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Using the ray propagation model generalized expressions for the impulse response of multimode fibres have been
derived. The analysis has been applied to lossless fibres for pulses having both gaussian and lambertian spatial distri-
butions as well as impulse and gaussian temporal distributions. Detailed results are given for output pulse shapes and

fibre dispersions for various configurations.

1. Introduction

Cladded multimode fibres, as well as graded-index
fibres, are now serious competitors with single-mode
fibres as potential long-distance transmission lines since
low attenuations have been achieved [1—4], and the
problems of launching and jointing are greatly eased
because of the much larger (> 1000 times) light-carrying
area. Furthermore by suitable design [5] multimode
fibres can be made capable of exhibiting bandwidths
approaching 1 GHz/km which are close to those ex-

pected, but no yet demonstrated, for single-mode fibres.

Graded-index fibres also have large bandwidths [6] but
have not yet been made with sufficiently low loss. Anal-
yses of propagation in single-mode [7] and graded-in-
dex [8] fibres have been published and while the re-
sults of an analysis of a multimode fibre for the partic-
ular case of an input beam with both a spatial and a
temporal gaussian dependence have appeared [9], the
analysis itself was not described. We present here a
generalized theory of propagation in multimode fibres
based on a ray model. The results have been extended
to include not only the earlier case [9] of a gaussian
beam, such as that produced by a single-transverse-
mode laser, but also to a lambertian spatial distribution,
which is more typical of light-emitting diodes, and to
both delta function and gaussian temporal dependences.
The analysis is applicable to fibres having low-loss core
and cladding and predicts values for dispersion close to
those measured. The maximum pulse rates obtainable

in such fibres is predicted for various experimental
parameters and types of source.

2. Generalized analysis

In the ray propagation model a ray launched into
the cylindrical core of an optical fibre at an angle § to
the axis is assumed to propagate, with unchanged
angle, by successive reflections at the core/cladding
interface, providing that it falls within the numerical
aperture of the fibre. The propagation time of the ray
in a fibre of length L depends on the angle 6 and is given
by

for 0 <%1r—sin—1(n2/n1), (1

where n;, ny are the refractive indices of the core,
cladding, respectively. Energy launched into the fibre
at large angles experiences a greater delay than that
propagating at smaller angles thus giving rise to disper-
sion. Once the distribution of energy within the fibre
is known a propagation time may be assigned to the
rays and the output pulse shape is obtained by summing
(i) over all rays propagating at angle 6, (ii) for all values
of 8.

The energy distribution may be expressed in terms
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of the angular flux density /() in joule/steradian along
a ray at angle 8. However for a radially symmetric dis-
tribution launched axially into a fibre all those rays
comprising the hollow cone of semi-angle § suffer the
same propagation delay #(6) and correspond to the
same angular flux density 7(8). Thus in order to deter-
mine the output pulse shape from the fibre it is neces-
sary to evaluate the energy distribution 6£ = E(0)60
contained in the hollow annular cone laying between
the angles 8 and @ + 66. This is simple since 6F is given
by the solid angle times the angular flux density /(8)
along a single ray, thus

8E = E(0)50 = 2l (6)sind 56. (2)

Furthermore if a delta function impulse of energy
E is launched at time ¢ = O then

nf2
E,= f E(6) db. 3)

0

Now the energy 8F launched in the hollow annular
cone bounded by the angles 8, 6 + 89 arrives at the
output in the time interval 8¢ between #(6) and #(9 +
80) =t + &¢. Furthermore if no mode conversion occurs
then each value of ¢ corresponds unambiguously to a
corresponding value of 8 given by eq. (1). Thus if T'(§)
is a ray transmission factor then the power P(6) arriv-
ing at the detector during the time interval #0 +89) —
HO) is

Iim E@)T(©) 50

Po0)= s9-0 16 +56) - 10)

= E(6)T(0)/(dt/d6) 4)

and from eq. (1)

cos 6(t)

sinf(¢) ’ ®)

Py(0) ‘_—E OO T[6()] — 75"
where
6(r) = cos'l(nlL/ct).
Alternatively, in terms of /(9) from eq. (2), we may
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write
Py(0) = 3’51[0(01 T[0(5)] cos26(r) ©)
for n%L/cnz =Zt2nL/c,
=0 for t<n Lje.

Egs. (5) and (6) are quite general and can be used
to find the impulse response for any form of symmet-
rical angular energy distribution. We shall illustrate its
application to two typical forms of radiation flux,
namely gaussian and lambertian.

3. Impulse response for a gaussian source

When a gaussian beam is launched into a fibre the
beam waist is normally located centrally at the input
face and spreads inside the fibre into a far-field pattern
comprising effectively a linear cone of semi-angle 6, =
7\/11w0 where w is the spot size (i.e., radius where the
intensity has fallen to e~2 times that at the centre) at
the beam waist. At a distance z along the fibre the en-
ergy flow per unit area through a transverse cross sec-
tion is given by

I'(r, ¢, 2) = (U y/10?) exp(~2r[w?), (7

where w ~ Az/mw, is the spot size at z.

As before, the output pulse (temporal) shape is de-
termined by the angular distribution £ () in the core
and the energy passing through an annular ring between
randr+dris

I(r)dr = (aly)w®)r exp(—2r%/w?)dr = E(0)d0.  (8)

Now
7= wftanf 0= r/tand )
. dr/df = (w/tand ;)sec6. (10)
Thus
41, tand 2tan20
E@)= ex (— ) (11)
tan2()0 cos?0 tan20 0
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Substituting (11) into (5) gives

Py(t) = (2c/n1Ltan60)2 t

oo () o

for n Ljc<t< n%L/cnz,

for t<n Ljc. (12)

Eq. (12) shows that in a lossless fibre for which
T[6(5)] =1 the pulse shape depends on the length and
refractive index of the core and on the angular width
of the launched beam. The generalized shape of the
output pulse is shown in fig. 1. The leading edge appears
at time ¢ = nyL/c and is of amplitude Py(?;) = ’
(4c/n1Ltan200), followed by a maximum at ¢, =
(nyLtan6 y/2c) of height Py(t,,,) = (2¢/ny Ltanf) x
exp [(2tan‘260) —1]. The output pulse ends after time
ty =nyLinyc.

The impulse response of a 1 km length of fibre with
ny = 1.551 is shown in fig. 2a for various angular widths
of input beam. The pulses shown are normalized to the
same peak amplitude but, since the area under each
curve corresponds to the same total energy Ey, it is ob-
vious that the actual pulse height falls with increasing
angular width. It may be seen that in this case the param-
eters are such that 1; > ¢, and a maximum is not there-
fore observed. Thus propagation, and consequent dis-
persion, appreciably affects only the trailing side of the
pulse and does not lengthen the leading edge. The final
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Fig. 1. Generalized impulse response for a source with a gaus-
sian spatial distribution, as given by eq. (12). See text for ex-
planation of symbols.
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Fig. 2. (a) Normalized impulse response of 1 km length of fibre
for the input angular beam widths in the cone shown on the
curves. The fibre parameters are n; = 1.551, np = 1.485. (b)
Dispersion in 1 km of fibre for pulses having (i) delta function,
(ii) 0.65 nsec gaussian, temporal distributions and a gaussian
spatial distribution as a function of input beam angular width
in the core. The dashed line shows experimental results for a
liquid-core fibre with 0.97 m radius of curvature.

step is small and occurs at a time greater than those
shown on the scale. For the same fibre length of 1 km
the variation of dispersion with input angular width
given in fig. 2b shows that if mode conversion can be
avoided a maximum pulse rate of 500 MBit/sec (2 nsec/
km) can be approached with a beam width of * 2° fall-
ing to 20 MBit/sec (50 psec/m) at + 13°. The analysis
further shows that the pulse dispersion is approximately
a linear function of length. Pulse dispersion is defined
here as the difference in widths of the output and input
pulses at half maximum intensity; for a delta function
of course the width is zero.
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4. Impulse response for a lambertian source

The above results refer to a gaussian angular distri-
bution such as would be produced by a single-transverse-
mode laser. A light-emitting diode or other non-lasing
source, on the other hand, produces a distribution which
is more nearly lambertian, for which

1(0) = 1" Lcosd. (13)
Substitution into eq. (6) gives the impulse response as

Py(t)= (n Ljc)*/F

=0

2
for n Lic <t<njLfen,,

for t<n Lje. (14)
With a lambertian source the angular distribution of
rays accepted by the fibre depends only on the numeri-
cal aperture and the effect of this parameter on the im-
pulse response is plotted in fig. 3 for various values of
core refractive index. The horizontal portion of the
curves arises from the definition of dispersion as the
width of the output pulse at half-maximum. Thus if
the numerical aperture is increased past the value where
the pulse amplitude at ¢ (cf., fig. 1) falls below half-
maximum then further increase in NA lengthens the
tail of the pulse but does not change the width at haif-
maximum. It should be noted further that with a
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Fig. 3. Dispersion in a 1 km fibre for a lambertian source as a
function of numerical aperture for the core refractive indices
shown. The lower set of curves are for the lower and right-hand
scales and for the same refractive indices as the upper one.
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lambertian source the numerical aperture also determines
the launching efficiency. It may be seen that in the
absence of any mode filtering mechanism the limiting
pulse rate is, as expected, less than for a gaussian beam,
and corresponds to 100MBit/sec (10 nsec/km) for NA =
0.1 falling to ~ 2MBit/sec (600 nsec/km) for NA =

0.7. The relative launching efficiencies in the two cases
are 1% and 50%. This result shows clearly, therefore,
that with an LED source a careful optimization of the
numerical aperture is necessary to achieve the desired
compromise between bandwidth and launching effi-
ciency.

5. Gaussian temporal and spatial distribution

Having obtained an expression for the response of
a fibre to a delta function impulse it is possible to ob-
tain the shape of the output pulse for any input pulse by
integration over the appropriate set of impulse functions.
However the pulses produced by a mode-locked laser
have an approximately gaussian temporal, as well as
spatial, form and in this case an analytical solution is
possible. Thus the shape of the input pulse to the fibre
may be written:

G(n= Glexp(—2t2/a2), (15)

where

f G(ndr=E,.

Thus by convolution the output pulse shape for a
gaussian-shaped input is given by

Gy(n) = f Py(t — )G (r)dr, (16)

where

T == (n%L/nzc), 7, =t~ (n L/c).
Then substituting egs. (12) and (15) into (16) we ob-
tain

GO(I) = 20 exp [a(1—2t2/a2{327)]
ny/n
X f i x exp[—'y(Bx—th/az'y)] T[6(n,Lx/c)]dx,
1 (17)
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where a = 2/tan200, 8= nlL/c, Y= oz/ﬁ2 +2/a?.

Eq. (17) is now in a form suitable for computation
and has been evaluated for a range of values of the
parameters. For the lossless case, as before, T[

Detailed computations have been made, and dis-
cussed elsewhere [9], for a specific length and type of
fibre, namely 43 m of multimode fibre with a core of
F7 glass (ng = 1.625). The results given by eq. (17) are
shown to be in reasonable agreement with those ob-
tained by experiment for conditions where the effects
of mode conversion are not large. For this compara-
tively short length the effect of the relatively high
cladding loss is also small. Computations have also been
made by representing the input gaussian pulse with a
set of delta functions of appropriate amplitudes using
q. (12) and the results were the same as those ob-
tained directly from eq. (17).

When pulse shapes were obtained from eq. (17) for
a fibre (n; = 1.551) of length 1 km and an input pulse
half-width of 0.65 nsec they were almost identical with
those shown in fig. 2a and are not therefore given here.
The only appreciable difference is that the leading
edge of the gaussian input pulse has to be inserted. As
shown in fig. 2b the pulse dispersion is also nearly un-
changed. The earlier results are thus confirmed that the
broadening in multimode fibres occurs almost entirely
on the lagging edge and a measurement of full pulse width
is necessary for a proper measurement of dispersion.

The analysis further shows that the calculated dis-
persion on a nanosecond time scale is not a strong
function of pulse width. For example if the input is in-
creased from O (impulse function) to 1 nsec the disper-
sion in a £ 2° beam over a 1 km length falls from 1.1 to
1.0 nsec.

=1.

6. Conclusions

Generalized expressions for the impulse response of
a multimode fibre have been derived. From these, out-
put pulse shapes and dispersions for a lossless fibre, with
input pulses having gaussian and lambertian spatial dis-
tributions, as well as impulse and gaussian temporal
forms, have been obtained. The assumptions made are
that the input beam is radially symmetric and is launched
axially, and that there are no effects due to mode con-
version or mode filtering. Our analysis differs from that
of Gloge et al. [10] who take a more simplified approach.
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They appear to substitute eq. (1) into eq. (7) in order
to obtain the response to a gaussian pulse,

In other work Gloge et al. [11], from measurements
of frequency response of a fibre, suggest that the im-
pulse response is of rectangular shape although they
state that their results are also compatible with a rectangle
having a sloping crest. Figs. 1 and 2a show that the
impulse response of a lossless fibre is not of rectangular
form and has approximately a sloping characteristic
but that the exact form of the response depends very
much on the experimental parameters.

The theoretical predictions given here may be applied
to fibres made of low-loss core and cladding materials
and the maximum bandwidths to be expected may be
found from the dispersions given in the various figures.
In practice mode conversion will constitute a limiting
factor as shown by the experimental curve for a liquid-
core fibre in fig. 2b. The measured dispersion has been
extrapolated to a length of 1 km. The fibre was coiled
on a drum of radius 0.97 m and as shown elsewhere [5]
the curvature produces mode conversion and thus in-
creased dispersion particularly at small angular beam
width. It will be observed however that at larger widths
the measured dispersion is less than that calculated. This
is due to a mode filtering action caused by the high-loss
cladding and a theoretical analysis of dispersion in fibres
having both core and cladding loss will be published
shortly.
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