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Abstract. We prove splitting theorems for groups with positive first L2-betti
number (denoted β2

1) and verify Kropholler’s conjecture for pairs of groups

H ≤ G satisfying β2
1(G) > β2

1(H). We also prove that every n-dimensional
Poincaré duality group containing an (n − 1)-dimensional Poincaré duality

group H with property (T) splits over a subgroup commensurable with H.

In this article we explore the relationship between the theory of relative ends,
groups with non-trivial first L2-cohomology and the presence of subgroups with
property (T). The desired conclusion is to obtain splittings of groups, i.e., nontrivial
decompositions of groups into amalgams or HNN extensions. We use two different
notions of ‘relative ends’ for groups H ≤ G, the geometric one which is usually
written e(G,H) and its algebraic counterpart ẽ(G,H).

The classical theory of the ends of a group originated in the work of Freudenthal
and Hopf (See [3], [4]). From the point of view of a geometric group theorist
the number of ends of a finitely generated group G, written e(G), is the number
of Freudenthal-Hopf ends of a Cayley graph for G, regarded as a 1-dimensional
simplicial complex. While a priori the number could depend on the generating set
chosen, it is in fact independent provided the chosen generating set is finite, i.e.,
it is a quasi-isometry invariant of the group. There is an alternative definition of
e(G) which is more obviously independent of choice of generating sets, and which
extends to a definition of the number of ends for a discrete group:

Definition 1. Let G be a discrete group, P(G) denote the power set of G, and
F(G) denote the set of finite subsets of G. Then F(G),P(G) and the quotient
F(G)\P(G) are all F2G-modules, where F2 denotes the field of 2 elements. We
denote by e(G) the dimension of the G invariant subspace (F(G))\P(G))G.

Hopf showed in [4] that the number of ends of a finitely generated group must
be 0, 1, 2 or ∞. Moreover, groups with 0 and 2 ends are easily classified: e(G) = 0
if and only if G is finite and e(G) = 2 if and only if G is virtually Z. Stallings’
celebrated theorem from [18] classifies finitely generated groups for which e(G) ≥ 2.
We state it here in its most general form as proved by Dicks and Dunwoody using
the Almost Stability Theorem.

Theorem 2. (Theorem IV.6.10 of [1]) Let G be a group. The following are equiv-
alent:

(1) e(G) > 1
(2) H1(G,M) 6= 0, for any free G module M ,
(3) There exists a G-tree with finite edge stabilizers such that no vertex is sta-

bilized by G.
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(4) One of the following holds:
• G = B ∗C D where B 6= C 6= D and C is finite,
• G = B∗C , where C is finite,
• G is countably infinite and locally finite.

(5) the group G has 2 or ∞-ly many ends.

The quest for a generalisation of this result covering splittings over arbitrary
subgroups has played a central role in low dimensional topology and geometric
group theory. The classical and algebraic annulus and torus theorems are key
examples (See [17] and references therein). While working on this problem, Scott
introduced in [15] an invariant e(G,H) for a subgroup H of a group G, which, in the
case when G is finitely generated, can be identified with the number of Freudenthal-
Hopf ends of the quotient of a Cayley graph for G by the action of H. As with
the classical end invariant, e(G,H) does not depend on the choice of Cayley graph,
and indeed the definition may be extended to the class of all discrete groups. We
postpone the definition to section 1.

Scott showed in [15] that if G splits as a non-trivial amalgamated free product
G = A ∗C B or as an HNN extension G = A∗C then e(G,H) ≥ 2. Noting that
e(G, {1}) = e(G) = e(G,C) for any finite subgroup C < G, Scott reformulated
Stallings’ theorem as the statement G splits over a finite subgroup C if and only if
e(G,C) ≥ 2 for some finite subgroup C < G. He asked for which subgroups H < G
is the analogous statement true, remarking that it is certainly not true in general.
For example the triangle group G = 〈a, b, c | a2 = b2 = c2 = (ab)2 = (bc)3 = (ca)5〉
has an infinite cyclic subgroup H = 〈ab−1〉 with e(G,H) = 2, but the group G does
not split as an HNN extension, nor as a non-trivial amalgamated free product, over
any subgroup. Scott’s resolution to this was the observation that while G does not
split, it has a finite index subgroup G′ which splits as an HNN extension over H.
A more complete answer was given by the algebraic annulus theorem which asserts
that if G is a one ended finitely generated group containing a two-ended subgroup
H with e(G,H) ≥ 2 then G is virtually Z2 or G contains a two ended subgroup
K over which it splits, or G has a finite normal subgroup N whose factor group
is a surface group. Here, we see two ways in which the obstruction to splitting
over a subgroup can be overcome: one is to replace the group G by a finite index
subgroup, the other is to adjust the subgroup H. Both strategies play an important
role in low dimensional topology. The latter is crucial in the statement and proof
of the classical torus theorem (the fore-runner of the algebraic annulus and torus
theorems) while the former is related to the virtual Haken and virtually positive
first Betti number conjectures.

Scott’s proof that the triangle group contains a finite index subgroup which splits
over the infinite cyclic subgroup relied on the observation that the subgroup is an
intersection of finite index subgroups. Scott generalised this in [16] to show that if
G is a finitely generated group, and H < G is a finitely generated subgroup which
is an intersection of finite index subgroups and such that e(G,H) ≥ 2 then G has a
finite index subgroup which splits over H. In particular, if G is a LERF group (i.e.,
a group in which every finitely generated subgroup is an intersection of finite index
subgroups of G), then every finitely generated subgroup H with e(G,H) ≥ 2 is the
edge group of a splitting for a finite index subgroup of G. Essentially the idea is
that the obstruction to splitting G over H (sometimes referred to as the singularity



RELATIVE ENDS, L2 INVARIANTS AND PROPERTY (T) 3

obstruction) is carried by finitely many double cosets of H in G and that by passing
to a suitable finite index subgroup one removes all these elements.

In [7] the singularity obstruction S = Sing(G,H) was studied in more depth
and it was shown that if S ∪ H is contained in a proper subgroup G′ of G then
G will split over a subgroup of the group 〈S ∪ H〉, while if S is contained in the
commensurator of H in G then G will split over a subgroup commensurable with
H. Scott’s technique of passing to finite index subgroups was also strengthened to
show that if the singularity obstruction is supported on n double cosets of H in G
and H is contained in a strictly decreasing chain of finite index subgroups of G of
length at least n then G has a finite index subgroup which splits.

While this last result has the advantage that it no longer requires H to be an
intersection of finite index subgroups, the length of the chain required to ensure
that G virtually splits depends crucially on the size of the splitting obstruction and
therefore, on the embedding of H in G. In an effort to circumvent this difficulty
we offer the following result (Corollary to Theorem 4) which replaces the size of
the singularity obstruction in the statement by a number which depends on the L2

Betti numbers of H and G instead. This has the advantage that it is intrinsic to the
groups H and G and does not depend on the embedding of H in G, but comes with
the disadvantage of applying only when G has positive L2 Betti number, β(2)

1 (G).
See [12] for examples. Here and in Theorem 4 we use the phrase ‘subgroup related
to H’ to mean ‘a subgroup of the smallest almost malnormal subgroup of G (or G′)
containing H’.

Corollary 3. Let H ≤ G be discrete and countable one-ended groups such that
β

(2)
1 (G) > 0. If ẽ(G,H) ≥ 2 and H is contained in a finite index subgroup G′ < G

with [G : G′] > β
(2)
1 (H)/β(2)

1 (G), then G′ splits over a subgroup related to H.

The end invariant ẽ(G,H) mentioned above is a generalisation of Scott’s end
invariant and was introduced by Kropholler and Roller, [6], in their study of the
algebraic torus theorem for Poincaré duality groups. We will state the definition of
ẽ(G,H) in section 1, but note here that in particular if e(G,H) ≥ 2 then ẽ(G,H) ≥
2 as required.

For an introduction to the theory of L2 cohomology, we refer the reader to [2].
Corollary 3 follows directly from Theorem 4. Note that groups with non-trivial first
L2 betti number are either one-ended or have infinitely many ends. In the latter
case, Theorem 2 says that the group splits over a finite subgroup or is locally finite.

Theorem 4. Let H ≤ G be (discrete and countable) one-ended groups such that
β

(2)
1 (G) > β

(2)
1 (H). If ẽ(G,H) ≥ 2 then G splits over a subgroup related to H.

Coxeter Groups We now provide explicit examples in which the hypotheses of
Theorem 4 are satisfied using the theory of Coxeter groups. Niblo and Reeves have
shown in [8] that every finitely generated Coxeter group W = W (S) acts properly
discontinuously on a locally finite, finite dimensional CAT(0) cube complex XW .
Sageev’s work on ends of group pairs then implies that e(W,H) ≥ 2 for each wall
stabiliser H < W and it is easy to deduce that H is the centralizer of a reflection. If
W is a Coxeter group with β2

1(W ) 6= 0, then one can extract additional information
about the structure of W using Theorem 4 and Corollary 3.

To start with, let W be the Coxeter group generated by the reflections s1, . . . , s8

such that s1 commutes with each of s4, s5 and s6 while the pairwise product of
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s1 with each of s2, s3, s7 and s8 is of infinite order. The pairwise products of the
generators s4, s5 and s6 are of order 3. The remaining pairwise products are finite
but greater than 50. Then W is a one-ended Coxeter group whose first L2 betti
number is non-zero, as can be seen from applying Theorem 3.2 of [12].

Nuida describes the centralizers of reflections in his paper [11] and from his
work, one deduces that the centralizer C of the reflection s1 is precisely T (3, 3, 3)×
〈s1〉. Here, T (3, 3, 3) is the triangle group obtained from the parabolic subgroup
generated by s4, s5 and s6. As explained earlier, e(W,C) ≥ 2. Moreover C contains
Z2 as a finite index subgroup and therefore β2

1(C) = 0.
Using the same strategy one can build a whole family of examples using the

hyperbolic triangle groups T (p, q, r), where p, q and r are positive integers satisfying
1
p + 1

q + 1
r < 1. This time, take Wn to be a Coxeter group generated by n reflections,

s1, . . . , sn. As in the earlier example, the reflection s1 commutes with precisely 3
other reflections s2, s3 and s4 while the product of s1 with each of s5, . . . , sn has
infinite order. For sake of simplicity, we set the order of all pairwise products not
already specified to be n2. As before the centralizer C(s1) is precisely T (p, q, r)×〈s1〉
and e(Wn, C(s1)) ≥ 2. Using Theorem 3.2 of [12] again, we have

β2
1(W ) ≥ n

2
− 1−

(
3
2

+
1
p

+
1
q

+
1
r

+
1
n2

(
n(n− 1)

2
− (n− 1 + 3)

))
Now β2

1(C(s1)) is one-half of β2
1(T (p, q, r)). Let χ(.) denote the orbifold Euler

characteristic of a group. One computes that

χ(T (p, q, r)) =
1
2

(
1
p

+
1
q

+
1
r
− 1
)

Moreover, β2
1(T (p, q, r)) = −χ(T (p, q, r)). This is a consequence of Atiyah’s formula

relating the L2-Euler characteristic to the orbifold Euler characteristic. But for
Fuchsian groups and in particular triangle groups, the argument may be simplified.
Every triangle group contains a surface subgroup of finite index. Suppose T (p, q, r)
contains a surface subgroup H ∼= π1(Sg) (here, g is the genus) of index k. From
first principles, β2

1(H) = −χ(Sg). Now, both β2
1(.) and χ(.) are multiplicative on

indices hence

β2
1(T (p, q, r)) = kβ2

1(H) = k(−χ(Sg)) = −χ(T (p, q, r))

Given p, q and r, for β2
1(W ) > β2

1(C(s1)) to hold, we need

1
2

(
n− 6 +

3
n

+
4
n2

)
−
(

1
p

+
1
q

+
1
r

)
> −1

2
χ(T (p, q, r))

In particular if n− 6 > 3χ(T (p, q, r)) + 2 then β2
1(Wn) > β2

1(C(s1)).
One may specialise to the well-known (2, 3, 7) triangle group, which contains the

fundamental group of the Klein’s quartic (a surface of genus 3) as a subgroup of
index 336. Since β2

1(T (2, 3, 7)) = 1
84 , one can choose n to be 8 and get a splitting

of W8 over T (2, 3, 7) × Z/2Z. This splitting may also be obtained from visual
decompositions of Coxeter groups into amalgams.

The Kropholler conjecture is a long standing conjecture of Kropholler and Roller
from [6]. To read more about the current status of the conjecture, see [10]. We
show that our techniques give further evidence towards the conjecture by verifying
it for pairs of groups H ≤ G satisfying β2

1(G) > β2
1(H). This is the content of

Proposition 11.
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The main protagonists of our next theorem are Poincaré duality groups. An
introduction to the notion of Poincaré duality may be found in [5]. Fundamental
groups of closed aspherical manifolds are Poincaré duality groups. Whether the
converse is true is the subject of a well known conjecture that has been verified for
all n other than 3. One can show that the only one-dimensional Poincaré duality
group is Z. That all Poincaré duality of dimension 2 are surface groups is a deep
theorem established by Bieri, Eckmann, Muller and Linnell. Finally for each n ≥ 4,
Bestvina-Brady groups provide examples of Poincare duality groups which are not
fundamental groups of closed aspherical manifolds.

Theorem 5. Let G be a Poincaré duality group of dimension n. Suppose that H
is an (n− 1)-dimensional Poincaré duality subgroup of G and that H has property
(T). Then G splits over a subgroup commensurable with H.

For example suppose that M is a closed aspherical manifold of dimension 4n+1,
n ≥ 2 and that N is a quarternionic hyperbolic closed manifold of dimension 4n
which admits a π1-injective immersion into M . Since π1(N) has property (T )
the theorem shows that π1(M) is a non-trivial amalgam or HNN extension over a
subgroup commensurable with π1(N).

Note that the presence of a property (T) subgroup in Theorem 5 becomes an
obstruction to the ambient group having property (T). On the other hand, an n-
dimensional property (T) Poincaré duality group can never have a subgroup which
is an (n− 1)-dimensional Poincaré duality group with property (T).

The paper is organised as follows. In section 1 we expand on the formal definition
of the two end invariants e(G,H) and ẽ(G,H) alluded to above. In section 2 we
give the proof of Theorem 4 and Corollary 3, and discuss the Kropholler conjecture.
In section 3 we deal with Poincaré duality and establish Theorem 5.

Acknowledgements We are grateful to Peter Kropholler, Indira Chatterji and
Ashot Minasyan for their comments and suggestions.

1. Relative Ends

Throughout the paper we will denote the field of order two by F2. Now let G
be a group and H be a subgroup of G. Given an H module M one may form a G
module using the functors HomH(F2[G], ) and F2[G]⊗H . More precisely,

CoindG
HM := HomH(F2[G],M) ∼=

∏
g∈H\G

Mg

IndG
HM := F2[G]⊗H M ∼=

⊕
g∈H\G

Mg

Let PG denote the collection of all subsets of G. Then, PG is an F2-vector space
with respect to the operation of symmetric difference. One checks that PG is also
a G module. Moreover, PG ∼= CoindG

1 F2. On the other hand

FH(G) = {A ⊆ G : A ⊆ HF for some finite set F}

is the F2G-module IndG
HPH. Similarly the power set P(H\G) of H\G and the

collection of finite subsets of H\G, written F(H\G) are F2[G] modules. In fact,
P(H\G) ∼= CoindG

HF2 and F(H\G) ∼= IndG
HF2.
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Definition 6. The elements of FH(G) are said to be H-finite and the elements of
(FH(G)\PG)G called H-almost invariant sets.

Definition 7. The algebraic end invariant is defined as

ẽ(G,H) = dimF2 (FH(G)\PG)G

while the geometric end invariant is defined as

e(G,H) = dimF2 (F(H\G))\P(H\G))G
.

We collect together the properties of the ends invariants defined above which we
will later need. The interested reader may find more details in [6].

Proposition 8. Let K ≤ H ≤ G be groups. Then the following hold.
(1) e(G, 1) = e(G) = ẽ(G, 1).
(2) e(G,H) = 0 = ẽ(G,H). if and only if H has finite index in G.
(3) If H ≤ G is of infinite index then ẽ(G,H) = 1 + dimH1(G,FH(G)) and

ẽ(G,K) ≤ ẽ(G,H).
(4) e(G,H) = e(X), where X is the coset graph of G with respect to H.
(5) e(G,H) ≤ ẽ(G,H).

Note that the algebraic end invariant for a group with infinitely many ends
with respect to any of its infinite index subgroups is ∞. For instance, if G is the
non-abelian free group of rank 2 and G′ denotes its commutator subgroup, then
ẽ(G,H) = ∞ (whereas e(G,H) = 2). Clearly, the algebraic end invariant gives
useful information only about one-ended groups.

2. Proof of Theorem 4

Definition 9. We will say that a subgroup H of a group G is almost malnormal if
for every g /∈ H, the intersection H ∩Hg is finite.

Peterson and Thom have shown in [12] that if β(2)
1 (G) > β

(2)
1 (H) for a torsion

free discrete countable group G then there exists a proper malnormal subgroup H ′

of G that contains H. If one drops the hypothesis that G is torsion free then the
same argument shows that H ′ is almost malnormal.

Theorem 4. Let H ≤ G be (discrete and countable) one-ended groups such that
β

(2)
1 (G) > β

(2)
1 (H). If ẽ(G,H) ≥ 2 then G splits over a subgroup of the smallest

proper malnormal subgroup of G containing H.

Proof. Let H ≤ G be one-ended groups such that β(2)
1 (G) > β

(2)
1 (H).

Set Σ = {K < G : H ≤ K and K is almost malnormal in G}. Let (Kj)j∈J be
elements of Σ and suppose g /∈ ∩j∈JKj . Then g does not belong to Kj for at least
one j ∈ J . As Kj is almost malnormal in G, Kj∩Kg

j is finite. Thus, (∩Kj)∩(∩Kj)g

is finite. We conclude that any intersection of elements of Σ is almost malnormal
and that Σ has a minimal element. Call the minimal element K.

As the subgroup K is almost malnormal in G and G is infinite, K has infinite
index in G. As noted in Proposition 8 part 3, the geometric end invariant ẽ(G, .) is
monotonic for infinite index subgroups, thus ẽ(G,K) ≥ ẽ(G,H) and ẽ(G,K) ≥ 2.

The presence of a one ended subgroup H in K limits the possibilities for the
value of e(K). As K is infinite e(K) 6= 0. A group has two ends if and only if it is
virtually Z. As K has a subgroup which is not virtually Z, e(K) 6= 2. Thus K is
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either one ended or K has infinitely many ends. The latter is not a possibility, as
we will now show.

Suppose that K has infinitely many ends. Then by Theorem 2, K acts on a
tree T with no global fixed point and so that edge stabilisers are finite. We may
restrict the action to H, but since e(H) = 1 this action does have a fixed point,
and since H is infinite it cannot fix an edge so it must have a fixed vertex. So
H < A = StabG(v) for some vertex v. We will show that A is almost malnormal
in G and so by minimality of K amongst almost malnormal subgroups containing
H, A = H which contradicts the fact that K acts with no global fixed point on T .
Suppose first that k ∈ K \ A. Then kv 6= v so A ∩ Ak stabilises each edge on the
non-trivial geodesic from v to kv. It follows that A∩Ak is finite. This tells us what
happens for elements of G that lie in K. If g ∈ G\K, then K ∩ Kg is finite and
hence A ∩Ag which is contained in K ∩Kg is finite. Thus A is almost malnormal
in G.

We now need to check that there exists a proper K almost invariant subset A in
G such that AK = A. We generalise Kropholler’s methods in [5] to deal with the
almost malnormal subgroups. The strategy will be to show that for our choice of
K, H1(K,FK(G)) = 0. Recall that K is a one ended almost malnormal subgroup
of G such that ẽ(G,K) ≥ 2.

Let Λ be a set of representatives for the double cosets of H in G. As a K module,
the induced module FK(G) is given by

ResG
KIndG

KPK ∼= ⊕g∈ΛIndK
K∩Kg ResKg

K∩KgPKg

where the sum runs over all double cosets of K in G. The module ResKg

K∩KgPKg
may be identified with ResK

Kg−1∩K
PK.

Now, let g represent a non-trivial double coset of K in G. Then, we have

ResK
K∩KgPK ∼= ResK

K∩Kg CoindK
1 F2

∼=
∏

(K∩Kg)\K

CoindK∩Kg

1 F2

The subgroup K ∩Kg is finite and so the module CoindK∩Kg

1 F2 is isomorphic to
the module IndK∩Kg

1 F2, which is precisely the group algebra F2[K ∩Kg].
Let R denote the algebra F2[K ∩Kg]. Since R is finite, for any index set I,

RI :=
∏
I

R ∼= R⊗ FI
2.

To see this, observe that RI is the algebra of all R valued maps on I. For any
f : I → R and r ∈ R, define F (r) to be the set {i ∈ I : f(i) = r}. Then the
assignment

f 7→
∑
r∈R

r ⊗ F (r)

is the required isomorphism. We deduce from this discussion that RI is a free
module over the F2-group algebra and it follows that PKg is a free K∩Kg-module.
A module induced from a free module is also free and so we find that FK(G) is the
direct sum of PK and a free module. By Shapiro’s Lemma, H1(K,PK) = 0 for all
groups K. Moreover, by Theorem 2, the first cohomology group of the one ended
group K with respect to any free module is trivial. Thus, H1(K,FK(G)) is zero.

If B is a proper K almost invariant subset of G and H1(K,FK(G)) is zero, then
the derivation B 7→ B + Bg restricts to a principal derivation on K. There exists
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then a K-finite subset C such that B + Bx = C + Cx for all x ∈ K. Choose A to
be B + C.

Observe that for all g ∈ G\K, ẽ(G,K ∩Kg) = 1. This is because G is one ended
and each of the intersections K ∩ Kg is finite. The theorem now follows directly
from Theorem 5.3 of [5]. �

2.1. A conjecture of Kropholler and Roller. In the proof of Theorem 4 we
used the non-vanishing of the kernel of the restriction map ResG

H from H1(G,FKG)
to H1(H,FKG) to extract a bi-invariant proper K almost invariant subset of G and
this in turn, helped to produce the splitting for the group. Kropholler and Roller
conjectured the following:

Conjecture 10. (Kropholler and Roller, [6]) Let H ≤ G be finitely generated
groups. If G contains a proper H almost invariant subset A such that HAH = A,
then G splits over a subgroup related to H.

Here we provide further evidence in favour of the conjecture.

Proposition 11. Conjecture 10 is true for all pairs G and H satisfying the hy-
potheses of the conjecture along with the condition β

(2)
1 (G) > β

(2)
1 (H).

Proof. The case when H is finite follows from Stallings’ celebrated Theorem on ends
of groups. Assume that H is infinite. Then, as before, H is contained in a proper
almost malnormal subgroup K of G. Set SA(G,H) to be the set of elements g of
the group such that all four intersections A∩gA, A∩gA∗, A∗∩gA, and A∗∩gA∗ are
non-empty. This is the singularity obstruction defined in [7] and discussed above.

By Kropholler’s Lemma (4.17 of [5]), the condition that A = AH ensures that
SA(G,H) is contained in the set S := {g ∈ G : ẽ(G,H ∩ Hg) ≥ 2}. Assume
first that S is contained K. Then, the singularity obstruction generates a proper
subgroup 〈S〉 of G and the main theorem of [7] asserts that G splits over a subgroup
commensurable with 〈S〉. On the other hand, if S is not contained K, then for any
g ∈ S\K, ẽ(G,H∩Hg) ≥ 2 for the finite subgroup H∩Hg. Once again, by Stallings
theorem on ends of groups, G splits over a subgroup commensurable with H ∩Hg.
This verifies the conjecture for our choice of groups G and H. �

3. Poincaré duality groups

An n-dimensional Poincaré duality group will be written PDn group.

Theorem 5. Let G be a Poincaré duality group of dimension n. Suppose that H
is an (n− 1)-dimensional Poincaré duality subgroup of G and that H has property
(T). Then G splits over a subgroup commensurable with H.

Proof. Let G and H be as in the statement of the theorem. Then a simple compu-
tation shows that the end invariant ẽ(G,H) is precisely 2. We include the compu-
tation here for sake of completeness. Recall that ẽ(G,H) = 1 + dimH1(G,FH(G).
Denote the dualizing module Hn(G,F2G) by DG. In our case, DG

∼= F2. Since
G is a PDn group, we have H1(G,FH(G)) ∼= Hn−1(G, IndG

H(PH ⊗F2 DG)). By
Shapiro’s Lemma, Hn−1(G, IndG

H(PH)⊗F2DG)) ∼= Hn−1(H,PH⊗F2DG). Since H
is a PDn−1 group, Hn−1(H,PH⊗F2DG) is isomorphic to HomF2H(DH ,PH⊗F2DG)
∼= F2. Hence, ẽ(G,H) = 2. We now invoke Lemma 2.5 of [6] to get a subgroup H ′

of finite index in H such that e(G,H ′)= ẽ(G,H)=2.
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Applying Sageev’s construction (see [13]) we obtain a CAT(0) cube complex X
such that G acts essentially on X and H ′ is the stabilizer of an oriented codimension
1 hyperplane J . As H ′ has finite index in the property (T) group H, H ′ also has
property (T). However, every action of a group with property (T) on a CAT(0) cube
complex must have a fixed point (see [9]) and so the action of H ′ on the CAT(0)
cube complex J has a global fixed point. Hence, Lemma 2.5 from [14] implies the
existence of a proper H ′ almost invariant subset B of G such that H ′BH ′ = B.

The singularity obstruction SB(G,H ′), introduced in [7], is defined as the col-
lection {g ∈ G : gB ∩ B 6= ∅, gBc ∩ B 6= ∅, gB ∩ Bc 6= ∅ and gBc ∩ Bc 6= ∅},
where Bc = G\B . Now, SB(G,H ′) satisfies the following: for all g ∈ SB(G,H ′),
the subgroup Kg defined as H ′ ∩ gH ′g−1 has a proper almost invariant set Bg such
that KgBg = Bg. But this implies that e(G,Kg) is at least 2.

Every subgroup of infinite index in an n-dimensional Poincaré Duality group
has cohomological dimension strictly less than n (See [19]). Moreover, for any PDn

group X with subgroup Y of type FP, cdF2Y ≤ n − 2 precisely when ẽ(X,Y ) = 1
(Lemma 5.1 of [5]). This implies that Kg has finite index in both H ′ and gH ′g−1.
More precisely, g lies in the commensurator CommG(H ′) of H ′ and SB(G,H) is
a subset of Comm(H ′). Therefore by Theorem B of [7], G spilts over a subgroup
commensurable with H ′. This proves the theorem. �
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