The University of Southampton
University of Southampton Institutional Repository

Large-scale propagating disturbances: approximation by vertical normal modes

Large-scale propagating disturbances: approximation by vertical normal modes
Large-scale propagating disturbances: approximation by vertical normal modes
Propagating features and waves occur everywhere in the ocean. This paper derives a concise description of how such small-amplitude, large-scale oceanic internal disturbances propagate dynamically against a slowly varying background mean flow and stratification, computed using oceanic data. For a flat-bottomed ocean, assumed here, the linear internal modes, computed using the local stratification, form a useful basis for expanding the oceanic shear modes of propagation. Remarkably, the shear modal structure is largely independent of orientation of the flow. The resulting advective velocities, which are termed pseudovelocities, comprise background flow decomposed onto normal modes, and westward planetary wave propagation velocities. The diagonal entries of the matrix of pseudovelocities prove to be reasonably accurate descriptors of the speed and direction of propagation of the shear modes, which thus respond as if simply advected by this diagonal-entry velocity field. The complicated three-dimensional propagation problem has thus been systematically reduced to this simple rule.

The first shear mode is dominated by westward propagation, and possesses a midlatitude speed-up over the undisturbed linear first-mode planetary wave. The pseudovelocity for the second shear mode, in contrast, while still dominated by westward propagation at lower latitudes, shows a gyrelike structure at latitudes above 30°. This resembles in both shape and direction the geostrophic baroclinic flow between about 500- and 1000-m depth, but are much slower than the flow at these depths. Features may thus be able to propagate some distance around a subtropical or subpolar gyre, but not, in general, at the speed of the circulation.
WOCE, INTERNAL DISTURBANCES, ADVECTION, VELOCITY, WAVE NUMBER
0022-3670
2852-2870
Killworth, P.D.
9fc0c4a0-e1fb-4073-8997-436b59c74bf2
Blundell, J.R.
88114f32-6b76-46b2-b2d8-d6ef64a82b0d
Killworth, P.D.
9fc0c4a0-e1fb-4073-8997-436b59c74bf2
Blundell, J.R.
88114f32-6b76-46b2-b2d8-d6ef64a82b0d

Killworth, P.D. and Blundell, J.R. (2001) Large-scale propagating disturbances: approximation by vertical normal modes. Journal of Physical Oceanography, 31 (10), 2852-2870. (doi:10.1175/1520-0485(2001)031<2852:LSPDAB>2.0.CO;2).

Record type: Article

Abstract

Propagating features and waves occur everywhere in the ocean. This paper derives a concise description of how such small-amplitude, large-scale oceanic internal disturbances propagate dynamically against a slowly varying background mean flow and stratification, computed using oceanic data. For a flat-bottomed ocean, assumed here, the linear internal modes, computed using the local stratification, form a useful basis for expanding the oceanic shear modes of propagation. Remarkably, the shear modal structure is largely independent of orientation of the flow. The resulting advective velocities, which are termed pseudovelocities, comprise background flow decomposed onto normal modes, and westward planetary wave propagation velocities. The diagonal entries of the matrix of pseudovelocities prove to be reasonably accurate descriptors of the speed and direction of propagation of the shear modes, which thus respond as if simply advected by this diagonal-entry velocity field. The complicated three-dimensional propagation problem has thus been systematically reduced to this simple rule.

The first shear mode is dominated by westward propagation, and possesses a midlatitude speed-up over the undisturbed linear first-mode planetary wave. The pseudovelocity for the second shear mode, in contrast, while still dominated by westward propagation at lower latitudes, shows a gyrelike structure at latitudes above 30°. This resembles in both shape and direction the geostrophic baroclinic flow between about 500- and 1000-m depth, but are much slower than the flow at these depths. Features may thus be able to propagate some distance around a subtropical or subpolar gyre, but not, in general, at the speed of the circulation.

Text
Normal_modes_JPO_2001.pdf - Version of Record
Download (529kB)

More information

Published date: 2001
Keywords: WOCE, INTERNAL DISTURBANCES, ADVECTION, VELOCITY, WAVE NUMBER

Identifiers

Local EPrints ID: 7935
URI: http://eprints.soton.ac.uk/id/eprint/7935
ISSN: 0022-3670
PURE UUID: 11d8efa0-03dc-4220-a5f7-7dee6463eb8a

Catalogue record

Date deposited: 04 Aug 2004
Last modified: 15 Mar 2024 04:49

Export record

Altmetrics

Contributors

Author: P.D. Killworth
Author: J.R. Blundell

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×