg dk\2 dg\2
2 fo-2 — Dokt 2 g2 k-8 k1 _
{g dw? & dw? gk dw dw 2 <dw> <dw> }w o (28)

As it is very difficult to calculate this summation we have to use the computer.
The foregoing equations have been used to compute pulse dispersions for a variety of
launching conditions and fibre parameters.

5. Computed pulse dispersions

Results are presented for the case of a monochromatic source, namely the helium/neon
laser operating at an angular frequency w, = 2.979 x 105 and with the beam waist at
the entry face of the fibre which is assumed flat and perpendicular to the axis. The beam
is launched in an axial direction and is concentric with the fibre axis. The half-width of
the input pulses is taken as 2a = 0.65 ns and the parameters for Selfoc glasses are given
by g = 1.77 mm~! and Fig. 1. Tt will be seen that general conclusions can also be drawn
on the pulse dispersions to be expected from any distribution of input energy.

5.1. Optimum launching

If the spot size w; of the input Gaussian beam is equal to the characteristic spot size w,
of the lens-like medium then W = | and only the single fundamental mode E(r, z) is
excited in the fibre. Defining pulse duration in terms of the intensity at half maximum
the pulse dispersion 4 for this case is given by

a-2lfie ()]l @9)

Equations 23 and 29 show that for the case a® = 2za,, the output pulse width has
the minimum value 2,/(2)a ~ 2.8a. This result has also been obtained for single-mode
cladded fibres [1].

Fig. 2 shows the pulse dispersion in the single-mode (Selfoc) case W = 1 as a function
of the radial variation parameter b for zero and actual bulk material dispersion (from
Fig. 1). The amount of pulse broadening in the former case depends strongly on b and
is zero when b = }. However, this value of 4 is not the ideal one since it gives rise to a
certain amount of mode conversion and from this rather more important point of view
the optimum value is » ~ 0.67. Nevertheless the argument is perhaps an academic one in
that for the wide range of values of b shown the pulse dispersion is, in any case, negli-
gible and is completely dominated in practice by the effects of material dispersion.

5.2. Input Gaussian beam of non-optimum diameter
When the input beam width is not matched to that of the fibre then W +# 1 and higher-
order modes are excited. The pulse dispersion is now determined by the group delay
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Figure 2 Variation of pulse dispersion with parameter ‘b’. The lower, and upper pairs of curves are for
zero and finite bulk dispersion respectively. The solid lines are for a length of 1 km and the dashed

lines are for 100 km.
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Figure 3 Normalized output pulse shapes for a length of | km and 4 = 1 and including the effect of

material dispersion.

between modes and Fig 3 shows, for a fibre length of 1 km and & = 1, the rapid broad-
ening of the output pulse that occurs as W increases. The curve for W = | shows,
effectively, the shape of the input pulse. It may be seen that broadening occurs predomin-
antly on the trailing pulse edge as in the case of multimode cladded fibres [4]. The
variation of pulse dispersion with W is given in Fig. 4 for various values of & in a dis-
persionless fibre. The effect of the larger numbers of modes for departures of W from

unity and increasing values of

b is clearly evident. The effect of material dispersion in
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Figure 4 Pulse dispersion as a function of W for a length of | km assuming zero material dispersion for
various values of ‘b’.
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Figure 5 Pulse dispersion as a function of W for &6 = 1 and a length of 1 km. The solid curve assumes
zero material dispersion.

Selfoc glass, Fig. 5, is to increase the pulse dispersion over the whole range of W values.
It may be seen that any departure of W from the optimum causes a rapid increase in
pulse dispersion although it is still less than 102 ns for the range 0.5 < W < 2.

The effect of the fibre parameter & is further illustrated in Fig. 6 by the effect it has
on the relative group delay between the modes. The delay time of each mode compared
with the dominant TEM ,, mode is large compared with the pulse spreading of individual
modes.

It is clear therefore that for maximum bandwidth an input beam having a Gaussian
distribution and matched to the fibre should be used.

On the other hand for large departures from W = 1, as would be caused by non-
optimum sources such as multimode (including the GaAs) lasers the pulse dispersion
becomes asymptotic to a value between 0.5 and 1 ns over 1 km. It is interesting to note
that experimental values of pulse dispersion in Selfoc fibre corresponding to 0.6 ns km~,
and therefore in encouraging agreement with Fig. 4, have been reported [7, 8].

6. Conclusion
It may be concluded that the dispersion of an individual mode is dominated by that of
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Figure 6 Relative propagation delay as a function of mode number for various values of ‘b’ assuming
zero material dispersion.

the bulk material and that for maximum bandwidth the input beam must have a Gaussian
distribution and be matched to the fibre. However, the group delay between modes
greatly exceeds the pulse spreading of individual modes. Thus if the input beam is not
ideally matched or if mode conversion occurs in the fibre due to other factors such as,
for example, bends, inhomogeneities or non-axial launching then the pulse dispersion is
likely to exceed | ns km~!,
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