Applications of superstructured fibre Bragg gratings in all-optical signal processing
Applications of superstructured fibre Bragg gratings in all-optical signal processing
The possibility of combining pulse shaping technology with various nonlinear optical switching devices can be beneficial in enhancing the overall system functionality. Most works on short-pulse communications utilize either Gaussian or sech2 pulse shapes, which are readily generated through conventional pulse generation techniques. However, important recent advances in various pulse shaping technologies have allowed the properties of well-defined pulse waveforms to be manipulated and transformed into other pulse forms of almost arbitrary complexity. The capability to realize the optimal pulse shape required for the operation of a particular switch can be very advantageous in terms of improving its overall performance. Among the various pulse shaping technologies, the one based on superstructured fibre Bragg gratings (SSFBGs) offers a ready route to the production of in-fibre optical filters with precisely controlled frequency and phase profiles in a single continuous grating structure. SSFBGs have proven to be an extremely powerful tool for advanced photonic applications that require fine and accurate manipulation of the shape of short optical pulses, thanks to the high precision in the implementation of the superstructure phase and amplitude profiles offered by plane-by-plane grating fabrication techniques. Using this linear all-fiberized pulse shaping method, we have demonstrated the reshaping of short pulses of a few picoseconds duration into a broad range of pulse shapes, such as rectangular pulses of different pulse widths (5, 10 and 20ps) [1-3], parabolic [4-5] and saw-tooth pulses [6-7] for various all-optical signal processing applications.The talk will review some application examples of optical processing systems that combine SSFBGs for preconditioning of the incoming signals with highly nonlinear fibre (HNLF)-based switches and discuss their benefits.
Parmigiani, F.
6a386833-5186-4448-875e-d691161aba62
Petropoulos, P.
522b02cc-9f3f-468e-bca5-e9f58cc9cad7
Ng, T.T.
f6dfc0e1-99c8-460c-95e9-4cd43771db49
Ibsen, M.
22e58138-5ce9-4bed-87e1-735c91f8f3b9
Richardson, D.J.
ebfe1ff9-d0c2-4e52-b7ae-c1b13bccdef3
2009
Parmigiani, F.
6a386833-5186-4448-875e-d691161aba62
Petropoulos, P.
522b02cc-9f3f-468e-bca5-e9f58cc9cad7
Ng, T.T.
f6dfc0e1-99c8-460c-95e9-4cd43771db49
Ibsen, M.
22e58138-5ce9-4bed-87e1-735c91f8f3b9
Richardson, D.J.
ebfe1ff9-d0c2-4e52-b7ae-c1b13bccdef3
Parmigiani, F., Petropoulos, P., Ng, T.T., Ibsen, M. and Richardson, D.J.
(2009)
Applications of superstructured fibre Bragg gratings in all-optical signal processing.
11th International Conference on Transparent Optical Networks ICTON 2009, , Azores, Portugal.
28 Jun - 02 Jul 2009.
(doi:10.1109/ICTON.2009.5185314).
Record type:
Conference or Workshop Item
(Paper)
Abstract
The possibility of combining pulse shaping technology with various nonlinear optical switching devices can be beneficial in enhancing the overall system functionality. Most works on short-pulse communications utilize either Gaussian or sech2 pulse shapes, which are readily generated through conventional pulse generation techniques. However, important recent advances in various pulse shaping technologies have allowed the properties of well-defined pulse waveforms to be manipulated and transformed into other pulse forms of almost arbitrary complexity. The capability to realize the optimal pulse shape required for the operation of a particular switch can be very advantageous in terms of improving its overall performance. Among the various pulse shaping technologies, the one based on superstructured fibre Bragg gratings (SSFBGs) offers a ready route to the production of in-fibre optical filters with precisely controlled frequency and phase profiles in a single continuous grating structure. SSFBGs have proven to be an extremely powerful tool for advanced photonic applications that require fine and accurate manipulation of the shape of short optical pulses, thanks to the high precision in the implementation of the superstructure phase and amplitude profiles offered by plane-by-plane grating fabrication techniques. Using this linear all-fiberized pulse shaping method, we have demonstrated the reshaping of short pulses of a few picoseconds duration into a broad range of pulse shapes, such as rectangular pulses of different pulse widths (5, 10 and 20ps) [1-3], parabolic [4-5] and saw-tooth pulses [6-7] for various all-optical signal processing applications.The talk will review some application examples of optical processing systems that combine SSFBGs for preconditioning of the incoming signals with highly nonlinear fibre (HNLF)-based switches and discuss their benefits.
This record has no associated files available for download.
More information
Published date: 2009
Venue - Dates:
11th International Conference on Transparent Optical Networks ICTON 2009, , Azores, Portugal, 2009-06-28 - 2009-07-02
Identifiers
Local EPrints ID: 78991
URI: http://eprints.soton.ac.uk/id/eprint/78991
PURE UUID: 5d4d6467-6be0-4b6b-9369-2ceee13de83b
Catalogue record
Date deposited: 18 Mar 2010
Last modified: 14 Mar 2024 02:41
Export record
Altmetrics
Contributors
Author:
F. Parmigiani
Author:
P. Petropoulos
Author:
T.T. Ng
Author:
M. Ibsen
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics