
1

Waveguiding and photoluminescence in Er3+ - doped 

Ta2O5 planar waveguides

Ananth Subramanian a*, Claudio J. Oton a, James S. Wilkinson a, Robert 

Greef b

a Optoelectronics Research Centre, University of Southampton, Southampton, UK SO17 1BJ

b School of Chemistry, University of Southampton, Southampton, UK SO17 1BJ

ABSTRACT 

The optimization of erbium-doped Ta2O5 thin film waveguides deposited by magnetron 

sputtering onto thermally oxidized silicon wafer is described. Optical constants of the 

film were determined by ellipsometry. For the slab waveguides, background losses 

below 0.4 dB/cm at 633 nm have been obtained before post-annealing. The samples, 

when pumped at 980 nm yielded a broad photoluminescence spectrum (FWHM~50 nm) 

centered at 1534 nm, corresponding to 4I13/2-4I15/2 transition of Er3+ ion.  The samples 

were annealed up to 600 �C and, both photoluminescence power and fluorescence 

lifetime increase with post-annealing temperature and a fluorescence lifetime of 2.4 ms 

was achieved, yielding promising results for compact waveguide amplifiers.  
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1. INTRODUCTION

Optical amplifiers are key components in optical telecommunications and in 

fully-integrated optical systems. Erbium doped materials are of particular importance in 

optical communications technology, due to their excellent performance as gain media 

for amplifiers and lasers at the telecommunications wavelength of 1.5 m� . Low-cost, 

compact erbium doped waveguide amplifiers (EDWAs) are essential for local-loop 

optical systems, and fully-functional densely integrated planar lightwave circuits (PLCs) 

will rely upon gain in much the same way as electronic integrated circuits do at present. 

Thus far, many erbium doped materials with optical gain have also been demonstrated

[1-4]. In recent years, erbium-doped high index contrast materials have generated great 

interest [5-8], and will allow strong confinement of light, ultra compact photonic 

devices, and non-linear processes at moderate power levels. Tantala (Ta2O5) has already 

been used as a host for rare earth ions [9-11], with lasing being achieved only in 

Nd:Ta2O5 to date [9]. This, combined with high refractive index (>2.0), moderate 

phonon energy for high radiative efficiency [12], a large third order non-linearity [13], 

and high photosensitivity [14], makes it an ideal material for realising multifunctional 

PLCs. 

In this paper, the deposition and optimisation of erbium-doped Ta2O5 (Er:Ta2O5) 

thin films using magnetron sputtering is presented. The spectroscopic properties of Er+3

ions in tantala are provided through photoluminescence and fluorescence lifetime 

measurements. The effect of different annealing temperatures on the photoluminescence 

and lifetime measurements of Er:Ta2O5 films are also presented to evaluate this 

material’s potential as a high index contrast host for erbium and as an EDWA.  
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2. EXPERIMENTAL

2.1 Thin film deposition

Slab waveguides were fabricated by magnetron sputter deposition (Plasma400

Oxford Instruments) of a powder pressed, Er:Ta2O5 target (150 mm diameter) onto an 

oxidized silicon substrate (oxide thickness ~ 2.1 m� ). The target was doped with 1 wt. 

% of Er2O3 (~2.5 x 1020 ions/cm3). The deposition was carried out in a vacuum chamber 

pumped to a base pressure of 10-8 Torr and backfilled with an Ar:O2 ambient. The flow 

rate for both the gases inside the chamber was separately controlled. The chamber 

pressure was maintained at a constant value of 10 mTorr. In order to have optically 

good as-deposited films, optimization of the sputter deposition parameters is very 

important. The parameters optimized for the deposition were substrate temperature, 

magnetron power and O2 gas flow. Deposition was carried out by varying substrate 

temperature and setting other parameters to a reasonable value. Once the deposition was 

complete, optical loss was measured and the value that gave the lowest loss and an 

acceptable deposition rate was used for optimizing the next parameter. This process was 

carried out until all the three sputter parameters, mentioned above, were optimized. 

2.2 Optical constant measurement

The refractive index and the thickness of the sputtered tantala thin films were 

determined by ellipsometry. The apparatus consisted of a white light source emitting in 

the visible region (400-700 nm) and a detector which collects the polarized reflected 

light. The measurements were performed at a 70� angle of incidence. The Cauchy

dispersion model [15] was used to fit the experimental data points using the tantala film 

thickness and the Cauchy parameters (A, B and C) as fit parameters. The Cauchy 

dispersion relation is given by:
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Where, A, B, C are constants to be determined by fitting to the experimental data. 

� � 0��k and � ��n is assumed real, where� is the wavelength, k is the extinction 

coefficient and n is the refractive index . Mean squared error ( 2� ) was used to 

determine the quality of the fit and was minimised to find the index and thickness. 

2.3 Loss measurements

The slab waveguide losses were measured at 633 nm (He-Ne laser) by directly 

capturing and monitoring the scattered light intensity normal to the waveguide plane, 

using an imaging system (CCD). The light was coupled into the waveguide using prism 

coupling with a rutile prism being used to couple light into the fundamental mode of the 

Er:Ta2O5 waveguide. The propagation loss was then determined by mapping the decay 

of scattered light (pixels captured by the imaging system) along the propagation length 

of the guide. The losses were estimated at several different places on a sample to check 

the homogeneity of the sample, and averaged.

2.4 Optical characterization 

Photoluminescence measurements were performed at room temperature by 

pumping erbium ions into their 4I11/2 level using a Ti:Sapphire laser emitting at 980 nm. 

The thickness of the tantala thin film was approximately 2 m� . The pump was directed 

onto the sample at 45 degrees to the surface normal. The pump power at the surface of 

the sample was about 180 mW and the spot size of the pump beam was < 1 mm in 

diameter. The pump was mechanically chopped at 25 Hz. The luminescence was 

analyzed using a grating monochromator normal to the sample surface, with a spectral 

resolution of 10 nm. A filter was used just before the monochromator to block 



5

wavelengths below 1300 nm. The signal was detected using an InGaAs detector cooled 

to -15 �C and amplified using a lock-in amplifier. Lifetime measurements were 

performed with 0.2 ms resolution by monitoring the decay of the luminescence on an 

oscilloscope after pumping the erbium ions and mechanically chopping of the pump

light source. The luminescence intensity was fitted to a single exponential decay, and 

the natural log of this decay, normalised with respect to the maximum intensity was 

plotted against time. The slope of the fit gives the luminescence decay time.

Photoluminescence measurements were performed on both the annealed and non-

annealed samples. 

3. RESULTS AND DISCUSSION

3.1 Waveguide characterization

The deposition rate was determined by measuring the film thickness for various 

sputtering times, using a stylus profilometer. Figure 1 shows the thickness plotted 

against time, for the deposition conditions optimized below, with the average deposition 

rate found to be ~ 2 nm.min-1.

  The optical loss variation with substrate temperature is shown in figure 2. The 

amount of oxygen in the layers increases with increasing substrate temperature and the 

microstructure of the sputtered layer becomes more regular and attains improved 

stoichiometry [16]. This in turn reduces the scattering losses. The sample sputtered at 

200 oC gave the lowest losses (~0.40 dB/cm at 633 nm) and an acceptable deposition 

rate (~ 2 nm.min-1), so was chosen as the optimized value for the substrate temperature. 

The increase in the loss for temperature above 300 �C may be due to micro-cracking of 

film due to local heating and stress at that temperature, or perhaps simply due to some 

unwanted and un-removable scattering centres in the film. 
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        Figure 3 shows the variation of optical loss with magnetron power, with low loss 

being achieved at both 300 W and 400 W. The deposition rate at 400 W was almost 

twice that at 300 W. However, the photoluminescence results (described in detail 

below) showed that both luminescence intensity and lifetime were better with samples 

deposited at 300 W. Therefore, 300 W was chosen as the optimum magnetron power 

value. 

Argon is used to start and maintain the plasma discharge and its flow rate is not 

critical, but the oxygen flow rate plays an important role in achieving low loss films as 

shown in figure 4. With the increase in the O2 flow rate, the film approaches its 

stoichiometric composition and hence lowest possible loss, but a further increase will 

lead to increased oxidization of the target surface and an unacceptably low deposition 

rate. For our samples, a flow rate of 5 sccm achieved the lowest loss value and the 

average deposition rate (~ 2 nm.min-1). 

The optimized deposition parameters for achieving low loss Er:Ta2O5 slab 

waveguides are 200 �C substrate temperature, 300 W magnetron power and 5 sccm 

oxygen flow rate with argon flow rate and chamber pressure maintained at a constant 

value of 20 sccm and 10 mTorr respectively. In order to further reduce the losses the 

samples were annealed at high temperatures (450 �C and above) in oxygen in a tube 

furnace. In the loss measurement for the annealed samples the scattered power was too 

low to measure, providing evidence of reduced loss. The apparatus for loss 

measurement by imaging scattered light was unable to measure losses below 0.4 dB/cm, 

and methods such as the cutback [17] or Fabry-Perot [18] techniques need to be 

employed on channel waveguides to accurately determine losses below this level.
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Ellipsometry measurements were performed on the sputtered Er:Ta2O5 samples 

to determine the thin film refractive index in the visible region. The best fit using 

Cauchy dispersion model yielded A=2.069, B=2.133 & C=1.075 as the values for the 

Cauchy dispersion relation constants. Figure 5 shows the refractive index vs. 

wavelength for the fully optimized Er:Ta2O5 film. A refractive index of 2.13 was 

measured at 633 nm. At 1550 nm, where an EDWA would operate, a refractive index of 

2.08 is estimated by extrapolating the Cauchy dispersion relation to longer wavelengths.

The thicknesses of the films were within the experimental error of the value measured

by the stylus profilometer.

3.2 Photoluminescence characterization

The photoluminescence spectra of annealed and non-annealed magnetron 

sputtered Er:Ta2O5 samples are shown in figure 6. The samples were annealed at 450,

500, 550 and 600 �C, respectively but higher temperatures were not employed as 

annealing above 600 �C is expected to result in a lossy polycrystalline film [19]. The 

emission spectra correspond to the transition between the 4I13/2- 4I15/2 levels of the Er3+

ion and peak at 1534 nm. The bandwidth of the spectrum (FWHM) was measured to be 

50 nm which is substantially broader than those obtained from non-tellurite glasses (~30

nm) [20] and comparable to high index contrast hosts such as tellurite glasses (n~2.1, 65

nm) [21] and alumina (n~1.69, 55 nm) [22] and thus shows potential for broadband 

applications. The photoluminescence intensity increases with annealing temperature to 

about 14 times that of the unannealed sample at 600 �C. Figure 7 shows the bandwidth

of the normalised photoluminescence spectra to be constant for the annealed and 

unannealed Er:Ta2O5 samples. This suggests that there is an absence of phase change 

from amorphous to crystalline nature and consequently the narrowing of bandwidth 
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even at 600 �C. Therefore, it can also be said that because of the absence of phase 

change the losses should not increase at such high annealing temperatures (up to 600 

�C). The luminescence lifetime of the erbium ions is shown in figure 8. It can be seen 

from the fit (bold dashed lines) in figure 8 that the decay is almost purely single

exponential, and the quality of fit improves with the increasing annealing temperature 

consequently, the luminescence decay time was found to increase from 0.53 ms for the 

as-deposited sample to 2.4 ms for the sample annealed at 600 �C. The value of lifetime

is smaller than those obtained from non-tellurite glasses (10-15 ms) [20] and alumina (6

ms) [22] but comparable to high index contrast hosts such as tellurite glasses (3.5 ms)

[23] and zirconia (n~2.04, 1.8 ms) [2].

4. CONCLUSIONS

The deposition of Er:Ta2O5 by magnetron sputtering has been optimized to yield 

low loss slab waveguides (as-deposited thin film), 0.4 dB/cm at 633 nm  as measured by 

imaging scattered light method. It is believed that the losses reduced further upon 

annealing in oxygen at high temperatures (> 450 �C) [9] but alternative loss measuring 

techniques like cutback or Fabry-Perot need to be employed on channel waveguides to 

measure these lower losses. The refractive index of the thin film was determined over 

the wavelength range from 400 nm to 700 nm. A broad photoluminescence spectrum 

(FWHM~50 nm) peaking at 1534 nm was obtained, and a luminescence lifetime of 2.4

ms was measured for the erbium ions in the Er:Ta2O5 film for optimized sputtering and 

annealing conditions. The results obtained for the losses and radiative lifetime are 

promising, for realizing erbium-doped integrated amplifier/laser and multifunctional 

photonic circuits based on Er:Ta2O5. 
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Figure 1 Deposition rate for sputtered Er:Ta2O5 thin film 

 

Figure 2 Optical loss at 633nm vs. substrate temperature for sputtered Er:Ta2O5 film 
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Figure 3 Optical loss at 633nm vs. magnetron power for sputtered Er:Ta2O5 film 

 

 

 

 

Figure 4 Optical loss at 633nm vs. oxygen flow rate for sputtered Er:Ta2O5 film 
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Figure 5 Refractive index of sputtered Er:Ta2O5 film determined by ellipsometry in the 

visible wavelength region 

 

 

 

 

Figure 6 Photoluminescence spectra for unannealed and annealed Er:Ta2O5 films. The 

spectrum peaks at 1534nm. The annealing temperatures used were 450, 500, 550 

& 600 �C, respectively (colour online).  
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Figure 7 Normalized photoluminescence spectra for annealed and unannealed Er:Ta2O5 

films peaking at 1534nm. The annealing temperatures used were 450, 500, 500 

and 600 �C respectively. Bandwidth remains constant at 50nm with annealing 

temperature (colour online).

 

 

 

Figure 8 Comparison of luminescence decay of annealed and unannealed Er:Ta2O5 films. 

Ln(I/Io) is the normalized intensity. A lifetime of 2.4ms was calculated for sample 

annealed at 600 �C (color online) 


