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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
School of Civil Engineering and the Environment

Doctor of Philosophy

Two-dimensional Cut Plan Optimization for Cutter Suction Dredgers
by M.J.M de Ruyter

Optimal cut plans for cutter suction dredgers aim to maximize operational efficiency.
Maximizing operational efficiency involves minimization of stoppage time resulting from
non-productive dredger movements. To automate a systematic search for optimal two-
dimensional cut plans for cutter suction dredgers two models with an adaptive simulated

annealing-based solution approach were developed.

The first model, the dredge cut nesting model, optimizes irregular stock cutting problems
where stencils represent dredge cuts and sheets represent dredging areas. Stencils are
collections of unit dredge cuts with dimensions related to an effective cutting width which
can be achieved with the cutter suction dredger considered. The objectives of the dredge
cut nesting model are to maximize sheet coverage and to minimize stencil overlap.
Centroids of unit dredge cuts of final nest layouts are extracted and used as grid nodes in

the second model.

The second model, the dredger routing model, optimizes asymmetric travelling
salesperson problems with turning costs. The objectives of the dredger routing model are
to minimize total route length and sum of turning angles, and to maximize average link
length. A link consists of two or more route edges which are aligned with each other to

within specified limits.

A significant result of this research is that an engineering application of both models
showed that two-dimensional cut plans for cutter suction dredgers can be systematically
optimized and that dredger routes with minimum turning costs can be found. However,
results also showed that the dredger routing model is not yet sophisticated enough to find

cut plans for cutter suction dredgers for which overall project execution time is minimal.
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Introduction

1 Introduction

The work in this dissertation addresses two-dimensional cut plan optimization for cutter
suction dredgers. The dredging industry is a specialized and capital-intensive sector of the
construction industry (Dolmans, 2001). In 2007 the world market for dredging, including
maritime construction, was worth and estimated 12.8 billion euros with strong growth
predicted for 2008 (Tewes, 2007). Dredging itself is described by Williams (2003) as a
complex task that is carried out using varying types of equipment to accomplish diverse

goals.

Bray et al. (1997) defines the act of dredging as the excavation or movement of soil or
rock with vessels or floating plant known as dredgers. Dredging is done to deepen
waterways, to create or protect land, to substitute or win material for construction, to win
minerals and to improve the environment (ibid.). Over time dredging projects,
environmental concerns and competitive pressures have become more complex. As such
there is need for the dredging industry to continually investigate updated management
procedures and tools that can improve the economy of dredging activities (Mayer et al.,
2002).

Cutter Suction Dredgers are often used for dredging navigable waterways (Randall et al.,
2000). The total installed power on cutter suction dredgers varies from 200 to well in
excess of 20,000 kilowatts (Bray et al., 1997, Vercruijsse, 2007). Large cutter suction
dredgers can excavate to depths in excess of 35 metres below water level and achieve
single cut widths in excess of 100 metres (Katoh et al., 1985). Figure 1.1 depicts a
medium size cutter suction dredger working offshore in the United Arab Emirates.

Figure 1.1 Medium size cutter suction dredger (Courtesy Gulf Cobla L.L.C.).



Introduction

Between 2005 and 2008 the Belgian dredging contractor Dredging, Environmental &
Marine Engineering reportedly invested 460 million euros in the building of 7 new
dredgers (Bertrand et al., 2008). The same contractor planned to invest another 500
million euros to build 10 more new dredgers between 2008 and 2011 (ibid.), amounting to
an average cost of around 55 million euros per dredger over both periods. The high costs
of building, operating and maintaining dredgers (Dolmans, 2001, Wang et al., 2006) have
led to continuous attempts to increase operational efficiencies and productivities of such
plant (Van Oostrum, 1979). Reducing stoppage time for dredgers is considered important
because increasing the operational efficiency of a dredger equates to increasing a
dredger’s productivity (Brouwer, 1986). When dredging work is paid for by a fixed amount
per unit volume excavated, stoppages not only equate to a loss of productivity but also to
a loss of income (Miertschin et al. 1998). Less stoppage time means less time spent on a
dredging project which in turn means less wear on machinery and fewer overheads, such
as fuel and wages (ibid.).

On many projects done with cutter suction dredgers, the first part of preparing a dredge
plan consists of dividing a larger dredging area into smaller adjoining dredge cuts of
varying length and widths equal to or less than the cut width which can be achieved by the
cutter suction dredger employed (Tang et al., 2008). After that, a sequence in which the
smaller dredge cuts are to be excavated needs to be determined. When multiple dredge
cuts have to be dredged, then at some point the cutter suction dredger employed is likely
to be relocated and/or change its working direction from one cut to another. When a cutter
suction dredger is relocated or changes its working direction it is considered idle. The time
spent on moving a cutter suction dredger is unproductive as the actual dredging process
itself is interrupted (Swart, 1995, Dirks et al., 1999, Blasquez et al., 2001). Therefore
preparing a dredge plan which minimizes the total expected stoppage time resulting from
unproductive dredger movements can increase the productivity of cutter suction dredgers.
The aim of the work presented here is to investigate how optimal dredge plans for cutter

suction dredgers can be determined systematically.

The next section of this thesis presents a background of cutter suction dredger operation
and the research problem. The background section is followed by a review of literature on
earthwork and dredging optimization to see if the research problem has been studied
before. Next a review of literature on so-called nesting and routing problems is presented,
special forms of which bear relevance to the research problem. The literature review ends
with a review of a number of optimization methods. After the literature review the models
of the research problem are presented and series of experiments are described to see if
optimal solutions to these models can be found. The results of the experiments are then

presented and discussed. Finally conclusions are drawn and further work is suggested.
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2 Background

This section addresses cutter suction dredger operation and the research problem.

2.1 Cutter Suction Dredger Operation

Cutter suction dredgers are versatile dredgers (Herbich, 2000) with hulls consisting of
pontoons and usually they do not have their own means of propulsion (Bray et al., 1997).
To move a cutter suction dredger when it is not dredging use of support vessels, such as
workboats, is made (Bray et al., 1997, Tang et al., 2008). The rotating cutter apparatus of
a cutter suction dredger, the cutterhead, can be designed to cope with a variety of
materials: Peat, clay, silt, sand, gravel and boulders to sedimentary rock such as
limestone, dolomite and carbonaceous rocks (Herbich, 2000). Larger more powerful cutter
suction dredgers can dredge rock-like formations such as coral and softer types of basalt
without pre-treatment by blasting and/or drilling (ibid.). In 2000 a single cutter suction
dredger dredged around 7,000,000 cubic metres of limestone, glacial tills and sand and
gravel deposits to excavate a 3.5 kilometre long tunnel trench between Denmark and
Sweden (Maddrell et al., 1998, Dirks et al., 1999). Figure 2.1 depicts the main features of

a typical medium size cutter suction dredger.
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Figure 2.1 Overview medium size cutter suction dredger (Courtesy Gulf Cobla L.L.C.).

When dredging a cutter suction dredger is kept in position with side anchors at its front
and often a spud system at its back (Bray et al., 1997, Herbich, 2000, Tang et al., 2008).
Once in position, the pivoting ladder — a fabricated steel structure at the end of which the
cutterhead is mounted — is lowered below the water level to start dredging. Upon
immersion of the cutterhead, one or more on-board dredge pumps are engaged in order

to create a desired flow rate in the dredger’s suction and discharge pipes (Bray et al.,
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1997, Wang et al., 2006). The cutterhead is set in motion before contact with the seabed
is made (Tang et al., 2008). Figure 2.2 depicts a cutterhead designed for dredging sands

and clays.

Figure 2.2 Routine inspection of a sand/clay cutterhead.

Once in contact with the seabed, the cutterhead loosens the bed material and a mixture of
soil and water is drawn into the suction intake as a result of the vacuum created by the
first dredge pump behind the cutterhead (Randall et al., 2000, Herbich, 2000, Tang et al.,
2008). Suction intakes are usually located inside the lower half of the cutterhead. To
ensure continued excavation of bed material the dredger is made to swing from side to
side using winches, wires of which are connected to the dredger’s side anchors (Bray et
al., 1997, Tang et al., 2008). Side anchors are positioned outside the cut being dredged,
on either side of the front of the dredger. Figure 2.3 depicts a typical swing track made by
the cutterhead of a dredger fitted with a central spud carriage whilst dredging a single

layer in plan view.
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Figure 2.3 Typical cutterhead swing track (Corrected after Bray et al., 1997).

Figure 2.3 shows that the track at the excavation face across which the cutterhead is
traversed is semi-circular (Bray et al., 1997). The radius of the arc across which the
cutterhead is traversed has its centre point at the position of the main spud of the dredger.
The main spud’s position is normally on the centreline of the cut being dredged. Once an
arc has been dredged over the full width of the cut, the swinging motion of the dredger is
temporarily slowed down near to, or is stopped altogether on the edge of the cut to
advance further into the excavation face. The dredger and cutterhead are advanced by

pushing back the spud carriage which holds the main spud (Tang et al., 2008).

Newer cutter suction dredgers usually have a hydraulic ram cylinder with which the spud
carriage holding the main spud is pushed out or pulled back against the hull (Herbich,
2000). When a spud carriage cylinder has been fully extended, for example over distance
A in Figure 2.3, dredging is stopped in the centreline of the cut, or on a line parallel to it, to
change spuds (Bray et al., 1997). To change spuds the auxiliary spud is first lowered after
which the main spud is raised. Then the spud carriage cylinder is retracted while the
grounded auxiliary spud keeps the dredger’s aft in position. When the spud carriage
cylinder is fully retracted the main spud is lowered and grounded after which the auxiliary
spud is raised (Bray et al., 1997). After changing spuds the cutter suction dredger is ready

to continue dredging a new length of cut, for example over distance B in Figure 2.3.
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The core function of a cutter suction dredger’s main spud system is to resist the backward
thrust generated by the cutterhead as it is traversed across and advanced into a cut face
(Steinbusch et al., 2001). As a cutter suction dredger advances, side anchors are
periodically moved ahead (Randall et al., 2000) to keep the angle of pull on the side wires
within the allowable limits. Usually angles are kept within 40 degrees to the cut centreline
(Bray et al., 1997). The anchors used can vary but their main purpose is to resist the
pulling forces of the dredger’s side winches and additional sideways forces generated by
the rotating cutterhead (Degenkamp et al., 1992).

Dredged soil-water mixtures are discharged from cutter suction dredgers into a series of
floating pipeline sections connected to the dredger or into hopper barges for further
transport (Bray et al., 1997, Randall et al., 2000, Tang et al., 2008). To deposit dredged
soils into a containment area directly from the dredger use can be made of floating,
submerged and/or land-based pipeline sections. Such pipeline networks can incorporate
auxiliary parts such as ball joints and/or rubber hoses to increase flexibility, y-pieces with

valves for branching off secondary pipelines and bends (Bray et al., 1997).

Within the limitations of vacuum, pressure, critical velocity and available power of a
particular cutter suction dredging system, field experience indicates that for a given soil
the dredging productivity of a cutter suction dredger is a function of depth of cut and
lateral and rotational speeds of the cutterhead (Herbich, 2000). The soil-water mixture
dredged by a cutter suction dredger can contain as much as 20% solids by volume
(Randall et al., 2000). Cutter suction dredgers are usually rated either according to the
internal diameter of their discharge pipe or by the power driving their cutterhead (Bray et
al., 1997). Internal discharge pipe diameters range from under 150 millimetres to over
1,100 millimetres and cutterhead power can vary from 15 kilowatts to over 4,500 kilowatts
(ibid.). Generally, small cutter suction dredgers are powered by diesel-hydraulic systems
and larger ones by diesel-electric systems (ibid.).

A well-designed cutter suction dredger with an internal discharge pipe diameter of 750
millimetres, 1,500 kilowatts powering its cutterhead and 3,500 to 6,000 kilowatts driving its
dredge pump will discharge between 1,500 to 3,500 cubic metres per hour in soft material
and 150 to 1,500 cubic metres per hour in soft to medium hard rock through pipeline
lengths of up to 4,500 metres (Herbich, 2000). To assess the performance of cutter
suction dredgers their operational and dredging productivities can be calculated:
Operational productivities of a cutter suction dredger are calculated by dividing the total
volume removed divided by the sum of operational time (Herbich, 2000), where
operational time is defined as time when a dredger is fully manned (Bray et al., 1997).

Dredging productivities are calculated by dividing the total volume removed by the sum of
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operational time less stoppage time, where stoppage time is defined as time when the
dredger is fully manned but not dredging (ibid.). On most dredging projects average
operational and dredging productivities of cutter suction dredgers are calculated and

recorded on a daily basis.

For a well-managed cutter suction dredger, under average site conditions, the total
stoppage time incurred can be in the range of 20 to 30 per cent of the total operational
time (Bray et al., 1997). However, specific site conditions can result in higher losses
(ibid.). Stoppage times can be grouped depending on whether they are considered
avoidable or unavoidable. Stoppages causing loss of productivity which are unavoidable
are those inherent to the cutter suction dredging process itself. Examples of unavoidable
stoppages are those incurred when changing the position of anchors and spuds, without
which progress cannot be made. Stoppages resulting from sub-standard maintenance,
operation and/or management of the dredger can be considered as avoidable.
Unnecessary dredger movements resulting from poor operation and/or management of

the dredger are avoidable.

An analogy can be made with the Lawn Mowing Problem (Arkin et al., 2005), where the
lawnmower represents a cutter suction dredger and the lawn equates to a dredging area.
For a single covering exercise and constant mowing rate, an objective can be to achieve
the highest possible operational productivity with the lawnmower. To achieve this the lawn
has to be cut such that stopping the lawnmower to change its working direction or to
teleport it to another part of the lawn is minimized since stoppages add to the total time
the manned lawnmower is operational: The total area to be cut is fixed so any increase in
operational time reduces the operational productivity of the lawn mower. Using a lawn
mower is less complex than operating a cutter suction dredger, but the lawn mowing
problem, as described here, can serve as a model for the work done with such a dredger.
The following section describes the research problem of two-dimensional cut planning for

cutter suction dredgers in more detail.
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2.2 Research Problem

Capital dredging normally denotes projects which involve dredging as a one-off operation
(Bray et al., 1997). Maintenance dredging is used to describe dredging which is of a
recurrent nature (ibid.). Usually the scope of capital dredging works is described in detail
by contractual documents specifying horizontal and vertical excavation limits, including
tolerances if applicable (ibid.). Figure 2.4 depicts a cutter suction dredger dredging a

single straight cut as part of a capital dredging project to widen an existing channel.

Figure 2.4 Single cut dredging project (Courtesy Gulf Cobla L.L.C.).

Usually, a single cut dredged by a cutter suction dredger is of constant width and of a
length greater than its width. Unless purposely dredged otherwise, the start and end of a
dredge cut resemble near-identical arcs in plan view. In Figure 2.4 the semi-circular end of
the single cut can be seen on the left where channel widening is in progress and the
dredger advances. Preparing a cut plan for a single straight cut requires the selection of
one cut centreline. The project can be completed as the dredger progresses naturally
along that single centreline. Only if the required depths or widths of cut are not achieved
will the dredger have to be moved back or turned around in the opposite direction.
However, such events are not taken into account in this work. The research problem of
two-dimensional cut planning for cutter suction dredgers presents itself when a dredging

area cannot be excavated in a single dredge cut.
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Preparing a plan to excavate a continuous dredging area which cannot be covered with a
single cut of a cutter suction dredger consists of two stages. In the first stage the larger
dredging area is divided into smaller adjoining dredge cuts in plan view. The first planning
stage will be referred to here as the Dredge Cut Nesting Problem. The second planning
stage consists of determining a sequence in which to excavate adjoining dredge cuts and
will be referred to here as the Dredger Routing Problem. In order to model dredge cuts
they can be approximated by rectangles with lengths and widths equal to exact multiples
or fractions, or a combination of both, of effective cut widths which can be achieved with
cutter suction dredgers. In such an approximation the semi-circular shape of the starts

and ends of real cuts dredged by cutter suction dredgers is neglected.

In practice, the dredging of two adjoining cuts is made to overlap to some degree to avoid
leaving behind undredged ridges. The selected amount of overlap usually depends on the
type of material being dredged. Equally so, additional dredging is usually carried out on
the edges of dredging areas to ensure the required slope profiles are realized. Effective
cut widths of cutter suction dredgers are defined here as excluding the extra widths
dredged to achieve overlap or side slope profiles. The maximum effective cut width of a
cutter suction dredger is therefore less than the maximum cut width which can be

achieved with the same dredger.

To illustrate the two planning stages which make up the research problem a hypothetical
dredging project is considered. The dredging area of this project is a rectangle of 300
metres wide and 400 metres long. A cutter suction dredger selected to excavate the area
is capable of achieving an effective cut width of 100 metres. It is assumed the dredger can
float anywhere in and around the dredging area. There no constraints on the length or
total number of dredge cuts which can be selected or on the order in which dredge cuts,
once selected, can be dredged. In addition, it is given that one pass will suffice to achieve
required depths and that site conditions are homogeneous throughout so that all dredging
directions are equally productive. Figure 2.5 depicts two arrangements of 100 metre wide

cuts in the hypothetical dredging area.
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Figure 2.5 Hypothetical dredging area divided into cuts.

Figure 2.6 depicts two hypothetical dredging sequences, one for each cut arrangement
depicted in Figure 2.5. Dredging sequences in Figure 2.6 are shown with arrows indicating

the working direction of the dredger and dredge cut outlines are adjusted for clarity.

Dredge Sequence A Dredge Sequence B

Figure 2.6 Hypothetical dredging sequences.

Cut plan A is made up of cut arrangement A of Figure 2.5 and dredging sequence A of
Figure 2.6, and cut plan B is made up of cut arrangement B of Figure 2.5 and dredging
sequence B of Figure 2.6. Each cut plan can now be evaluated by summing the
associated hypothetical dredger movements. Minor dredger movements are those when
the dredger turns into the next cut more or less on the spot, which are indicated by an

encircled ‘T’ in Figure 2.6.
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Major dredger movements are those when the dredger has to be relocated over some
distance to the next cut, which are indicated by an encircled ‘S’ in Figure 2.6. The total
number and types of hypothetical dredger movements for each cut plan are: One major
movement and two minor movements for cut plan A and six minor movements for cut plan
B.

If it is said that a major dredger movement equals two hours of stoppage time and a minor
dredger movement equals one hour of stoppage time, then the total stoppage time
resulting from dredger movements is: Four hours for cut plan A and six hours for cut plan
B. All else being the same, executing cut plan B would result in two hours more stoppage
time than if cut plan A were executed. Executing cut plan A, therefore, will result in the
cutter suction dredger achieving a higher overall operational efficiency and productivity

since less operational time is lost.

The hypothetical example and its outcome reflect the essence of the research problem.
However, in the hypothetical example only two possible solutions out of many were
considered. To find the best solution all possible combinations of dredge cuts and cutting
sequences need to be evaluated and compared. The hypothetical cut planning problem is
a combinatorial problem with a search space depending on problem size. The dredger
routing problem alone is a combinatorial problem depending on the total number of
locations through which the dredger can pass. For a dredger routing problem with n
locations, where the dredger has to return to where it started from, there are (n - 1)!/2
possible tours: If nis 21, there are more than 10" possible tours (Helsgaun, 2000).
Finding optimal solutions to combinatorial problems with very large search spaces can be
made easier by modelling the problem and using computer-programmed optimization
methods (Winston, 1994). The main objectives of the research presented here are to
develop a model of two-dimensional cut planning for cutter suction dredgers and use and
evaluate a computer-based solution approach which systematically optimizes the

developed model.

Next a literature review consisting of five sections is presented. In the first two sections
literature on optimizing earthworks and dredging is reviewed to see if the research
problem presented here has been identified, modelled and/or optimized before. In the
third and fourth section literature on nesting and routing problems is reviewed to see how
they can be used to model the Dredge Cut Nesting Problem and the Dredger Routing
Problem. In the last section literature on optimization methods is reviewed to see how the

developed model of the research problem can be optimized.
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3 Literature Review

This section reviews literature which is of direct relevance or provides context to the work

presented here.

3.1 Earthwork Optimization

Literature on earthwork optimization is considered relevant to the work presented here
since dredging, as defined by Bray et al. (1997), concerns the movement of soil and rock,
albeit done under water. Construction projects, which often involve significant amounts of
earthwork, possess unique characteristics which make the individual planning of each
project essential (Askew et al., 2002). Earthworks are costly and reducing the total
distance travelled by earthmoving vehicles leads to cost savings in fuel consumption, time
and equipment maintenance (Henderson et al., 2003). Planning and estimating
earthmoving operations involves three steps: Formulation, representation and the
evaluation of a plan (Kannan et al., 1997). The application of automation technologies to
planning earthmoving operations is desirable because they are machine-oriented,
repetitive, tedious, and consist of physically demanding tasks (Kim et al., 2003a). In
addition, automated approaches to earthwork planning benefit worker safety, skilled

worker requirements and productivities (ibid.).

A common tool used for finding the most economical distribution of earthwork on road-,
rail- and runway projects is the mass-haul diagram (Easa, 1988a). A mass-haul diagram
graphically represents the cumulative volume of earth along a project (Oglesby et al.,
1982), where haul is defined as the movement of a unit volume over a unit of distance
(Mayer et al. 1981). Appendix A gives a numerical example of a conventional mass-haul
diagram. Stark et al. (1972) suggests using a Linear Programming model to optimize
earthwork allocation problems instead of mass-haul diagrams. Linear programming is a

classical Operations Research optimization method (Lirov, 1992).

Operations Research originated in England when it was used for making decisions how to
best use war material during World War Il (Taha, 2003). After the war the ideas on military
operations were adapted to improve efficiency and productivity in the civilian sector (ibid.).
Taha (1982) describes Operations Research as a problem-solving approach, involving the
use of mathematical techniques to model decision problems, which seeks the
determination of the best (optimum) course of action for decision problems under the

restriction of limited resources.

Models are abstractions of assumed real systems: They simplify the complexity of a real
system by concentrating primarily on identifying the dominant variables, parameters and
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constraints which control the behaviour of the real system (Taha, 1982). Figure 3.1

depicts the modelling process used in Operations Research schematically.

Real world

system

y

Model

Assumed real

world system

Figure 3.1 Operations Research modelling overview (Taha, 1982).

In Operations Research a model of an assumed real system is stated as an objective
subject to constraints: The objective reflects the desired end result and the constraints
identify important relationships of the modelled system (Taha, 1982). For example, the
common objective in money-making endeavours is to maximize profit or minimize cost
(ibid.). Constraints of a money-making endeavour can be, for example, the limited amount
of components available for making finished products. When the objective and constraints
of a decision problem are known, the optimum course of action can be decided upon by
identifying values of variables which best meet the objective (ibid.). The quality of
solutions arrived at depend on how accurate a model represents a real problem (Taha,
2003).

Three main types of Operations Research models exist: Exact (or mathematical) models;
simulation models; and heuristic (or approximation) models (Taha, 1982, Winston, 1994).
Exact models assume that all the relevant variables, parameters, and constraints as well
as the objective are quantifiable, and are generally successful at optimizing the problems
they model (ibid.). Simulation models imitate the behaviour of a system over time so that
information about the performance of the system can be collected when pre-defined
events occur (ibid.). For example, a business may decide to simulate different inventory
systems rather than experiment with the real-world system (Winston, 1994). The
information indicating the performance of the simulated system is accumulated and stored
as a set of statistical observations (Taha, 1982). Because simulation models do not need
explicit mathematical functions to relate variables, it is usually possible to simulate

complex systems that cannot be modelled or solved exactly (ibid.). The main drawback of
13
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simulation is that the analysis of a system is equivalent to conducting experiments and
therefore is subject to experimental error (ibid.). In addition, although optimization with
simulation is possible, simulation is not an optimization method: Simulation models are
mostly used to analyze ‘what if’ questions (Winston, 1994). Optimization of simulation

models is generally a slow process and can be costly (ibid.).

When for an exact formulation of a problem the determination of an optimal solution is
problematic, heuristic models can be used to determine optimal or near-optimal solutions
(Taha, 1982). Heuristic models make use of local search techniques that intelligently
move from one solution point to another with the aim of improving the value of the model’s
objective function (ibid.). When no further improvements can be achieved, the best

attained solution is an optimal or near-optimal solution to the model (ibid.).

Linear programs are exact models of problems which have a linear objective function
subject to linear equality and inequality constraints (Taha, 2003). Solving linear
programming models gives values of previously unknown variables which result in a
minimum or maximum value of the objective function (ibid.). Mayer et al. (1981) uses a
linear programming model to optimize an earthwork allocation problem in which three
categories of cost are defined: The first for excavation and loading, the second for haul,
and the third for placement and compaction. The costs of excavation and placement on a
construction project are typically considered to be proportional to the earthwork quantities
involved (ibid.). The cost of haul, however, is proportional to both earthwork quantity and
haul distance. When for a given quantity of earth to be moved, the costs of excavation
and placement are fixed, Mayer et al. (1981) states that the most economical distribution
of cut and fill is that which minimizes haul. Mayer et al. (1981) optimizes an earthwork

allocation problem by modelling it as a Transportation Problem.

The transportation problem is representative of many linear programs which model the
movement of specific amounts of identical items from a discrete number of sources to a
discrete number of destinations (Kannan et al., 1997). Figure 3.2 depicts a model of a
transportation problem as a network with m sources and n destinations. Each source and

destination is represented by a square, also referred to as a node.
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Figure 3.2 Single-period Transportation Problem as a network (Schrage, 1999).

The network in Figure 3.2 only has two node levels indicating activities are planned over a
single period. More complex multi-period transportation problems can be modelled by
adding levels of nodes (Schrage, 1999). The routes along which products can be
transported are represented by lines with arrows joining the nodes. The total cost of
transport along a given route is the product of the unit transportation cost for that route
and the number of units transported along that route. How a unit of transportation is
defined depends on the item transported. A unit of transportation can be a single item or a
multiple thereof, for instance a consignment required for the assembly of a larger item.

The units of supply and demand must correspond to the definition of the transported unit.

To model a transportation problem, the amount of supply available at each source, the
amount of demand present at each destination, and the unit transportation cost from each
source to each destination must be known. The unknown variables of a transportation
problem are the amounts of items transported from each source to each destination,
expressed as the problem decision variable, x;. Since all items are identical, a destination
can receive its demand from more than one source. Taha (2003) states that the linear
program of the transportation problem depicted in Figure 3.2 is generally formulated as

follows:

M N
minimize Z=Y" > ¢;X; (3.1)
iz =1

where: Z = total cost; ¢; = unit transportation cost from i to j; x; = units transported from i to

J; M = total number of sources; and N = total number of destinations.
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Subject to the following constraints:

N

x;<a;, i=1,2,..,m (3.2)
j=1
M "
Y x;=b;, j=1,2,..,n (3.3)
i=1
x; >0, foralliandj (3.4)
N M

a23b 9
=1 j=1

where: a; = the supply available at source /; and b; = the demand present at destination j.

Equation 3.1 states the objective of the problem is to minimize the total cost of the
transport process. Equation 3.2 specifies that the sum of units transported from a source
cannot exceed supply; Equation 3.3 stipulates that the sum of units transported to a
destination must satisfy its demand; and Equation 3.4 ensures units transported are not
negative. Lastly, Equation 3.5 specifies that total supply must be equal or greater than
total demand, which is considered an optional constraint. If for a transportation problem
total supply equals total demand the problem is said to be a balanced transportation
problem (Winston, 1994).

Table 3.1 redefines variables of Equations 3.1 to 3.5 so that the total amount of haul can
be minimized for earthwork allocation problems for which transportation cost is linearly
proportional to transport distance. Mayer et al. (1981) defines haul as the movement of

one unit volume over one unit of distance.

Table 3.1 Redefinition Transportation Problem variables — Earthwork optimization

Variable Transportation Problem Definition Earthwork Problem Definition
Z Total cost Total haul
a; Source supply Cut volume
b; Destination demand Fill volume
Cjj Unit transportation cost Transport distance
Xij Transported items Transported volume

Solving an earthwork allocation problem modelled as a transportation problem using linear
programming identifies volumes transported between cut and fill locations for which the
total haul is minimal. Mass-haul diagrams are best for optimizing relatively narrow works
such as road-, rail- and runway projects but can not cope with haul costs and soil
properties which vary along the roadway (Easa, 1988a). Using linear programs of
transportation problems, linear earthwork allocation problems covering wide areas can be
modelled and optimized, as Mayer et al. (1984) demonstrates with a hypothetical example

of a dredged-material allocation problem.
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Linear programs can also take into account project set-up costs associated with the use of
borrow pits and landfills. The model proposed in Mayer et al. (1981) uses constant unit
costs of haul for borrow pits and landfills. Constant unit costs for haul make haul costs
linearly proportional to haul distance. Easa (1987) proposes a mixed-integer linear
program for optimizing an earthwork allocation problem which uses non-constant unit
costs for haul for borrow pits and landfills. Mixed-integer linear programs describe
problems with a mix of linear and integer variables (Taha, 2003). The model in Easa

(1987) uses cost functions with three cost levels for the use of borrow pits.

Easa (1988a) determines roadway levels which minimize earthwork cost using linear
programming and constant unit costs of haul. Easa (1988b) optimizes earthwork allocation
problems where project set-up costs are governed by a quadratic function which defines
non-constant unit costs of haul for the use of borrow pits. So, in addition to linear
programming models, a Quadratic Programming model — a model which has a quadratic
objective function of several variables subject to linear constraints on these variables

(Taha, 2003) — can also be used to optimize earthwork allocation problems.

Jayawardane et al. (1994) proposes a multi-staged solution approach, also referred to as
a Dynamic Programming model, to optimize earthwork for road construction projects.
Problems which exhibit overlapping sub-problems and an overall optimal sub-structure
can be formulated as dynamic programming models (Taha, 1982). Dynamic programming
primarily serves to enhance the computational efficiency of solving large problems and
usually takes one of two forms: A ‘top-down’ or a ‘bottom-up’ approach (ibid.). In a ‘top-
down’ approach a large problem is broken into sub-problems, which are solved
separately, remembering their solutions in case they need to be solved again (ibid.). In a
‘bottom-up’ approach relevant sub-problems are solved in advance and then used to build
up solutions to larger problems (ibid.).

The dynamic programming model used in Jayawardane et al. (1994) for optimizing
earthworks is a bottom-up approach consisting of three stages: Simulation, mixed-integer
linear programming and network scheduling. The first stage, that of simulation, generates
realistic unit earthmoving costs corresponding to an optimal combination of plant for each
haulage operation considered (ibid.). The simulated data then serves as input for the next
stage, a mixed-integer linear program, with which the most economical distribution of cut
and fill for the chosen combination of plant is determined (ibid.). In the third and final
stage, the network scheduling stage, the most economical distribution of cut and fill is
applied together with the sequential logic of the construction operations adopted in the
second stage to obtain a construction schedule in the form of a network and a bar chart

describing the earthwork allocation plan (ibid.). Jayawardane et al. (1994) concludes that

17



Literature Review

the comprehensive model proposed can successfully accommodate constraints in plant
availability, project completion time, availability of different soil strata at cut sections and
borrow pits, various degrees of compaction at various layers, and various borrow pits and

landfills.

Henderson et al. (2003) solves the problem of levelling a construction site by redefining
the associated earthwork allocation problem as a shortest route cut and fill problem. The
shortest route cut and fill problem is form of Travelling Salesperson Problem. Henderson
et al. (2003) uses a Simulated Annealing algorithm to find optimal solutions to 90
hypothetical earthwork allocation problems. A travelling salesperson problem is an
assignment problem with the additional condition that the assignments chosen must
constitute a tour and the objective is to minimize the total distance travelled (Schrage,
1999). Simulated annealing is an optimization method using a stochastic local search
technique which is analogous to the annealing of solids where, as the process advances
increasingly better solutions are found, eventually converging to, or close to, a global
optimum (Henderson et al., 2003). Solving the shortest route cut and fill problem equates
to finding a route, beginning and ending at the same cut location, for a single earthmoving
vehicle which minimizes the total distance travelled between cut and fill locations (ibid.).

A single-period transportation problem models the movement of identical units along arcs
between nodes and as such it is not considered suitable as a model for dredge cut nesting
problems. Other Operations Research problems which can be used to model dredge cut
nesting problems with greater ease are reviewed Section 3.3. The applicability of a single-
period transportation problem to model dredger routing problems is limited to dredger
routing problems consisting of two nodes connected with one arc. Multi-period
transportation problems can be used to model dredger routing problems. However, a
travelling salesperson problem, as used in Henderson et al. (2003) to model a
transportation problem, is considered a better choice for modelling dredger routing

problems, which is explained in Section 3.4.

A dynamic programming solution approach, as used in Jayawardene et al. (1994) to solve
earthwork allocation problems, is of direct relevance to solving the research problem since
it is made up of two problems: Dredge cut nesting and dredger routing. The applicability of
optimization methods such as linear-, mixed-integer linear-, quadratic programming and
simulated annealing to optimizing the research problem is discussed in Section 3.5. To
see if the problem of two-dimensional cut planning for cutter suction dredgers has been
identified, modelled and/or optimized before, literature on dredging optimization is

reviewed next.
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3.2 Dredging Optimization

The literature reviewed in the previous section supports the view put forward in
Jayawardene et al. (1994) that earthwork optimization, especially in road construction, has
drawn considerable attention from researchers, particularly in the USA and Canada.
Some commentary suggests the opposite with regard to the levels of attention the subject
of dredging as a whole has received from researchers. The preface of Herbich (1975)

quotes Houston as having said the following in 1968:

“On premise that a profession is known by its literature, dredging
might well be eliminated. Its literature is almost nil.”

In the foreword of Herbich (1975) Taylor observes that:

“...there is a paucity of comprehensive literature in the dredging

industry.”

More recently, in the preface of Bray et al. (1997), Murden states that:

“...the number of published manuscripts which fully address the entire

scope of dredging technology continues to be limited.”

Although prefaces and forewords tend to promote the work in which they reside, a
perceived lack of published research of dredging can be the result of the dredging industry
having been somewhat secretive for many years (Riddel, 2000). The dredging industry
used to be insular and inward looking, and saw little advantage in sharing information
about projects, problems or new techniques (ibid.). Although the dredging industry has
changed, technical secrecy remains, which, it is claimed, is necessary for maintaining
commercial competitiveness (ibid.). Commercial confidentiality continues to prevent the
sharing of detailed information on production methods and rates (Riddell, 2000). However,

Murden states in the preface of Bray et al. (1997) that:

“Since the inception of the World Organization of Dredging Associations in
1967 the number of technical papers on dredging presented at seminars,

conferences and published in journals has significantly increased.”

Instead of classifying Operations Research models by model type (exact-, simulation-;
and heuristic models) as done in Taha (1982) and Winston (1994), Denes (1991) refers to

the optimization methods used, distinguishing between two main groups: Quantitative and
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qualitative methods. Quantitative optimization methods aim to provide values of previously
unknown variables which result in optimal or near-optimal values of an objective function.
Quantitative optimization methods are associated with exact formulations of problems.
Linear programming is a quantitative optimization method according to Denes (1991),
while Taha (2003) does not group linear programming with models which give near-
optimal solutions. Qualitative optimization methods on the other hand, aim to provide
descriptive solutions which are recommendations for best practices. Qualitative
optimization methods rely on the collection and statistical analysis of field data or data
generated with physical or computer simulation models. Literature on the qualitative

optimization of dredging problems provides recommendations for:

¢ reducing environmental impacts of dredging operations as done in Clarke et al.
(2002) and Barth et al. (2004),

¢ reducing maintenance dredging in ports and waterways as done in De Meyer et al.
(1987),

e increasing storage capacity of disposal areas as done in Moritz et al. (1995), Van
Mieghem et al. (1997), and McKee et al. (2005),

¢ reducing risks and costs of dredging projects as done in Henshaw et al. (1999),
Zhu et al. (1999), Creed et al. (2000), and Demir et al. (2004),

e improving dredger performance as done in Denes (1993), Deketh (1995), and
Blasquez et al. (2001).

Other dredging research presents models simulating real dredging systems, but without
evaluating ‘what if’ scenarios or optimizing the modelled systems. Examples of simulation
models of real dredging systems are those of soil cutting mechanisms (He et al. 1998,
Miedema, 2004), sediment transport in pipes (Luca, 1995, Matousek, 1998), suction pipe
dynamics (Ten Heggeler et al. 2001, Liu et al., 2003) and hopper loading processes (Paris
et al., 1996).

It can be said that there appears to be no shortage of literature which presents models of
varying complexity of real dredging problems and systems. Some simulation models, for
instance those presented in Blasquez et al. (2001) and Clarke et al. (2002), can be
suitable for quantitative optimization. However, none of the literature summarized so far in
this section identifies, models or optimizes the research problem. Literature on the
quantitative optimization of dredging problems, as is done for earthwork allocation
problems reviewed in Section 3.1, can be subdivided according to whether stochastic or

deterministic models are used.
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Stochastic models are exact formulations of problems where certain data is modelled as a
random variable, the probability distribution of which depends on parameter values
(Winston, 1994). The outcomes of stochastic models depend on a variety of draws from
the probability distributions used and therefore contain uncertainties, which is why they
are sometimes described as models with risk (ibid.). Dredging problems optimized
quantitatively using stochastic models include the planning of maintenance dredging
(Lund, 1990, Lansey et al., 1993, Mayer et al. 2002), dredged-material disposal
(Stansbury et al., 1999), and sand nourishment (Bruun, 1991, Van Noortwijk et al., 2000).
However, none of the stochastic models in the literature referred to, model the operation
of individual dredgers. Instead these stochastic models provide optimal solutions as to

when or how to carry out dredging activities in general.

Deterministic models are exact formulations of problems which do not contain random or
stochastic components and as such their outcomes are free of risk: Solutions to the
problems they model can be calculated according to some pre-specified logic (Winston,
1994). Dredging problems optimized quantitatively using deterministic models include the

following:

e bid proposals (Mayer et al., 1984),

e managing dredged-material disposal (Mayer et al., 1984, Ford, 1984 and 1986,
Schroeder et al., 1995),

¢ allocating dredging fleets (Denes, 1991),

e planning maintenance dredging (Mayer et al., 2002),

e loading of hopper dredgers (Howell et al. 2002).

Mayer et al. (1984) uses linear programming to optimize a bidding proposal for a
hypothetical dredging project thereby maximizing present worth of anticipated project
revenue. In addition, Mayer et al. (1984) uses linear programming to optimize a single-
period dredged-material allocation problem modelled as a transportation problem as done
in Mayer et al. (1981) for earthwork allocation problems. Howell et al. (2002) states
economical loading of hopper dredgers can be optimized by linear programming but does

not formulate the linear program to be used.

Denes (1991) models the problem allocating a fleet of dredgers to a number of projects as
an Assignment Problem with the objective to minimize the total associated cost. The total
cost of undertaking a dredging project is made up of fixed cost elements, such as
mobilization and labour, and variable cost elements, such as fuel, supplies and repair

costs.
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The linear program of an assignment problem has an objective function, Equation 3.6,

which is very similar to that of a transportation problem:

M N
minimizeZ=Y_ ¢

i=1 j=1

e (3.6)

[/

where: Z = total cost; ¢; = cost of assigning agent i to task j; x; = agent i assigned to task j;

M = total number of agents; and N = total number of tasks.

The constraints of the linear program representing an assignment problem are:

M

dYx;=1, i=1,2..,.m (3.7)
i=1

N

dx; <1, j=1,2,..,n (3.8)
j=1

x; =0, for all i and j (3.9)
x;=(0, 1), forall i and j (3.10)

Equation 3.7 specifies that each task is assigned one agent; Equation 3.8 stipulates that
each agent is not assigned to more than one task; and Equation 3.9 ensures that numbers
of assigned agents are not negative. Lastly, Equation 3.10 specifies that values for agents
assigned to tasks can only be 0 or 1 since an agent is either assigned to a task or not.
The linear program of an assignment problem can include additional constraints, which,
for example, specify that the total number of agents must be equal or greater than the
number of tasks. Table 3.2 gives objective function variables of the assignment and the

transportation problem for comparison.

Table 3.2 Assignment and Transportation Problem variables

Variable Assignment Problem Definition Transportation Problem Definition
Z Total cost Total cost
M Total number of agents Total number of sources
N Total number of tasks Total number of destinations
Cj Cost of assigning agent i to taskj  Unit transportation cost from j to j
Xjj Agent i assigned to task j Units transported from i to j

Through substitution of agents with dredgers, and tasks with dredging projects Denes
(1991) solves a hypothetical dredger allocation problem. The hypothetical cut planning
problem given in Section 2.2 can not be directly modelled as an assignment or

transportation problem, at least not as a single-period one. However, a special form of
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assignment problem, the travelling salesperson problem, can be used to model dredger

routing problems, which is discussed in more detail in Section 3.4.

Ford (1984) presents a dredged-material disposal management model which can be used
to determine the minimum-net-cost operation policy for systems of disposal sites over
future periods by optimizing the associated dredged-material allocation problem. The
associated dredged-material allocation problem is modelled as a multi-period
transportation problem. A basic version of the equation used in Ford (1984) to calculate
volumes of dredging material in each disposal area over a single period of time is as

follows:

VEnd = VStart +F x (VDredged In) + (VTransferred Out — VTransferred /n) - VReused Out (31 1)

where: V = total volume; and F = reduction factor.

In Equation 3.11: The total incoming volume of dredged material can be made up of
volumes arriving from more than one source; the total volumes transferred into or out of a
disposal area is the sum of volumes of dredged material arriving from or departing to other
disposal areas within the system considered; and the total volume reused represents the
sum of volumes taken out of a disposal area for reuse outside of the system considered.
Despite an absence of errata or discussion in subsequent literature, it is thought that Ford

(1984) meant to state Equation 3.11 as follows:

VEnd = VStart +F x (VDredged In) - (VTransferred Out — VTransferred In) - VReused (312)

In Equation 3.12 the second plus sign from the left in Equation 3.11 is replaced with a
minus sign. The dredged-material disposal system operation model of Ford (1984) has a
linear objective function and linear constraints. The objective function to be minimized
includes unit costs for transport, storage and transfer of dredged-material as well as unit
benefits for the reuse of disposed dredged-material and these unit costs and benefits are
considered constant over time. The objective function is subjected to two sets of
constraints. The first set of constraints specifies the maximum volumes of dredged
material which can be transported from a source to a disposal area. The second set of
constraints stipulates that the maximum available storage capacity of each disposal area

cannot be exceeded.

Since the objective function and constraints are linear, Ford (1984) states that linear
programming can be used to optimize the multi period dredged-material disposal system
operation model. However, Ford (1984) argues that for transportation problems other
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optimization methods have been found to be more efficient than linear programming. Ford
(1984) uses a network-with-gains algorithm, allowing for reduction factors, combined with
a flow-augmentation algorithm to optimize dredged-material allocation problems modelled

as multi-period transportation problems.

The first steps of the algorithm used in Ford (1984) consist of setting all transported
volumes to zero and identifying the minimum-cost transportation path. Then the algorithm
increases the volume transported along the minimum-cost transportation path until a
maximum allowable transported volume along one or more transportation paths is
reached. The process of identifying the next minimum-cost transportation path and
increasing the volume transported along it until the next limit is reached is repeated until
either the maximum volumes of dredged-material have all been transported or the
maximum allowable volume of dredged-material which can be transported within the
network is reached. According to Ford (1984) the algorithm used finds feasible and global

optima to the modelled dredged-material management problem if such a solution exists.

The dredged-material disposal management model presented in Ford (1984) is used in a
computer program titled “Optimization of Long-Term Operation and Expansion of Multiple
Disposal Sites Incorporating Dredging Sites, Disposal Sites, Transportation Facilities, and
Management Restriction (D2M2)” in Schroeder et al. (1995). The D2M2 computer
program is a module of the Automated Dredging and Disposal Alternatives Modeling
System (ADDAMS) used by the United States Corps of Engineers (ibid.).

Mayer et al. (2002) proposes an adaptation of a Classic Inventory Problem to model and
optimize the planning and cost of maintenance dredging operations. Classic inventory
problems involve optimal decisions with respect to inventory management: When to
replenish inventories and by how much, such that replenishment, storage and shortage

costs are minimal for a given inventory system (ibid.).

Mayer et al. (2002) presents the Sediment Inventory Model where the total cost of
maintaining adequate navigation depths in a waterway system is made up of maintenance
dredging costs, inefficiency costs from having inadequate navigation depths, and offset
costs, or benefits, from having excess navigation depths. Mayer et al. (2002) analyzes
three models of maintenance dredging scenarios and finds quantitative optimal solutions
for each by either setting the derivative of the objective function to zero to solve for one
variable or by partial differentiation to solve for two or more variables.
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Mayer et al (2002) concludes that the insights provided by the analysis is useful but that
neither of the three models are fit for indiscriminate application to real problems or
substitutes for good design practice. Mayer et al (2002) adds this remains the case even

when the models are made more sophisticated by the inclusion of stochastic variables.

None of the literature on dredging optimization reviewed in this section identifies the two-
dimensional cut planning problem for cutter suction dredgers. Therefore models for
dredge cut nesting and dredger routing problems are set up as part of the work presented
here. In summary, like with transportation and assignment problems, it is not obvious how
an inventory problem could be used to model dredge cut nesting problems. As mentioned
at the end of Section 3.1, a special form of assignment problem can be used to model
dredger routing problems: The travelling salesperson problem. How dredger routing
problems can be modelled as a travelling salesperson problem is discussed in more detalil
in Section 3.4, but first literature on a particular group of Operations Research problems

with potential to model dredge cut nesting problems is reviewed.
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3.3 Nesting Problems

The inclusion of a review of research on so-called nesting problems is the result of
similarities between these problems and dredge cut nesting problems. These similarities
were responsible for describing the first stage of two-dimensional cut planning for cutter
suction dredgers as ‘dredge cut nesting’. Nesting problems traditionally involve a non-
overlapping placement of a set of shapes within some larger region(s), but the objective
can vary (Nielsen et al., 2003). Usually the objective of a nesting process is to maximize
utilization of stock material (Hopper et al., 2001). Nesting problems, or cutting and packing
problems, are considered combinatorial problems with very large search spaces (Lirov,
1992) and have received substantial amounts of attention from researchers the world over
(Bischoff et al., 1995, ElImghraby et al., 2000).

Variants of the Stock Cutting Problem, a special form of nesting problem, are stated and
treated in Operations Research as well as in other disciplines such as engineering,
information and computer science, and mathematics (ElImghraby et al., 2000). To solve a
stock cutting problem a number of geometrical patterns are selected and arranged so that
the total cost of the underlying process is minimized (Lirov, 1992). The underlying process
can be described as a general resources allocation problem where the objective is to
subdivide a given quantum of a resource into a number of predetermined allocations so
that the left-over amount is minimized (ibid.). Dyckhoff (1990) notes that stock cutting
problems are also sometimes referred to as trim loss problems. According to Bischoff et
al. (1995) and Elmghraby et al. (2000) the wide interest in nesting or cutting and packing
problems can be attributed to the following aspects:

3.3.1 Applicability of Cutting and Packing Research

Cutting and packing problems are encountered in various industries. For example, in
steel, glass and paper manufacture, where optimal solutions to real-world problems have
been determined. In addition, many other industrial problems exist which possess a
structure similar to cutting and packing problems. For example, capital budgeting,

assembly-line balancing and processor scheduling.

3.3.2 Diversity of Real-world Cutting and Packing Problems

Common structures can be found in real-world cutting and packing problems. However,
these problems often differ significantly with respect to specific goals or constraints and
other aspects, such as the degree of integration into wider planning systems. Therefore
standard models often need to be reformulated and algorithms adjusted to the specific
needs of a given problem.
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3.3.3 Complexity of Cutting and Packing Problems

The majority of cutting and packing problems are known to be combinatorial optimization
problems which are termed NP-hard (Non-deterministic Polynomial-time hard), meaning
they cannot be solved in polynomial time, but possibly in exponential time (Helsgaun,
2000). It is difficult to mathematically determine optimal solutions within reasonable time
for NP-hard cutting and packing problems (Kim et al., 2003b). In other words, many
algorithms currently known for finding optimal solutions require a number of computational
steps that grow non-polynomially with the problem size rather than according to a
polynomial function (Hopper et al., 2001). Consequently, the development of faster exact
(or optimal) algorithms and heuristic (or approximation) algorithms providing solutions
nearer to optima is a major research topic (ibid.). Hopper et al. (2001) argues that for the
more complex cutting and packing problems, with many underlying combinatorial
conditions, it is often not worthwhile to search for an exact algorithm and that therefore
solution quality is sacrificed to gain computational efficiency by using heuristic algorithms.

Wang et al. (2002) observes that nesting problems typically take the form of traditional
one- and two-dimensional stock cutting problems and three-dimensional container/pallet
loading problems. For two-dimensional stock cutting problems Nielsen et al. (2003)
distinguishes between Decision Problems, Knapsack Problems, Bin Packing Problems
and Strip Packing Problems. In decision problems, as the name suggests, it has to be
decided whether a given set of shapes fits within a given region or not (ibid.). In knapsack
problems a set of shapes and a single region are given and a placement of a subset of
shapes is sought after which maximizes the use of the region (ibid.). In bin packing
problems sets of shapes and regions are given, and the number of regions needed to
place all shapes is to be minimized. In strip packing problems the length of a strip of fixed
width is to be minimized such that all the shapes of a given set are contained within the
strip region (ibid.).

Decision-, knapsack- and bin packing problems involve two-dimensional packing of
regular and/or irregular shapes within some regular and/or irregular region(s) without
overlap (ibid.). The regions in which two-dimensional shapes are to be placed can consist
of two-dimensional representations of animal hides (in the leather industry), rectangular
plates (in the steel industry) or tree boards (in the furniture industry). Figure 3.3 depicts a
schematic representation typical of irregular decision-, knapsack- and bin packing

problems.
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Figure 3.3 Decision-, knapsack- and bin packing problems (Nielsen et al., 2003).

In Figure 3.3 the grey regions represent irregular shapes to be nested in the larger region
represented by the outer polygon. An example of a strip packing problem would be that of
cutting a set of two-dimensional shapes out of a strip of cloth in the textile industry. Figure

3.4 depicts a typical strip packing problem.

Figure 3.4 Strip packing problem (Nielsen et al., 2003).

In Figure 3.4 the grey areas again represent irregular shapes to be nested in the larger
region which is a strip of material of fixed width. The arrow in Figure 3.4 indicates the
direction into which the leftmost edge of the adjustable region is moved to compact the
shapes to be nested without overlap. Figure 3.5 depicts a more comprehensive scheme

for classifying nesting problems, as originally proposed in Dyckhoff (1990).
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Nesting Problems

Spatial dimensions Non-spatial dimensions
Real/Applied Abstract
Cutting & Packing Cutting & Packing
Cut material Pack material
Pack space Cut space
Weight Time
Cutting stock of Packing of Vehicle loading Line balancing
Knapsacking Multiprocessor-
Paper & pulp Vehicles scheduling
Metal Pallets
Glass Containers Financial Other
Wood Bins
Budgeting Memory-
Plastics i )
Coin change allocation
Textiles
Leather

Figure 3.5 Nesting problem classification (Dyckhoff, 1990).

The classification scheme depicted in Figure 3.5 can be applied to cutting as well as
packing problems since it takes into account the duality of material and space. Cutting can
be seen as packing smaller pieces of material/space into larger pieces of material/space
(Karelahti, 2002). Packing can be seen as cutting larger pieces of material/space into
smaller pieces of material/space (ibid.). Dyckhoff’s classification scheme, unlike the broad
categorization of Nielsen et al. (2003), is not limited to two-dimensional spatial problems.

Figure 3.5 shows that the classification scheme proposed in Dyckhoff (1990) distinguishes
between nesting problems involving spatial dimensions and those involving non-spatial
dimensions. The first group, on the left, consists of real or applied cutting and packing or
loading problems that are defined in Euclidean space up to three dimensions. The second
group, on the right, covers abstract problems with non-spatial dimensions such as weight,

time or financial dimensions (Hopper et al., 2001). Dyckhoff (1990) classifies knapsacking
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as an abstract nesting problem, whereas Nielsen et al. (2003) does not consider weight as
being a decision variable of knapsack problems. The classification scheme proposed in
Dyckhoff (1990) is used here to see if the first part of the research problem, the
subdivision of a dredging area into smaller dredge cuts, can indeed be referred to as a

dredge cut nesting problem.

The first part of the hypothetical example given in Section 2.2, where a larger rectangular
dredging area was subdivided into smaller adjoining dredge cuts, essentially equates to
the applied cutting or packing of two-dimensional material/space. The operation of cutter
suction dredgers, as described in Section 2.1, involves the cutting of material in three
dimensions, which emphasizes cutting rather than packing. Therefore, in the classification
proposed by Dyckhoff (1990), as given in Figure 3.5, the dredge cut nesting problem fits
best in the left-most bottom-most group of nesting problems, collectively known as stock
cutting problems. One of the earliest reported formulations of the stock cutting problem
was produced by the Russian economist Kantorovich for the paper industry in 1939
(Elmaghraby et al., 2000), and although it wasn’t published in English until 1960, it
became known for being the first real application of linear programming (Lirov, 1992).
Dyckhoff (1990) states that stock cutting problems have four main variable characteristics,

which are as follows:

1) Dimensionality:
e number of dimensions.
2) Type of assignment:
o all of the (large) stock objects must be used and a selection of (smaller) items
is to be ordered or placed,
e a selection of (large) stock objects is available, but wastage can be accepted
as long as all (smaller) items are ordered or placed.
3) Assortment of stock:
e one large stock object,
e many identical large stock objects,
e many different large stock objects (including, for example, residual stock).
4) Assortment of small items to be ordered or placed:
o few small items of differing dimensions,
¢ many small items of mostly differing dimensions,
e many small items of mostly identical dimensions,

e many small items of identical dimensions.
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The elementary types of dimensionality of stock cutting problems are one-, two- and
three-dimensional. However, a number of stock cutting problems with a complexity
between one- and two-dimensional problems exist and these are referred to as 1.5-
dimensional problems (Hinxman, 1979, Haessler et al., 1991). One-dimensional stock
cutting problems were initially concerned with paper production but later on were also
found to be applicable to the coil splitting and fibreglass industries (Lirov, 1992). Another
example of a one-dimensional stock cutting problem is the cutting of steel bars where the
length of the stock bars is fixed (Karelahti, 2002). Figure 3.6 depicts a schematic example

of a one-dimensional stock cutting problem.

Figure 3.6 One-dimensional stock cutting problem (Karelahti, 2002).

In the one-dimensional stock cutting problem depicted in Figure 3.6 the width, B, of the
stock reel and the length, /, of the shapes to be cut are both fixed and the grey areas
represent trim loss. The one-dimensional problem consists of finding sums of varying
widths of the shapes to be cut which are as near as possible to, but not greater than, the
fixed width of the stock. In a 1.5-dimensional stock cutting problem the width of the stock
reel is variable while the length of the shapes to be cut remains fixed. The cutting of steel
reels of variable width, but of fixed length, is an example of a 1.5-dimensional stock
cutting problem (Karelahti, 2002). Figure 3.7 depicts a schematic example of a 1.5-
dimensional stock cutting problem.
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Figure 3.7 1.5-dimensional stock cutting problem (Karelahti, 2002).

In the 1.5-dimensional stock cutting problem depicted in Figure 3.7, the width, B’, of the
stock reel is variable and the length, /, of the shapes to be cut is fixed. Again, the grey
area represents trim loss. To minimize trim loss the sum of varying widths of the shapes to
be cut has to come as near as possible, but not exceed the variable stock width. Figure

3.8 depicts a schematic example of a two-dimensional stock cutting problem.

Figure 3.8 Two-dimensional Stock Cutting Problem (Karelahti, 2002).

In Figure 3.8 the width, B’, of the stock reel and the lengths, I,, of the shapes to be cut are

all variable. Two-dimensional stock cutting problems were first applied to glass cutting.
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Subsequently two-dimensional stock cutting problems were also found useful in the
clothing, leather and plastic film industries (Lirov, 1992). The formulation and solution of
three-dimensional stock cutting problems has been used in the cargo loading and lumber
cutting industries (ibid.). Figure 3.9 depicts an example of a three-dimensional stock

cutting problem.

Figure 3.9 Three-dimensional stock cutting problem (Nielsen et al., 2003).

In Figure 3.9 three-dimensional items shaded in grey are to be cut out of cylindrical stock
item, represented by the stacked circles. For three-dimensional stock cutting problems in
the lumber cutting industry the orientation of shapes to be cut can be important because

of the grain of the wood (Dowsland et al., 1995). Figure 3.9 highlights the duality between
material and space in stock cutting problems: The objective to minimize trim loss equates

to finding the densest packing configuration of smaller objects in a larger container.
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The second main characteristic of stock cutting problems identified in Dyckhoff (1990) is
the type of assignment required by a particular problem. The two types of assignment
identified in Dyckhoff (1990) differ in whether wastage is allowed or not. The third and
fourth main characteristics of stock cutting problems identified in Dyckhoff (1990) refer to
the sizes and quantities of stock items and items to be cut. Further to Dyckhoff (1990), the

hypothetical dredge cut nesting problem given in Section 2.2 can be defined as follows:

1) Two-dimensional: The dredging area and dredge cuts are considered in plan view.

2) All of a large stock object must be used, trim loss must be zero, and a selection of
smaller items is to be ordered or placed: All of the dredging area must be
excavated by dredging smaller adjoining dredge cuts in succession.

3) The stock object is a single large object: The dredging area.

With the above defining characteristics it is argued that the first part of the research
problem, the dredge cut nesting problem, can indeed be treated as a two-dimensional
stock cutting problem. What remains to be defined is the type of assortment of small items
to be ordered or placed in the dredging area. The type of assortment representative of the
dredge cut nesting problem considered gives additional information about the degree of
irregularity of the problem. The degree of irregularity of a dredge cut nesting problem
depends on whether a) the dredging area, and b) the dredge cuts to be nested are of
regular or irregular shape. It is known that the plan view of the dredging area of the real
dredging project to be modelled here as part of an engineering application is of irregular
shape. It is also known that in the hypothetical example of dredge cut nesting given in
Section 2.2 there were no restrictions on the lengths of individual dredge cuts and the that
selection of their widths up to the maximum effective cutting width was also a matter of
choice. In addition, before the hypothetical example was given, it was said that dredge
cuts can be approximated by rectangles with lengths and widths equal to exact multiples
or fractions, or a combination of both, of effective cut widths which can be achieved with
cutter suction dredgers. Therefore, since both dredging areas and as well as assortments
of dredge cuts can be irregular, two-dimensional dredge cut nesting problems can be

highly irregular.

According to Dowsland et al. (1995) problems involving irregular shapes are difficult to
solve. Highly irregular stock cutting problems are encountered, for example, in the
manufacture of leather products. Often, where leather is used in the furniture-, car-,
clothing- and shoe industry, the nesting problem consists of arranging a set of two-
dimensional irregularly shaped parts on a two-dimensional irregularly shaped surface
(Heistermann et al., 1995, Yuping et al., 2005).
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Heistermann et al. (1995) notes that nesting on leather is further complicated by
restrictions imposed by the resources to be used. In leather manufacturing the stock is
represented by an animal hide. Parts of hides can vary in quality because of joints or the
effects of injuries and hides can have holes caused by barbed-wire fences or tick bites
(ibid.). In addition, hides are non-identical so each nest can only be cut once. Because
each hide has a unique shape Heistermann et al. (1995) states it is not even practical to

maintain a library of partial nests from which preliminary solutions can be chosen.

To solve leather nesting problems Yuping et al. (2005) models irregular leather hides and
irregular shapes to be cut as polygons in two-dimensional space. Two-dimensional
polygons representing hides are called sheets and those representing the shapes to be
cut are called stencils. Yuping et al. (2005) evaluates a nest layout by calculating three
quantities: The total area of escape (the total area of stencils outside sheet profiles); the
total area of non-placement (the total sheet area not occupied by stencils); and the total
area of overlap between stencils. The terms stencil overlap and overlap will used
synonymously from here onwards. Yuping et al. (2005) calculates areas of escape, non-
placement and overlap using a polygon comparison algorithm developed by Weiler
(1980). Yuping et al. (2005) models irregular leather nesting problems with the following

objective function:

minimize Z = aescapeAescape + anon-placementAnon-placement + aoverlaponerlap (313)

where: Z = total cost; Qescape = €SCape weight factor; dnon-piacement = NON-placement weight
factor; Qovenap = OVerlap weight factor; Agscape = total escape area; Apon-piacement = total non-

placement area; and A..ernsp = total overlap area.

Yuping et al. (2005) states that feasible solutions to leather nesting problems must have
zero escape and zero overlap, which can be achieved by selecting appropriate values for
the weight factors, a,, in Equation 3.13. For the hypothetical leather nesting problem
solved in Yuping et al. (2005) weight factors of 50 were used for escape and overlap and
a weight factor of 4 was used for non-placement. Yuping et al. (2005) defines escape

area, Aescape, With Equation 3.14:

Aescape = i [Sescape,- ]2 (3 1 4)

where: N = total number of stencils; and Sescape i = area of stencil i outside the sheet

profile(s).
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To avoid infeasible nest solutions Yuping et al. (2005) increases the severity of the
penalty for escape by squaring stencil areas outside the sheet profile(s) in Equation 3.14.

Yuping et al. (2005) defines non-placement area, Anon-piacement, With Equation 3.15:

N N
Anon—placement = Larea - Z Si + Z Sescape,- (3 1 5)

i=1 i=1

where: L., = total area of sheet(s); N = total number of stencils; s;= area of stencil i; and

Sescape i = @rea of stencil i outside the sheet profile(s).

Finally, Yuping et al. (2005) defines overlap area, Aoyenap, With Equation 3.16:

onerlap = i ﬁ‘, [Sover/ap i ]2 (3.16)

i=1 j=i+1
where: N = total number of stencils; and S,.cn4p j = area of overlap between stencil i and j.

To avoid infeasible nest solutions Yuping et al. (2005) also increases the severity of the
penalty for overlap by squaring overlapping stencil areas in Equation 3.16. To search for
optimal solutions to irregular leather nesting problems Heistermann et al. (1995) and
Sharma et al. (1997) use a Genetic Algorithm while Yuping ef al. (2005) uses an Adaptive
Simulated Annealing algorithm. Genetic algorithms are optimization methods which use a
stochastic local search technique which is analogous to evolution theory where, as the
process advances, increasingly fitter or better solutions are found, eventually converging
to, or close to, a global optimum (Knaapen et al., 2002). Adaptive simulated annealing is a
special form of simulated annealing, which allows for the occasional widening of the
stochastic local search technique employed and converges to global optima faster than
simulated annealing (Yuping et al., 2005).

Because genetic and adaptive simulated annealing algorithms have both been used
successfully to optimize irregular two-dimensional stock cutting problems (Heistermann et
al., 1995, Yuping et al., 2004) they are natural candidates for optimizing irregular dredge
cut nesting problems. Genetic and adaptive simulated annealing algorithms are discussed
in more detail in Section 3.5. First literature on routing problems is reviewed, to find out if

the dredger routing problem can be modelled as a travelling salesperson problem.
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3.4 Routing Problems

One of the more well known routing and combinatorial optimization problems is the
travelling salesperson problem (Schrage, 1999, Voudouris et al., 1999). Choi et al. (2003)
states that because of their structure travelling salesperson problems are difficult to solve.
Schrage (1999) describes the travelling salesperson problem as being an assignment
problem with the additional constraint that the assignments chosen must constitute a tour
and where the objective is to minimize the total distance travelled. Therefore, a travelling
salesperson is an optimization problem of trying to find the shortest Hamiltonian cycle
(Mulder et al., 2003). Hamiltonian cycles are named after Sir William Rowan Hamilton,
who devised the Icosian game or Knight's tour puzzle, in which a graph cycle or closed
loop is sought which connects all nodes and visits each node exactly once (Skiena, 1990,
Marcotte et al., 2004).

By convention, the trivial graph on a single node is considered to posses a Hamiltonian
cycle, while the connected graph of two nodes is not. A graph possessing a Hamiltonian
cycle is said to be a Hamiltonian graph. Garey et al. (1983) states that the problem of
finding a Hamiltonian cycle is NP-hard and that the only known way of determining
whether a given graph has a Hamiltonian cycle is to undertake an exhaustive search.
Since the problem of finding a Hamiltonian cycle is NP-hard, the travelling salesperson
problem is also NP-hard. For this reason new optimization methods are often tested on
travelling salesperson problems (Voudouris et al., 1999, Tsai et al., 2003). Figure 3.10

¢

- & @Qﬁ
& (=

depicts a solution to a travelling salesperson problem.

(=)

Figure 3.10 Travelling salesperson problem (Schrage, 1999).
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The solution tour depicted in Figure 3.10, represented by the lines connecting twelve
cities, is a closed tour where each city is visited exactly once. Choi et al. (2003) states that
many scientific and engineering problems can be modelled as travelling salesperson
problems. Likas et al. (2002) mentions that fields of study where problems are modelled
as travelling salesperson problems include economy, complex systems administration,

decision-making, mechanics, physics, chemistry and biology.

The field of chemistry is noted in Choi et al. (2003) as an example where the travelling
salesperson problem has received substantial attention from researchers because of its
relationship to batch scheduling problems. Choi et al. (2003) states that multi-product
batch scheduling problems can be characterized as travelling salesperson problems
because transition costs or time penalties are incurred when transforming materials from

one state into another.

As mentioned in Section 3.1, Henderson et al. (2003) models a shortest route cut and fill
problem as a travelling salesperson problem to optimize earthworks. Gimadi et al. (2004)
model a vehicle routing and loading problem as a travelling salesperson problem. In the
problem modelled in Gimadi et al. (2004) the total profit realized from purchasing and
selling commodities loaded by a vehicle (with limited capacity) at locations in a closed tour
has to be maximized. Bosch et al. (2003) uses instances of travelling salesperson
problems to create continuous line drawings of target pictures of Marilyn Monroe and part
of the Mona Lisa.

Helsgaun (2000) states that travelling salesperson problems, where distance measured
between nodes is Euclidean, are also referred to as Euclidean travelling salesperson
problems. The value of a tour edge between nodes in travelling salesperson problems can
also be expressed as a cost. When the cost of a tour edge is equal for both directions of
travel then the travelling salesperson problem is said to be symmetric, otherwise it is said
to be asymmetric (ibid.). Euclidean travelling salesperson problems are symmetric. To
model a Euclidean N-city travelling salesperson problem Taha (2003) defines the

problem’s decision variable as follows:

[ 1, if city j is reached from city i
x5 = (3.17)
L 0, otherwise
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Taha (2003) states the objective function of a symmetric travelling salesperson problem

as follows:

minimise Z = i id

i=1 j=1

X dj=oofori=j (3.18)

where; N = total number of cities; and d; = distance from city i to city j.

Subject to the constraints:

o2
I
—

i=1,2,3,...,N (3.19)
j=1
N
D x; =1 j=1,2,3,...,N (3.20)
i=1
x;=(0, 1) forall i and j (3.21)
Solution forms a tour. (3.22)

Constraints 3.19 and 3.20 ensure that each city is arrived at, and departed from only
once. If locations on dredge cuts through which a dredger has to pass can be defined by
nodes, then the decision variable stated in Equation 3.17, the objective function stated in
Equation 3.18 and the constraints stated in Equations 3.19, 3.20, 3.21 and 3.22 can all be
directly applied to a dredger routing problem. Methods for optimizing two-dimensional
stock cutting and symmetric travelling salesperson problems are discussed in more detail

next.
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3.5 Optimization Methods

In Section 3.3 it is argued that the dredge cut nesting problem can be modelled as an
irregular two-dimensional stock cutting problem and Section 3.4 concludes with stating
that the dredger routing problem can be modelled directly as a travelling salesperson
problem. The next step is to search for optimal solutions to the modelled problems. For
this a suitable optimization method has to be identified. As part of classifying methods
used for solving combinatorial optimization problems, Voudouris et al. (1999)
distinguishes between heuristics and meta-heuristics, defining heuristics as optimization
methods using local search algorithms and meta-heuristics as optimization methods using

tabu search, genetic and simulated annealing algorithms.

Voudouris et al. (1999) notes that many heuristic methods use local search, also
sometimes referred to as neighbourhood search or hill climbing, to solve combinatorial
optimization problems. Hill climbing is an iterative method where trial and error is used for
finding good approximations of optimal solutions (ibid.). A hill climbing algorithm
repeatedly compares solutions, the very first being arbitrary, with neighbouring solutions,
continually storing the better solutions until no further improvement is possible (ibid.).
Accepting a better solution can be done in various ways: For example, first improvement
local search accepts a better solution when it is found, whereas best improvement
(greedy) local search replaces a current solution with the most improved solution of
searched neighbourhood solutions (ibid.). In general, the larger the neighbourhood
searched around a particular solution is, the more time is required to search it, but the
better the final solution arrived at is (ibid.). According to Voudouris et al. (1999) heuristics

can get stuck in local optima, which can give good solutions but are not global optima.

Voudouris et al. (1999) states that meta-heuristics aim at enhancing the performance of
heuristics by allowing for the possibility of escaping from local optima so that global
optima can be found (ibid.). Tabu search, genetic and simulated annealing algorithms are
meta-heuristics which make use of such stochastic local search techniques (ibid.). Tabu
search algorithms contain built-in memory mechanisms which prevent returning to
recently executed changes to solutions for a number of iterations (Hopper et al. 2001).
Genetic and simulated annealing algorithms do not contain such mechanisms. However,
tabu search, genetic and simulated annealing algorithms all allow for selecting a solution
worse than the current one, and it is this common feature which reduces the possibility of
getting stuck in local optima (Voudouris et al. 1999). The selection of a heuristic or a

meta-heuristic optimization method is problem dependent (ibid.).

40



Literature Review

In Sections 3.5.3 and 3.5.4 genetic and simulated annealing algorithms are discussed in
more detail. First, two sections are presented in which literature on the optimization of

stock cutting and travelling salesperson problems is reviewed.

3.5.1 Stock Cutting Problem Optimization

Elmghraby et al. (2000) notes that more than 800 papers have been published on solving
stock cutting problems of varying complexity. Sharma et al. (1997) distinguished between
two main approaches for solving stock cutting problems: One where stencils are placed
on the sheet(s) one at a time and the other where all stencils are placed on the sheet(s)
simultaneously. Sharma et al. (1997) states that simultaneous placement of all stencils
leads to better solutions. Lirov (1992) points out that when stock cutting problems are
optimized using linear programming two difficulties are encountered: How to generate the
set of patterns to be nested and how to compute an integer solution from the generally
fractional optimal solution returned by linear programming solvers. The second difficulty,
however, can be overcome by a rounding algorithm proposed in Johnston (1986).

Bennell et al. (2001) states that researchers have had considerable success in solving
two-dimensional stock cutting problems with irregular stencils and regular sheets by using
linear programming compaction methods. However, Bennell et al. (2001) notes that good
starting solutions are required since linear programming compaction methods have
difficulty in allowing for significant changes to stencil positions such as the movement of a
stencil from one end of a sheet to another. A good starting solution can be determined

with a heuristic model which mimics the strategies employed by human experts (ibid.).

Degraeve et al. (2001) proposes two mixed-integer linear programming models for solving
two-dimensional stock cutting problems in the garment industry and demonstrates that
both outperform an earlier proposed mixed-integer linear programming model. The stock
cutting problem solved in Degraeve et al. (2001) involves the stacking and cutting of
multiple layers of fabric of fixed length and width into groups of stencils of equal length.
Degraeve et al. (2001) overcomes the problem posed by a non-linear variable, which
defines the number of copies of a group of stencils, by applying a discrete expansion to it

and by linearizing the product of this variable with the number of fabric layers.

Chen et al. (2002) proposes rectilinear representation of irregularly shaped stencils to be
nested on a rectangular sheet in order to limit spatial calculations to integer coordinates
and to make checking for overlap between stencils easier. After rectilinear representation
of stencils, Chen et al. (2002) applies a two-stage heuristic method to find suitable
combinations of two stencils. In the first stage, the fitness of each combination of two

stencils in varying positions is rated by summing the straight edges of combined shapes, a
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value of 4 — signifying a rectangle — being best. In addition, the fithess of each
combination of stencils is rated in terms of wasted sheet area. After identifying the best
combination of stencils the second stage of the optimization method is effected, which
consists of a ‘left-most bottom-most’ compaction procedure to nest combinations of
stencils. Chen ef al. (2002) reports that the heuristic optimization method presented finds
better solutions to two-dimensional stock cutting problem than the genetic algorithm
optimization method proposed in by Sakait et al. (1998).

To overcome the complexity of calculating overlap of irregularly shaped stencils Kim ef al.
(2003b) includes a polygon clipping algorithm in a heuristic optimization method for
solving two-dimensional stock cutting problems. The polygon clipping algorithm used in
Kim et al. (2003b) calculates areas of union, intersection, and difference between two
polygons, and is very similar to the algorithm proposed in Weiler (1980). As mentioned in
Section 3.3.3, Yuping et al. (2005) uses the Weiler algorithm to calculate overlap, non-

placement and escape for leather nesting problems .

Milenkovic et al. (1992) uses a dynamic programming model with a top-down solution
approach to optimize two-dimensional stock cutting problems in the garment industry.
The dynamic programming model proposed in Milenkovic et al. (1992) condenses
constraints of previously solved sub-problems into constraints for solving the latest sub-
problem, which in turn are used to obtain constraints for following sub-problems.
Elmaghraby et al. (2000) also uses a dynamic programming model with a hierarchical
structure, the highest level of which is an expert system, to optimize two-dimensional
stock cutting problems. Expert systems contain subject-specific intelligence and
information found in the intellect of experts translated into a set of rules with which specific
problems are analyzed and are designed to carry knowledge to other members of an
organization for problem-solving purposes (ibid.). Computer programs of expert systems
usually recommend a course of user action in order to improve solutions to a problem
(ibid.). Expert systems use what appear to be reasoning capabilities to reach conclusions
and are valuable to organizations where high levels of experience and expertise are not
easily transferable (ibid.). The computer program of the expert system proposed in
Elmaghraby et al. (2000) consists of a graphic interface where the user is required to give
an accurate description of the cutting problem to be solved. The computer program then

decides which solution approach is best to adopt to solve the problem given by the user.

Hopper et al. (2001) reviews the application of meta-heuristic algorithms, in particular
genetic algorithms, to two-dimensional packing problems and cites over 70 references of
which 15 are other reviews and surveys of packing problems. Smith (1985) gives one of

the earliest proposals for using genetic algorithms to solve regular two-dimensional bin
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packing problems. Later applications of genetic algorithms to optimize strip packing
problems can be found in Jakobs (1996) and Liu ef al. (1999). Smith (1985) compares the
performance of genetic algorithms with heuristic and dynamic programming optimization
methods and concludes that genetic algorithms achieve very similar packing densities, but
in less time. It must be noted, however, that the optimization methods used in Smith
(1985), Jakobs (1996) and Liu et al. (1999) only permit rotation of stencils in steps of 90

degrees.

Out of 36 papers presenting methods for optimizing cutting and packing problems
compared in Hopper et al. (2001) 30 papers propose methods which either do not allow,
or only allow for restricted rotation of parts to be nested, while 6 papers present solution
approaches which allow for free rotation of stencils. Of the 6 solution approaches which
allow free rotation reviewed by Hopper et al. (2001), one uses a genetic algorithm, three
use hybrid genetic algorithms and the remaining two use simulated annealing algorithms

to search for global optima.

The end of Section 3.3 suggests that genetic and adaptive simulated annealing algorithms
are natural candidates for optimizing irregular dredge cut nesting problems as both
algorithms have been successfully used to optimize irregular two-dimensional stock
cutting problems (Heistermann et al., 1995, Yuping et al., 2004). The literature reviewed in
this section can be said to support this view: Genetic and simulated annealing algorithms
can arrive at solutions which are global optima and do not give rise to complications in
representing stencils as experienced when using linear programming or require the
formulation of a specific set of nesting rules as with expert systems. Literature on methods

for optimizing travelling salesperson problems is reviewed next.

3.5.2 Travelling Salesperson Problem Optimization

Helsgaun (2000) states travelling salesperson problems have been proven to be NP-hard
problems and that attempts to construct a general algorithm for finding optimal solution
tours in polynomial time are unlikely to succeed. Helsgaun (2000) divides algorithms used
for solving travelling salesperson problems into two groups: Exact algorithms; and
heuristic (or approximation) algorithms. Schrage (1999) notes that the difficulty with
optimizing travelling salesperson problems with linear programming lies in the fact that
solutions to large models tend to contain sub-tours. A sub-tour is a tour of a subset of
assignments which is not connected to the main tour. Constraints can be added to break
sub-tours, but the number of constraints required grows disproportionately as the number

of assignments increase.
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Lin et al. (1973) states that solving large travelling salesperson problem models is best
approached using heuristic algorithms. Voudouris et al. (1999) examines how guided local
search, a form of tabu search, combined with fast local search can be applied to travelling
salesperson problems. Guided local search is a meta-heuristic optimization method
applicable to a wide range of combinatorial optimization problems (ibid.). Guided local
search has been successfully applied to optimize practical problems such as workforce
scheduling and vehicle routing (ibid.). Guided local search sits on top of local search, the
main aim of which is to efficiently and effectively explore large search spaces of
combinatorial optimization problems (ibid.). Voudouris et al. (1999) combines guided local
search with fast local search to optimize travelling salesperson problems to limit the

amount of neighbouring solutions explored.

In Voudouris et al. (1999) the guided local search technique increases the cost of
solutions to travelling salesperson problems by applying a set of penalty terms, similar to
what Yuping et al. (2005) does for irregular leather nesting problems. In Voudouris et al.
(1999) the cost function of a travelling salesperson problem, instead of the penalties, is
passed on to the local search technique for optimization. The local search algorithm is
confined by the penalty terms of the cost function and therefore focuses on promising
regions of the search space, hence the name fast local search (ibid.). Each time fast local
search gets caught in a (local) minimum, the penalties are modified by guided local search
and the fast local search technique is called again to optimize the modified cost function
(ibid.). Fast local search breaks down the current neighbourhood into sub-
neighbourhoods, each of which is assigned a 0 or 1 (ibid.). The fast local search scans
sub-neighbourhoods in a given order, searching only active sub-neighbourhoods, those

which are assigned a 1 denoting they are active (ibid.).

In the fast local search technique of Voudouris et al. (1999), all sub-neighbourhoods are
initially active, but when a sub-neighbourhood is examined and does not contain any
improving solution changes, to a tour for example, it becomes inactive. Only sub-
neighbourhoods from which improving solution changes are accepted remain active
(ibid.). When an improved solution is accepted, sub-neighbourhoods from which other
solution improvements are expected are re-activated (ibid.). Improved solutions are
accepted until the fast local search process dies out as a result of all sub-neighbourhoods
gradually becoming inactive and at that moment the solution found is returned as an

approximate local minimum (ibid.).

Although, according to Voudouris et al. (1999), fast local search techniques do not
generally find very good solutions, when they are combined with guided local search they

accelerate the optimization of combinatorial problems because fast local search focuses
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on removing the penalized features from the solution instead of considering all possible
solutions. Voudouris et al. (1999) finds that a particular variant of the proposed combined
guided and fast local search technique performs better than variants of other search

methods such as simulated annealing and tabu search.

Likas et al. (2002) presents a modified nearest neighbour search strategy for optimizing
travelling salesperson problems, where search strategies encoded in a string are used for
tour construction. At given points in time, the search strategy can be formulated to
overrule the nearest neighbour selection rule by specifying the selection of, for example,
the second or third nearest available neighbour or city instead (ibid.). The algorithm used
in Likas et al. (2002) consists of two stages. First, randomized local search with a
specified search strategy is used to find the city from where to best start valid tours and
this city is then considered as the only initial city in the second stage. In the second stage,
the travelling salesperson problem is further optimized by repeatedly evaluating minor
changes to current best states. Likas et al. (2002) effects minor changes to current best
states in a manner analogous to the mutation operation of genetic algorithms. Likas et al.
(2002) tests the modified greedy heuristic approach on a number of travelling salesperson
problems, ranging from 10 up to 2428 cities. For 428 smaller travelling salesperson
problems Likas et al. (2002) finds optimal solutions 95% of the time while for 325 larger

problems optimal solutions are found 71% of the time.

Helsgaun (2000) states the Lin-Kernighan heuristic is considered to be one of the most
effective methods for generating optimal or near-optimal solutions for symmetric travelling
salesperson problems. However, Helsgaun (2000) adds that the design and
implementation of an optimization method including the Lin-Kernighan algorithm is not
straightforward. Helsgaun (2000) states that the Lin-Kernighan heuristic uses a variable
tour edge exchange algorithm, where tour edge connects two nodes of a travelling

salesperson problem.

The original Lin-Kernighan algorithm starts by considering a random initial tour and then
executes a search strategy which attempts to find two sets of valid tour edges, for
increasing values of lambda (signifying the number of tour edges to be exchanged), which
when exchanged, possibly reversing some tour edges, result in a shorter valid solution
tour (ibid.). The improved tour becomes the current solution tour and the process of

finding an improved solution tour is repeated (ibid.).
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To shorten solution times the Lin-Kernighan algorithm contains additional heuristic rules
such as: A previously broken tour edge must not be added; a previously added tour edge
must not be broken; the search for a tour edge to be added is limited to being within 5
nodes of the current tour node under consideration; and the algorithm is stopped when the
current tour is the same as the previous solution tour (ibid.). Lin-Kernighan algorithms are
usually executed more than once with different random initial tours to obtain better final
results (ibid.).

Helsgaun (2000) proposes a modified Lin-Kernighan algorithm for optimizing symmetric
travelling salesperson problems. The algorithm proposed in Helsgaun (2000) differs from
the original Lin-Kernighan algorithm by adopting a different search strategy: It uses larger
and more complex search steps, and uses sensitivity analysis to direct and restrict the
search. Helsgaun (2000) states that although the modified Lin-Kernighan algorithm
presented is an approximation algorithm it finds global optima for travelling salesperson

problems of up to 13,509 cities.

Other optimization methods applied to travelling salesperson problems have used neural
networks (Hasegawa et al., 2002, Cochrane et al., 2003, Mulder et al., 2003) and ant
colony systems (Tsai et al., 2003). Hasegawa et al. (2002) demonstrates that extending
tabu search to include neural network optimization techniques can be used to solve large
travelling salesperson problems of up to 85,900 cities, and results in finding better
solutions than the use of conventional tabu search alone.

Cochrane et al. (2003) proposes a self-organizing neural network optimization technique,
which is tested on various travelling salesperson problems, the largest of which involves
85,900 cities. The neural network optimization technique Mulder et al. (2003) proposes for
solving a hypothetical million city travelling salesperson problem does not give solutions
which are better than obtained with other heuristic optimization methods derived from the

Lin-Kernighan algorithm.

Tsai et al. (2003) describes ant colony systems as meta-heuristic optimization methods for
solving combinatorial optimization problems which simulate the ability of ant colonies to
determine the shortest paths to food. Tsai et al. (2003) concludes ant colony systems are

best coupled with nearest neighbour search algorithms.

Henderson et al. (2003) solves shortest route cut and fill problems by applying a nearest
neighbour algorithm which begins at an arbitrary cut location, then moves to the nearest
fill location, from where a move is made to the nearest remaining cut location, and so on

until the project site is levelled. Henderson et al. (2003) compares solutions obtained with
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the nearest neighbour algorithm to those obtained with a simulated annealing algorithm
and concludes the simulated annealing algorithm performs better than the nearest
neighbour algorithm. Hurkens et al. (2004) states that even for small Euclidean travelling
salesperson problems solutions determined with nearest neighbour algorithms can be of

low quality.

In summary, genetic algorithms do not appear to be the preferred choice of heuristic
algorithm for researchers to optimizing travelling salesperson problems. Simulated
annealing has been used to solve travelling salesperson problems in Henderson et al.
(2003), but according to Hurkens et al. (2004) simulated annealing algorithms can only
slightly improve on low quality solutions arrived at with nearest neighbour algorithms. As
stated at the end of Section 3.3, it is thought genetic and simulated annealing algorithms
can be successful at solving dredge cut nesting problems. However, it is not sure if the
same can be said for solving dredger routing problems. To see if genetic and simulated
annealing algorithms can be used to solve dredge cut nesting as well as dredger routing
problems, these algorithms are looked at in more detail in Sections 3.5.3 and 3.5.4, which

are next.

3.5.3 Genetic Algorithms

Sharma et al. (1997) defines genetic algorithms as search algorithms which use tools
inspired by natural selection and genetics. These tools consist of concepts such as
inheritance, mutation, selection, and crossover. Sharma et al. (1997) states that in genetic
algorithms candidate solutions to an optimization problem are referred to as phenotypes
(individuals) and abstract representations of these are referred to as genotypes
(chromosomes or genomes) where candidate solutions are often represented by binary

strings of Os and 1s.

A genetic algorithm usually starts with a large and diverse initial population of random
solutions from which subsequent populations are generated. This is done by: Evaluating
the fitness of each individual in the current population; followed by stochastic selection of
individuals from the current population according to their fitness; and lastly by modifying
the selected individuals through crossover and mutation to form the next population of
individuals. The gradual improving fitness of generated populations eventually allows for
the identification of an optimal or near-optimal solution (ibid.). Figure 3.11 depicts how a

genetic algorithm can be used to arrive at new population generations.
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Figure 3.11 Principle workings of genetic algorithms (Knaapen et al., 2002).

Knaapen et al. (2002) states genetic algorithms are robust optimization methods which
find solutions near to global optima because the selection of worse solutions is possible
and therefore allow for escaping from local optima. Gradient or hill ascent or descent
methods on the other hand only accept improved solutions, which is why they can get
stuck in local optima. Hinterding et al. (1994) and Wagner (1999) use genetic algorithms
to solve one-dimensional stock cutting problems. Heistermann et al. (1995) and Sharma

et al. (1997) use genetic algorithms to solve irregular two-dimensional stock cutting

problems. Heistermann et al. (1995) and Sharma et al. (1997) both represent stencils and

sheets as polygons which can be convex or non-convex. While Heistermann et al. (1995)

opt for placing stencils sequentially, Sharma et al. (1997) place stencils simultaneously.
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Both methods in Heistermann et al. (1995) and Sharma et al. (1997) can accommodate
holes in stock sheets and areas of varying quality as found in, for instance, leather stock
sheets. The genetic algorithm solution approaches proposed in Heistermann et al. (1995)
and Sharma et al. (1997) do however rely on other algorithms to, for example:
Decompose non-convex stencils into convex parts; translate and rotate stencil polygons;

and determine if two polygons intersect.

Heistermann et al. (1995) reports that trials with a computer program using a simulated
annealing algorithm to solve irregular two-dimensional stock cutting problems gave worse
results than when a genetic algorithm was used. Heistermann et al. (1995) states that
simulated annealing algorithms require more run time and/or computer resources and lack
flexibility in comparison to genetic algorithms. Sharma et al. (1997) and Heistermann et al.
(1995) both make good cases for using a genetic algorithm solution approach to optimize
irregular two-dimensional stock cutting problems, especially since Heistermann et al.
(1995) states that the genetic algorithm method it proposes has been in industrial use for

leather manufacturing since 1992.

The industrial software package for leather nesting described in Heistermann et al. (1995)
consists of 115,000 lines of code in the standard C language. However, as stated at the
end of Section 3.5.2, genetic algorithms are not the preferred solution approach for
travelling salesperson problems. Since Yuping et al. (2005) and Henderson et al. (2003),
respectively, use simulated annealing algorithms to solve irregular two-dimensional stock
cutting problems and symmetric travelling salesperson problems, it is thought a simulated
annealing algorithm can be used to solve dredge cut nesting as well as dredger routing
problems. Simulated annealing algorithms are reviewed in more detail in Section 3.5.4,

which is next.
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3.5.4 Simulated Annealing Algorithms

Metropolis et al. (1953) first introduced the idea of simulated annealing. The Metropolis
algorithm simulates the process of cooling material in a heat bath, known as annealing.
When a solid system of atoms is heated past its melting point and then cooled, the
structural properties of the particle system during cooling, or how it crystallizes, depend on
the rate of cooling applied. The energy of atoms is temperature dependent: The higher the
temperature of a material, the higher the energy of the atoms in that material. The higher
energies of atoms at higher temperatures enable them to restructure themselves with

greater ease than at lower temperatures where they have lower energies.

When temperature is reduced the energy of atoms is also decreased. If cooled slowly
enough large crystals tend to form, but if cooled too quick, or quenched, risks of crystal
formation which contain imperfections increase. A gradual fall to lower energy states is
said to allow for the formation of a more regular crystalline structure. In thermodynamics,

the probability of a system in equilibrium assuming a higher energy state is given by:

P(AE) = exp(-AE /kT) (3.23)

where: P = probability; AE = energy increase; k = Boltzmann’s constant and T =

temperature.

The Metropolis algorithm compares the energies of two successive states of a given
system of particles, the new state being a modified version of the preceding state. If the
energy of the modified state is lower then the system is automatically moved to the new
state. However, if the energy of the modified state is higher then the new state is accepted
only when the probability returned by Equation 3.23 satisfies an acceptance criterion. The
Metropolis algorithm repeatedly compares the energies of old and new states of a system
of particles at ever decreasing temperatures until a steady, or frozen, state is arrived at.
The final steady state arrived at is a state at which the system of particles has a very low,

possibly the lowest, energy level.
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Three decades after the Metropolis algorithm was proposed Kirkpatrick et al. (1983) used
it for optimizing Operations Research problems by modelling variables of these problems
as the particles in a system of atoms: At high temperatures system variables are given
wide ranges of random values which they can assume, and as temperatures are gradually
reduced the ranges of values which can be assumed are also reduced. Kirkpatrick et al.
(1983) use Equation 3.24 to give the probability of accepting a worse state in the

simulated annealing process.

P = exp(- AL /T) (3.24)

where: P = acceptance probability; AL = change in objective function value; and T =

temperature.

Kirkpatrick et al. (1983) calls Equation 3.24 the Acceptance Function. In Equation 3.24
Boltzmann’s constant of Equation 3.23 is left out as it serves to cope with varying
materials, which is not required in the modelling of Operations Research problems.
Despite the omission of Boltzmann’s constant, simulated annealing is often referred to as
Boltzmann annealing. Kirkpatrick et al. (1983) defines the Acceptance Criterion of

simulated annealing algorithms as follows:

P>r (3.25)
where: P = acceptance probability; and r = random number between 0 and 1.
Equations 3.24 and 3.25 give simulated annealing algorithms the capability of accepting

worse solutions, which, as with genetic algorithms, allows for escaping local optima.

Figure 3.12 depicts an overview of the simulated annealing algorithm after Heaton (2005).
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Figure 3.12 Simulated Annealing algorithm overview (Heaton, 2005).
The randomized process used for modifying current solutions of a modelled problem

mentioned in Figure 3.12 is temperature dependent. Henderson et al. (2003) states this

process combines the use of a neighbourhood function and a probability function.
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For the optimization of NP-hard combinatorial problems Henderson et al. (2003) gives the

following pseudo-code of the simulated annealing algorithm:

Select initial solution, w, from solution space, Q;

Set temperature change counter, p, to zero;

Select number of temperature changes, M;

Select temperature cooling schedule, T(p);

Select initial temperature T(0) > O;

Select repetition schedule, N(p), i.e. number of iterations executed at each temperature, T(p);

Repeat......cccooviiiii [start outer loop]

Repeat.......cooovmiiiiiiiiii, [start inner loop]
Generate modified solution, w’, using probability generation function, g(T), and
neighbourhood function, n(w);
Calculate cost difference, ¢, from objective function values: flw’) minus f(w)

If <0, then w <« w’

If 6> 0, then w « w’ subject to probability, e /T, satisfying acceptance criterion
geq+1
Until = N(P)...oeeeeiiiiiiia [end inner loop]

p<«p+1, T« T(p)

Until stopping criterion is metorp = M...... [end outer loop]

The simulated annealing algorithm has two loops: An outer and an inner loop. The outer
loop carries out the temperature cooling schedule: It executes the pre-defined number of
annealing temperature reductions and continues until a stopping criterion is met or the
lower temperature bound is reached. A stopping criterion, for example, can relate to the
occurrence of a certain value of an objective function, for example, the optimum value if it
is known. The inner loop carries out the repetition schedule: It executes the pre-defined
number of iterations at each annealing temperature, thereby defining the length of each

annealing temperature interval.

Desai et al. (1995) states that the simulated annealing algorithm statistically promises to
deliver a global optimum providing, as Henderson et al. (2003) states, the cooling
schedule is not too fast. The slowest cooling schedules for simulated annealing algorithms
for which they are guaranteed to find a global optimum of non-convex cost-functions
depend on which probability generation function is used to identify neighbouring solutions
(Ingber, 1989).

53



Literature Review

Geman et al. (1984) proves that for simulated annealing algorithms which use the
Boltzmann distribution as their probability generation function a global optimum can be

obtained if the annealing temperature T is not annealed faster than:

T(k) = T(0)/ InM (3.26)

where: T(0) = initial temperature; and M = number of temperature changes.

Ingber (1989) points out that simulated annealing algorithms can also make use of other
“reasonable” probability generation functions, which do not necessarily reflect principles
underlying the ergodic nature of statistical physics. For example, fast annealing, or
Cauchy annealing uses the Cauchy distribution as its probability generation function
(ibid.). Szu et al. (1987) concludes that using the Cauchy distribution has advantages over
use of the Boltzmann distribution and demonstrates statistically that when using the
Cauchy distribution as a probability generation function a global optimum is found if the

annealing temperature T is not annealed faster than:

T(k) = T(0)/ M (3.27)

where: T(0) = the initial temperature; and M = the number of temperature changes.

Equations 3.26 and 3.27 show that Cauchy annealing has an annealing schedule which is
exponentially faster than Boltzmann annealing. Ingber (1989) states that many
optimization problems have multiple parameters in varying dimensions, each of which
have their own distinct finite range of values, and which exhibit varying annealing-time
dependent sensitivities. Boltzmann and Cauchy annealing have probability generation
functions which sample infinite ranges and therefore cannot account for problem
parameters with varying sensitivities (ibid.). Ingber (1989) therefore proposes a modified
simulated annealing algorithm, called Adaptive Simulated Annealing, to overcome the
limitations of Boltzmann and Cauchy annealing when dealing with multiple parameters in

varying dimensions and of different sensitivities.
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The adaptive simulated annealing algorithm considers each problem parameter with a
finite range in a dimension at a given annealing-time separately by allocating it its own
parameter annealing temperature (ibid.). The modified value of a parameter variable at
annealing-time plus one is calculated by adding a fraction of its finite range to its previous
value. To arrive at a modified value of a problem parameter Ingber (1989) first defines

their finite ranges:
al €[A,.B] (3.28)

where: a/ = problem parameter in dimension i at annealing-time n; A, = the lower limit of

the finite range of problem parameter values; and, B; = the upper limit of the finite range of

problem parameter values.

Next Ingber (1989) defines the finite range of a random variable, used for calculating the

parameter range fraction with which a problem parameter’s value is modified:
y'el[-11] (3.29)

The random variable, y/, is arrived at with the help of another random variable, v/, from the

uniform distribution ranging from zero to one, defined by Ingber (1989) as follows:
u' eU[0/] (3.30)

To calculate the value of the random variable, y/, with which the finite range of a problem
parameter is multiplied to arrive at a modified value of the problem parameter Ingber
(1989) states the following:

y' :sgn(ui —%Jt, [1+l‘lj -1 (3.31)

where; t; = annealing temperature of the problem parameter in dimension i; and the sgn

function is -1 for all negative values, 0 for 0, and 1 for all positive values.
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Ingber (1989) then proposes the following annealing schedule for a parameter

temperature, t;:
t,(n) =t, exp(~—c;n"?) (3.32)

where; t,= initial parameter temperature in dimension J; ¢; = parameter tuning factor; n =

parameter annealing-time; and, D = number of dimensions of parameter space.

Ingber (1989) states that Equation 3.32 is also used for annealing the cost temperature,
values of which influence the outcome of Equation 3.24 — the acceptance function. When
using Equation 3.32 for annealing the cost temperature a cost tuning factor is used, which
can have a value different from that used for the parameter tuning factor. Equations 3.30
and 3.31 make up the probability generation function of the adaptive simulated annealing
algorithm. Table 3.3 gives rounded parameter range multiplication factor values of y/,
calculated with Equations 3.30 and 3.31, for increasing values of parameter annealing-
times and the corresponding parameter annealing temperatures for a one-dimensional
parameter space. The parameter tuning factor and initial parameter annealing

temperature are both equal to unity.

Table 3.3 Adaptive Simulated Annealing parameter range multiplication factors

Parameter Parameter

Annealing Annealing Random variable, u;
Time Temperature

n t(n) 0 01 02 03 04 05 06 07 08 09 1

0 1.00000 100 -074 -052 -032 -015 O 015 032 052 074 1.00
1 0.36788 -1.00 -0.68 -0.44 -025 -0.11 0 011 025 044 068 1.00
2 0.13534 -1.00 -061 -035 -0.18 -0.07 O 007 018 035 061 1.00
3 0.04979 100 -052 -026 -012 -0.04 0 004 012 026 052 1.00
4 0.01832 -1.00 -044 -019 -007 -002 O 0.02 007 019 044 1.00
5 0.00674 -1.00 -0.36 -0.13 -0.04 -0.01 0 001 004 013 036 1.00
6 0.00248 -1.00 -0.30 -0.09 -0.02 -0.01 0 001 0.02 009 030 1.00
7 0.00091 -1.00 -025 -0.06 -0.01 0.00 0 000 001 006 025 1.00
8 0.00034 -1.00 -0.20 -0.04 -0.01 0.00 0 000 001 004 020 1.00
9 0.00012 -1.00 -0.17 -0.03 0.00 0.00 0 000 000 003 0.17 1.00

Table 3.3 shows that as parameter temperatures are reduced the possibility that a
problem parameter is modified by a maximum range value remains throughout. However,
the magnitude of modifications to problem parameters for values of the random variable,
u;, other than 0, 0.5 and 1 gradually reduces as simulated annealing progresses. Figure

3.13 depicts a plot of the values given in Table 3.3.
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Figure 3.13 Parameter range multiplication factors.

Ingber (1989) states that for the parameter temperature annealing schedule given in
Equation 3.32, statistically a global minimum can be found. To maintain this statistical
guarantee Ingber (1989) advises to control the tuning factor, c;, of Equation 3.32 as

follows:

¢, =m, exp(—n, /D) (3.33)

where; m; and n; are control coefficients.

Ingber (1989) states that it has proven useful to anneal the acceptance function (Equation
3.24) in a way similar to the generation function, as done with Equation 3.32, but using the
number of acceptance events as a value for the annealing-time instead of the number of
generated states, as done for annealing parameter temperatures. An acceptance event is
defined as accepting a better solution with an improved objective function value. Ingber
(1989) also periodically rescales parameter annealing-times, essentially re-annealing,
when a pre-specified number of acceptance events have occurred. The rescaling of
parameter annealing-times stretches out the range over which relatively insensitive

parameters are being searched in relation to ranges of more sensitive parameters (ibid.).
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For re-annealing parameter temperatures Ingber (1989) calculates parameter sensitivities,
s;, at the current value of the objective function as follows:

s, =(A —B,)oL/oa’ (3.34)

where: A; and B; are the lower and upper limits of problem parameter range values,
respectively; 6L = the change in objective function value resulting from da'; and da' =

a small change in problem parameter value in dimension i.

Ingber (1989) then re-anneals the parameter temperature annealing-time using linear
rescaling in reference to the largest parameter sensitivity found, calculating rescaled
parameter annealing-times as follows:

n', = ((In[t,, /t, XS, /S)/c;)° (3.35)

where; n'; = the rescaled annealing-time associated with the parameter temperature; t,, =
the current parameter temperature; s, . = the largest parameter sensitivity; and s; = the

parameter sensitivity.

Figure 3.14 depicts an overview of the adaptive simulated annealing algorithm after Chen
et al. (1999). In Figure 3.14 shows the inner and outer loop of the adaptive simulated
annealing algorithm: The inner loop continues until the upper limit of the repetition
schedule is reached and the outer loop executes the temperature cooling schedule until a

stopping criterion is satisfied.

58



Literature Review

Initialization

generate
new solution &
accept or reject
new solution

exceed limit
acceptances?

yes

re-annealing

no

excead limit
generations?

temperature
annealing

no

m

yes

end

inner
loop

outer
loop

Figure 3.14 Adaptive Simulated Annealing algorithm overview (Chen et al., 1999).

The last part of this section concludes the literature review by summarizing applications of

the adaptive simulated annealing algorithm to a wide variety of Operations Research

problems. Yuping et al. (2005) solves irregular leather nesting problems using the

adaptive simulated annealing algorithm. Yuping et al. (2005) finds that, to solve an

irregular nesting problem proposed in Jain et al. (1998), the implementation of an adaptive

simulated annealing algorithm performs better than that of a genetic algorithm. Yuping et

al. (1998) states optimal solutions were found more than twenty times faster with adaptive

simulated annealing.
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Rosen (1992) tests adaptive simulated annealing on finding solutions to a non-differential
sample function with a two-dimensional parameter space. Rosen (1992) finds that, for the
sample function tested, adaptive simulated annealing vastly outperforms Boltzmann and
Cauchy annealing: On average Boltzmann and Cauchy annealing, respectively, find final
solutions 90 billion times and 800 million times higher than adaptive simulated annealing,
while best final solutions arrived at with Boltzmann and Cauchy annealing, respectively,
are 100 million and 17 times higher than those found with adaptive simulated annealing.

Dykes et al. (1994) implements a parallel use of adaptive simulated annealing to optimize
non-linear, multi-dimensional functions with many local minima, which include the five
functions of De Jong’s (1981) test suite. De Jong’s (1981) test suite is typically used for
benchmarking genetic algorithms. Dykes et al. (1994) concludes that adaptive simulated
annealing is a powerful tool for optimizing difficult functions and that parallelization
substantially improves performance, especially when optimizing large parameter spaces

of up to 30 dimensions.

Morril et al. (1995) uses adaptive simulated annealing to optimize a radiation therapy
treatment plan. Morril ef al. (1995) optimizes treatments for three clinical cases with two
cost functions: The first is a linear cost function (minimum target dose) with non-linear
dose-volume constraints for normal tissue; and the second is a function of the weighted
product of normal tissue complication probabilities and tumour control probability. For both
cost functions Morril et al. (1995) finds that adaptive simulated annealing can be used for
optimizing radiation treatment planning in clinically useful execution times, arriving at

results within 3 to 10 percent of the optimal solution found by mixed integer programming.

Wang et al. (1997) applies adaptive simulated annealing to optimize the structure
determination of bio molecules. Wang et al. (1997) optimizes the energy surface of the
Met-enkephalin molecule which is subject to a total of 19 variables. Wang et al. (1997)
carries out 55 independent adaptive simulated annealing runs to experiment with varying
initial configurations and cooling schedule settings. Wang et al. (1997) concludes that the
adaptive simulated annealing is an efficient and robust optimization technique which
performs equally well or better than two applications of Boltzmann annealing presented in

previous studies on the optimization of surface energies of bio molecules.

Chen et al. (1999) notes that many signal processing problems depend on multiple
parameters and have non-smooth cost functions making them difficult to solve by gradient
ascent/descent optimization techniques because of the presence of local optima and
difficulties in calculating gradients. Chen et al. (1999) uses adaptive simulated annealing

to optimize the signal processing problem of infinite-impulse-response filter design. To
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reduce the time of finding optimal solutions in comparison to a well tuned genetic
algorithm Chen et al. (1999) opts for the adaptive simulated annealing algorithm, which
converges faster than Boltzmann and Cauchy annealing algorithms. Chen et al. (1999)
concludes that, in general, simulated annealing algorithms are easier to program and

require less tuning than genetic algorithms.

Chen et al. (2001) uses adaptive simulated annealing to optimize the signal processing
problem of maximum-likelihood joint channel and data estimation. Chen et al. (2001)
concludes that the efficiency of adaptive simulated annealing is equal to that of better
known genetic algorithms and that, therefore, adaptive simulated annealing is a viable
alternative to these genetic algorithms for solving signal processing problems with

multimodal and non-smooth cost functions.

Zhang et al. (2002) uses adaptive simulated annealing to optimize the placing of macro-
cells on an analogue integrated circuit, essentially a nesting problem. Zhang et al. (2002)
notes that on application-specific integrated circuits, analogue circuits occupy smaller
areas than digital components. However, analogue circuits require an inversely large
proportion of design time and are often responsible for design errors and expensive
design changes (ibid.). Zhang et al. (2002) states that analogue circuit design is more
knowledge intensive and generally has more degrees of freedom than digital circuit
design. Zhang et al. (2002) determines an objective function for analogue circuit design
and uses adaptive simulated annealing to optimize the layout of three integrated circuits.
For each of the three integrated circuit layouts Zhang et al. (2002) finds that adaptive
simulated annealing outperforms Boltzmann and Cauchy annealing by finding better

objective function values in less time.

Garg et al. (2002) optimizes the joint trajectory between the initial and final positions of the
end effector of manipulator robots such that actuator torques applied at robot arm joints
are minimal. Garg et al. (2002) uses a genetic algorithm and adaptive simulated annealing
for optimization and finds that, for both single robotic manipulators and two cooperating
robotic manipulators, adaptive simulated annealing converged faster to global optima than

the genetic algorithm.

Ingber (1992) compares the performance of adaptive simulated annealing with genetic
algorithms by solving the five functions of De Jong’s (1981) test suite. Ingber et al. (1992)
finds that for De Jong’s (1981) test suite adaptive simulated annealing converges faster to

global optima than genetic algorithms, and with smaller variances.
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The majority of the literature reviewed here which compares the performance of adaptive
simulated annealing with that of genetic algorithms is in favour of using adaptive simulated
annealing. In addition to better performance, it is thought adaptive simulated annealing is
to be chosen here for optimizing dredge cut nesting and dredger routing problems

because of the following:

e The statement in Chen et al. (1999) that simulated annealing algorithms are easier
to program and require less tuning than genetic algorithms,

e The reportedly successful application of adaptive simulated annealing to solve
irregular nesting problems in Yuping et al. (2005),

e The successful application of simulated annealing to a variant of the travelling
salesperson problem in Henderson et al. (2003).

Based on the above three findings of other research the use of adaptive simulated

annealing as a solution approach is opted for. The hypothesis, objective and scope of the
research undertaken here are presented next.
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4 Hypothesis, Objective and Scope

The hypothesis of the research presented here is the following:

Two-dimensional cut planning for cutter suction dredgers can be modelled as
a combination of a modified stock cutting problem and a modified travelling
salesperson problem and optimized with adaptive simulated annealing in a

computer-based solution approach.

The objective of the research presented here is to contribute to improving the operational
efficiency of cutter suction dredgers by providing a tool with which the optimization of two-
dimensional cut planning for such dredgers can be automated. An optimal two-
dimensional cut plan for a cutter suction dredger is a plan for excavating a dredging area
in which the amount of downtime resulting from non-productive dredger movements in

between dredge cuts is minimal.

The scope of the research undertaken here does not aim to determine the most
computationally efficient method for solving the research problem and applies to dredging
areas which are assumed to be homogenous throughout and which have unrestricted
access. It is assumed dredging areas considered are homogenous throughout because
models developed here do not take into account varying soil characteristics. It is possible,
for example, that higher dredging production rates can be achieved when certain soil
strata are excavated in directions other than those suggested by the solutions arrived at
with the models used here. In addition, with exception of a reduction in dredging
production experienced when dredging head on into previously excavated areas, it is

assumed dredging production rates are constant for any width of cut dredged.

It is assumed dredging areas have unrestricted access because in principle the models
developed here do not take into account specific site conditions related to, for instance,
pre-existing ground and sea bed levels, obstructions, milestone activities, coordination of
dredging with other construction activities and temporal variation in sea states, which can
affect access to dredging areas and their surroundings. The methods and materials of the
research undertaken here are presented next.
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5 Materials and Methods

This section lists the experimental equipment, presents the dredge cut nesting and
dredger routing models used, and details the experimentation carried out to test the

research hypothesis.

5.1 Experimental Equipment

The equipment used for running the dredge cut nesting models consisted of four desktop
Dell computers with Microsoft Windows XP operating systems, 1.73 gigahertz Intel
Pentium 4 processors and 1 gigabyte of random access memory each. The dredger
routing models were run on a portable Hewlett-Packard computer with a Microsoft
Windows Vista operating system, a 2.00 gigahertz AMD Sempron processor, and 2
gigabytes of random access memory. The dredge cut nesting and dredger routing models
were coded in the programming language Microsoft Visual C# 2005 Express Edition. At
the time of writing Microsoft’s Visual C# 2008 Express Edition was available for download
at www.microsoft.com/express/vcsharp/. The non-standard classes and methods of the
dredge cut nesting program consist of around 4,000 lines of code while those of the

dredger routing model program total around 3,500 lines of code.

5.2 Dredge Cut Nesting Model

Two-dimensional dredge cut nesting problems are modelled here as a modified two-
dimensional stock cutting problem. The modification consists of how problem decision
variables are treated for dredge cut nesting in comparison to how they are treated for
conventional stock cutting. In conventional two-dimensional stock cutting problems, stock
items to be cut are referred to as sheets and the items to be cut from the stock are
referred to as stencils. Solutions of two-dimensional stock cutting problems are quantified
in terms of three decision variables: Escape, non-placement and overlap. Escape is
generally defined as the union area of stencils outside the sheet(s); non-placement as the
total sheet area not occupied by stencils; and overlap as the total area of overlap between
stencils. Traditionally, two-dimensional stock cutting problems require the minimization of
escape (if permitted), non-placement, and overlap (if permitted), where feasible solutions
are those which have zero escape and zero overlap since partially cut stencils are not

allowed.

For dredge cut nesting problems the sheet represents the area to be dredged and stencils
represent individual dredge cuts or combinations thereof. Like stock cutting problems,
dredge cut nesting problems require minimization of escape, non-placement and overlap,
but dredge cut nesting problems differ fundamentally from conventional two-dimensional
stock cutting problems in three respects: 1) While feasible solutions of two-dimensional
stock cutting problems can exhibit non-zero non-placement, feasible solutions of dredge
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cut nesting problems must have zero non-placement; 2) Non-zero non-placement in a
solution of a dredge cut nesting problem equates to parts of the dredging area remaining
undredged and therefore should not be permitted; 3) Feasible solutions of two-
dimensional stock cutting problems require zero escape and zero overlap, while feasible

solutions of dredge cut nesting problems do not necessarily require this.

Non-zero escape and non-zero overlap can be permitted in solutions of dredge cut
nesting when it is considered impractical to provide sets of different sized stencils from
which a subset can be selected to match any dimension of an irregularly shaped dredging
area. Provision of such stencil sets is not prioritized here since selected stencils
(representing dredge cuts), or parts thereof, which overlap need not be dredged. Equally
so, stencils, or parts thereof, which are outside dredging areas can also be left undredged.
Table 5.1 summarizes the main differences between conventional two-dimensional stock

cutting problems and two-dimensional dredge cut nesting problems.

Table 5.1 Dredge Cut Nesting and Stock Cutting Problem variables

Decision Two-dimensional Dredge Cut Two-dimensional Stock
Variable Nesting Problems Cutting Problems
Escape Permitted Not permitted
Non-placement Not permitted Permitted
Overlap Permitted Not permitted

In the dredge cut nesting model, sheets and stencils are represented by polygons in two-
dimensional space. Polygons representing dredge cut stencils are rectilinear and can be
convex or non-convex. Dredge cut stencils can be of any shape and made up of fractions
and/or multiples of squares with side lengths equal to or less than the maximum effective
cut width which can be achieved with the cutter suction dredger considered. Polygons
representing dredging areas are also rectilinear and can be convex or non-convex.
Polygons representing dredging areas are called inner sheets, hereafter also referred to
as sheets. Polygons representing the union of dredging areas and escape regions, if
provided for, are referred to as outer sheets. In the dredge cut nesting model inner and
outer sheets have fixed positions. Polygons representing dredge cut stencils have three
degrees of motion freedom: Horizontal translation; vertical translation; and rotation. Figure

5.1 depicts the three degrees of motion freedom of stencils.
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Figure 5.1 Stencil motion freedom (Yuping et al., 2005).

In Figure 5.1 horizontal and vertical stencil translation, 5, and 5, respectively, and stencil
rotation, &,, are related to a fixed reference point of the stencil. In the adaptive simulated
annealing algorithm employed in the dredge cut nesting model, each degree of motion
freedom of each stencil is assigned its own parameter temperature. Therefore, the
dimensions of the parameter space of dredge cut nesting problems equal three times the
total number of dredge cut stencils used. For example, a dredge cut nesting problem with
10 stencils has 30 parameter space dimensions and therefore has 30 parameter
temperatures. In the adaptive simulated annealing algorithm nesting solutions are
modified by repeatedly selecting randomized values for each of the three degrees of
stencil motion freedom using the probability generation function for which Equations 3.29,
3.30 and 3.31 are used (see Section 3.5.4). The limits of the vertical and horizontal
disturbance range for translation of stencils are set to +/- the maximum dimension of the
bounding box of the inner or outer sheet used, whichever is greater. The limits of the

disturbance range for rotation of stencils are set at +/- 360 degrees.

When the adaptive simulated annealing algorithm calls for a parameter sensitivity analysis
an identical small perturbation is applied separately to each parameter of each stencil to
find resulting objective function cost differences with which individual parameter
sensitivities are calculated, which are subsequently used for re-annealing parameter
temperatures with Equations 3.34 and 3.35 (see Section 3.5.4).
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The decision variables of the dredge cut nesting problem are escape, non-placement and

overlap, which are mathematically defined as follows:

Aescape :(Usijn(ue/} (51)

i=1 j=1

where: N = total number of stencils; s; = area of stencil i ; M = total number of escape

regions; and e; = area of escape region j.

K N
Anon—placement = (U Lk J - |:(U S; J - Aescape :| (52)
k=1 i=1

where: K = total number of sheets; L, = area of sheet k; N = total number of stencils; and

s; = area of stencil i

N N
oner/ap = ZSI _(U Si] (53)

i=1 i=1
where: N = total number of stencils; and s; = area of stencil i.

The objective function of the dredge cut nesting problem is expressed mathematically as

follows:
P — Besc Brpi ( )ﬁov!
minimize Z= aesc (Aescape ) + anpl (Anon—placement ) "+ aovl onerlap (54)

where: Z = total cost; a.sc = €scape penalty factor; f.sc = escape penalty exponent; a,, =
non-placement penalty factor; f,, = non-placement penalty exponent; «,,, = overlap

penalty factor; and f,,, = overlap penalty exponent.
Subject to the constraints:

A -0 (5.5)

non-placement
The dredge cut nesting model uses standard C-sharp classes and methods for the

purpose of polygon comparison in order to calculate escape, non-placement and overlap.
The model of the dredger routing problem is presented next.
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5.3 Dredger Routing Model

The dredger routing problem is modelled as a modified travelling salesperson problem of
variable asymmetry, where planar coordinates of centroids of the square stencil
components representing dredge cuts are used to represent nodes in Euclidean space.
The coordinates of centroids are extracted from final nest solutions of the associated
dredge cut nesting problem. The main modification consists of how problem decision
variables are treated for dredger routing problems in comparison to how they are treated
in a conventional travelling salesperson problem. The dredger routing model used here
takes into account tour lengths as well as turning angles measured between tour edges
whereas conventional travelling salesperson problems traditionally only concern

themselves with tour lengths.

The parameter space of the dredger routing problem is considered to be dimensionless
since the positions of nodes are fixed and the edge exchange mechanism used for
modifying tours is also fixed. In the code of the dredger routing model, however, the
parameter space dimension is set to unity to not divide by zero in Equations 3.32 and 3.33
(see Section 3.5.4). To modify dredger routes a fixed 2-opt edge exchange mechanism is
used throughout the solution process. Figure 5.2 depicts the concept of a 2-opt edge

exchange mechanism.

Figure 5.2 Two-opt edge exchange mechanism (Helsgaun, 2000).

In Figure 5.2 the 2-opt exchange mechanism converts the tour denoted by [a, b, ¢, d] into
the tour denoted by [a, ¢, b, d] by replacing two edges. The replacement consists of: An
exchange of the edge between nodes a and b with the edge between nodes a and c; and
an exchange of the edge between nodes ¢ and d with the edge between nodes b and d.
Considering dredger routing problems as dimensionless renders the part of the adaptive
simulated annealing algorithm where parameter temperatures are annealed, re-annealed

and subjected to sensitivity analysis obsolete. However, annealing and re-annealing of the
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acceptance criterion is kept in place and therefore the optimization process can still be
considered as one of adaptive simulated annealing. The dredger routing model requires
the user to specify a node to define the location where dredging commences. This option
is included because in practice it is not necessary to end dredging at the same node from
where it started. In addition, although dredging areas are considered to have unrestricted
access, the need to specify a start location for dredging can arise in practice when, for
example, pre-dredging depths limit the number of locations where dredging can
commence as a result of minimum water depth requirements imposed by the draft of the

cutter suction dredger considered for use.

The dredger routing model considers the length of the edge between the last tour node
and the start node equal to zero. Despite ignoring the length of the last tour edge the
constraint that solutions must form a tour is kept in place to maintain the basic model
structure of the travelling salesperson problem in the developed code. For the same
reason as to why the length of the last tour edge is considered zero, the turning angles
between the penultimate and the last, and the last and the first edge of tours are
considered zero. The dredger routing model problem has two decision variables, which

are defined as follows:

[ 1, if node j is reached from node i
L 0, otherwise

[ 1, if node k is reached from node j and node j is reached from node i
Yik =1 (5.7)
L 0, otherwise

The model of the dredger routing problem quantifies tour edge lengths and sums of
turning angles. The tour length is defined as follows:

N N
Lrour =22 FidyX; (5.8)

i=1 j=1

dj=owfori=j A d;=0fori=last tour node and j = first tour node

where; N = total number of nodes; F; = edge length reduction factor; dj = distance from

node i to node j.
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The sum of turning angles in a tour is defined as follows:
N N N L
Arour = ZAﬂ’jZZZyW x —TOUR- (5.9)
' ; 180N
Ay = 0 for j = last and j = first tour node

where; N = total number of nodes; Ay is the plane angle difference between incoming and

outgoing tour edges at node j.

The objective function of the dredger routing problem is the following:
i Blength Pangle
minimize Z = Q jength (LTOUR ) + X angie (ATOUR ) (5.10)

where; Z = total cost; ajengn = tour length penalty factor; fiengn = tour length penalty
exponent; aangie = turning angle sum penalty factor; and fange = turning angle sum penalty

exponent.

Subject to the constraints:

N

X; =1 i=1,2,3,...,N (5.11)
j=1
N
Do x; =1 j=1,2,3,...,N (5.12)
i=1
N
> V=1 jk=1,2,3,...,N (5.13)
i=1
N
D V=1 iik=1,2,3...,N (5.14)
j=1
N
D V=1 ij=1,2,3,...,N (5.15)
k=1
x;=(0, 1) for all i and j (5.16)
Yk =(0, 1) for all i, jand k (5.17)
Solution forms a tour. (5.18)

In Equation 5.9 the sum of turning angles is divided by 180 (the maximum turning angle)

and multiplied by the average tour edge length to make the sum of turning angles
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independent of problem size. Otherwise identical solutions to very similar dredger routing
problems of different scale will have different ratios of average turning angle to average

tour edge length.

In Equation 5.8 the lengths of edges between nodes are subjected to a variable reduction
factor when the turning angle between the tour edge under consideration and the
preceding tour edge is less than a specified maximum. The application of this reduction
factor is what gives the dredger routing problem a variable asymmetry. The value of the
reduction factor decreases for each additional tour edge that exhibits a turning angle with
its precursor which is less than a specified maximum. The maximum allowable turning
angle which defines consecutive in-line edges should be kept small to encourage the
dredger route to exhibit the greatest number of longest ‘straight’ lines possible. Parts of
the dredger route made up of such lines are referred to here as links. It is important to
note that single edges which are not aligned with either their precursor or the edge which

follows are not considered links.

The reason why it is preferable to have a dredger route with the maximum number of
maximum length links is a practical one and is mainly related to minimizing the number of
occasions of having to dredge head on into previously dredged areas. Figure 5.3
illustrates this practical issue with two solutions to a continuous two-dimensional 64 node
square grid routing problem which are both considered optimal according to graphical
definitions given in Collins (2003) .

Stat| 3 4| 7 8| 11 _12|End
? 7 7 [ ?
| | | | | | | |
R I
| | | | | | | |
4 3 3 3 3 3 3 4
| | | | | | | |
| | | | | | | |
? ? ? ? ? ? ? i
| | | | | | | |
N
| | | | | | | |
4 3 3 3 3 b b 4
| | | | | | | |
| | | | | | | |
? ? ? ? ? ? ? ?
| | | | | | | |
A2 58 [9_ 10 (13 4
Solution A Solution B

Figure 5.3 Optimal routing problem solutions (Collins, 2003).

Collins (2003) defines both routes in Figure 5.3 as having optimal total route lengths and

optimal sums of turning angles. However, Figure 5.3 has to be looked at more closely to
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assess the suitability of each route for cutter suction dredgers. In solution A the dredger
will dredge head on into previously dredged areas for a total number of 12 times, marked
by bold line sections, therefore swinging across a total equivalent length of 12 times the
grid spacing. Whereas in solution B the dredger is not made to dredge head on into
previously dredged areas. In solution B the total distance dredged swinging sideways into
previously dredged cuts is equivalent to a length of 49 times the grid spacing; whereas in
Solution A the total distance dredged swinging sideways into previously dredged cuts is
equal to a length of 35 times the grid spacing. In general, dredging into previously
dredged areas results in greater losses of dredging production when experienced ahead
of a cutter suction dredger than when experienced sideways. Therefore, for a cutter
suction dredging, solution B in Figure 5.3 should take preference over solution A. A
second practical reason for choosing solution B over A is that the spiral route of solution A
will require repeated disconnection and reconnection of a floating pipeline, if used.

To quantify optimal routes for cutter suction dredgers, such as the route of Solution B in
Figure 5.3, use is made of four equations. These four equations quantify attributes of
optimal dredger routes which visit all nodes on continuous square grids of square or
rectangular shape with widths and lengths of 2 nodes or more. Equations 5.19 and 5.20,
respectively, give the lower bounds of total route length, Ly, and sum of turning angles of

optimal dredger routes, Ay, for such grids.

Ly zd(nw (n, _1)+(nw _1)) (5.19)
where; n, = number of nodes along length of rectangular grid; ny = number of nodes

across width of rectangular grid; and d = square grid spacing.

A,y =180(n,, —1) (5.20)

where; ny = number of nodes across width of rectangular grid.

In addition, Equations 5.21 and 5.22, respectively, define the upper bounds of link length,

Myuax, and of the number of maximum length links, Nyx, in optimal dredger routes.

M, =d(n, —1) (5.21)
where; n, = number of nodes along length of rectangular grid; and d = square grid
spacing.

NMAX =Ny (5.22)

where; ny = number of nodes along width of rectangular grid.

72



Materials and Methods

For a grid spacing of 1,Table 5.2 lists values which quantify the two routes depicted in
Figure 5.3 using Equations 5.19 to 5.22 inclusive. In addition, Table 5.2 gives the actual
average link length for each route, which is equal to the sum of link lengths divided by the

total number of links.

Table 5.2 Optimal route attributes — 64 Node Square Grid

Iltem Route Attribute Solution A Solution B
1 Length 63 63
2 Sum Angles 1260 1260
3 Maximum Link Length 7 7
Number of Maximum
4 Length Links 3 8
5 Sum Link Lengths 61 56
6 Number of Links 13 8
7 Average Link Length 4.69 7

Item 4 in Table 5.2 shows that, with respect to Equation 5.22, the route of Solution B in
Figure 5.3 is an optimal dredger route and Solution A is not. This is also reflected by the
average link length, item 7, of both routes. Following this, it is said that optimal routes for
cutter suction dredgers in continuous square grid routing problems of square or

rectangular shape can be identified by the number of maximum length links they exhibit.

However, the determination of the upper bound for the number of maximum length links in
a route for continuous irregular grids of irregular shape can be problematic and depends
on the maximum allowable angle between consecutive route edges. In addition, assessing
an entire dredger route in an irregular grid on the basis of the number of maximum length
links can be of little worth if only a small number of such links exist: Nothing would be said
about links of (slightly) lesser lengths. On the other hand, determining the average link
length of a dredger route on any grid is straightforward and therefore it is considered

meaningful for evaluating dredger routes.

Having said that, average link length, as defined here, should not be used as the only
criterion for defining the optimality of dredger routes: If, for example, a solution to the
routing problem in Figure 5.3 were to have only one link of maximum length (a greater
number being possible) and all remaining route edges were not links, but unaligned route
edges, then the average link length would still be considered ‘optimal’, when in reality the
corresponding dredger route itself is not: It will be longer and have a greater sum of
turning angles than Solution B in Table 5.2. Despite the shortcomings of assessing
dredger routes on the basis of their average link lengths, these lengths are calculated and
given in Section 6, Results and Discussion, to gain additional insight, in particular for the
engineering application of the dredger routing model, which concerns an irregular routing
problem.
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The application of an edge reduction factor to route edge lengths is thought to be
adequate for encouraging the formation of as many maximum length links as are possible
in a given dredger routing problem. The edge length reduction factor in Equation 5.8 is

calculated for each route edge as follows:

(5.23)

where; w = reduction constant; n = number of edges in a link before node j; and ., =

maximum expected number of edges in a link.

Figure 5.4 gives values of the edge length reduction factor for a hypothetical dredger
routing problem. In Figure 5.4 the reduction constant is 0.05 (selected on the basis of
providing for practically useful edge reduction factors) and the maximum expected number
of edges in a link is 15, a value that is estimated by visual inspection of valid route nodes

extracted from final nests generated by the dredge cut nesting model.
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Figure 5.4 Edge length reduction factors.

Figure 5.4 shows that the actual maximum number of link edges can be 20% higher than
15 without edge length reduction factors taking on negative values. Negative edge lengths
will not cause the objective function of the dredger routing model to function differently,
but are avoided because they can complicate the comparison of total factored route costs.
The experimental design is presented next.
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5.4 Experimental Design

The experimentation undertaken here to test the research hypothesis consists of three
main groups: Validation of the dredge cut nesting and dredger routing models against
relevant problems taken from literature; further testing on hypothetical problems of varying
complexity; and an engineering application of both models. Success with which the
dredge cut nesting model optimizes nesting problems presented here is measured by
comparing areas of escape (if applicable), overlap and non-placement of final nest
layouts. Areas of escape, overlap and non-placement are generally expressed as a
percentage of the total (inner) sheet area used. Success with which the dredger routing
model optimizes routing problems presented here is measured by comparing final route
lengths, sums turning angles and average link lengths of final routes. In addition, a

selection of final nests and final routes are presented graphically for further analysis.

5.4.1 Model Validation

The dredge cut nesting and dredger routing models are validated against relevant

problems related to an irregular nesting problem taken from literature.

5.4.1.1 Validation of Dredge Cut Nesting Model

The dredge cut nesting model is validated against an irregular nesting problem solved
with an adaptive simulated annealing-based solution approach in Yuping et al. (2005).

Figure 5.5 depicts the sheet and stencils of this irregular nesting problem.

w
T T2
L=2xW
L1 L2 L3 L4 —
S1 S2 S3 S4 S5 S6 S7 S8
Sheet Stencils

Figure 5.5 Nesting validation problem (Yuping et al., 2005).

The width of the sheet depicted in Figure 5.5 is exactly half its length. The set of stencils

depicted in Figure 5.5 is irregular and consists of: Two large T-shaped stencils; four

medium L-shaped stencils; and eight small square stencils. In Figure 5.5, the length of the
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sides of the square stencils, S1 to S8, are equal to a quarter of the width of the sheet.
Each T-shaped stencil, T1 and T2, is made up of six square stencils, and each L-shaped
stencil. L1 to L4, is made up of three square stencils. The area sum of all stencils is equal
to the sheet area. It should be noted that, further to the stencil set depicted in Figure 5.5,
the dredge cut nesting model was developed to use a maximum of three different types of
stencil. In accordance with the solution approach adopted in Yuping et al. (2005) the
experiments solving the nesting problem of Figure 5.5 do not allow for any escape of
stencils beyond sheet boundaries. Table 5.3 gives the model settings used for validating

the dredge cut nesting model.

Table 5.3 Dredge Cut Nesting model settings — Validation

Iltem Description Setting Source
1 Sampled States 1,000 -
2 Annealing Limit Accepted States 1,000" Ingber (1989)
3 Annealing Limit Generated States 1,000? Ingber (2006)
4 Re-annealing Limit Accepted States 100 (ibid.)
5 Re-annealing Limit Generated States 1,000 -
6 Stop Limit Accepted States 10,000 (ibid.)
7 Stop Limit Generated States 99,999 (ibid.)
8 Small Change Sensitivity Analysis 0.001 (ibid.)
9 Initial Parameter Temperature 1.0 (ibid.)
10 Initial Cost Temperature Factor 1.0 -
11 Initial Placement Random Yuping et al. (2005)
12 Parameter Space Dimensions 42 (ibid.)
13  Parameter Control Tuning Factor 3,4,5,6,7,8 Chen et al. (1999)
14 Cost Control Tuning Factor 3 ‘; 51’06’171’ 8, (ibid.)
15  Stencil Modification Selection Mode Sequential Yuping et al. (2005)
16  Total stencil area / sheet area 1.0 (ibid.)
17  Square Unit Cut Side Length 100 -
18 Sheet dimensions 800x400 -

Notes: 1) Cost Temperature annealed only. 2) Parameter Temperatures annealed only.

For the validation of the dredge cut nesting model all penalty factors and exponents for
overlap and non-placement are set to unity (see Equation 5.4). In Table 5.3, items 3, 4, 6,
7, 8 and 9 are set to default values taken from the Adaptive Simulated Annealing Code
Manual version 26.22 (Ingber, 2006). The default value for item 1 is 5 (ibid.), but it is set at
1,000 to find a more representative initial cost temperature. The default value for item 2 is
0 (ibid.), which, if set as such, causes annealing of the cost and parameter temperatures
at identical intervals based on the number of generated states. However, Ingber (1989)
states that it has proven fruitful to anneal the cost temperature using the number of
accepted states instead and therefore item 2 is set to a non-zero value equal to that of

item 3, namely 1,000.
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In Table 5.3, item 3 is set to 1,000 to have an expected 99 parameter temperature
annealing events over the total number of 99,999 generated states as specified for item 7.
According to Ingber (2006) default values for item 5 are 1,000,000 or 10,000, but it is set
to 1,000 to reduce the risk of getting stuck in local minima in case the number of
acceptances no longer increases and therefore can no longer be relied upon for re-
annealing. The values for items 13 and 14 in Table 5.3 are chosen further to Chen et al.
(1999), which states that values for the cost and parameter control tuning factors used in
Equation 3.32 (see Section 3.5.4) often range between 1 and 10. To validate the dredge
cut nesting model, a total of 6 x 9 = 54 different nesting experiments are carried out, one
for each unique combination of control tuning factors. Each experiment of 99,999

iterations is repeated 20 times, totalling approximately 108 million iterations.

5.4.1.2 Validation of Dredger Routing Model

Inspired by square grid routing problems used in Henderson et al. (2003), the dredger
routing model is validated against a square grid routing problem extracted from a global
optimum nest layout of the irregular nesting problem solved in Yuping et al. (2005). Figure
5.6 depicts the nodes of this routing problem, with an associated global optimum nest of

stencils marked in dashed lines.
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Figure 5.6 Routing validation problem (Yuping et al., 2005).
In Figure 5.6, the 32 nodes derived from the centroids of squares which make up the

stencils define the planar square grid problem solved in this part of the experimentation.

Table 5.4 gives the model settings used for validating the dredger routing model.
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Table 5.4 Dredger Routing model settings — Validation

Iltem Description Setting Source
1 Sampled States 1,000 -
2 Annealing Limit Accepted States 0 Ingber (2006)
3  Annealing Limit Generated States 1,000" (ibid.)
4 Re-annealing Limit Accepted States 100 (ibid.)
5 Re-annealing Limit Generated States 10,000 (ibid.)
6  Stop Limit Accepted States 10,000 (ibid.)
7 Stop Limit Generated States 99,999 (ibid.)
8 Initial Parameter Temperature 1.0 (ibid.)
9 Initial Cost Temperature Factor 0.0161 Johnson (1990)
10 Initial tour Random Henderson et al. (2003)
11 Parameter Space Dimensions 12 -
12 Parameter Control Tuning Factor 0.047% Ingber (2006)
13  Cost Control Tuning Factor 0.047% (ibid.)
14  Edge Exchange Mode 2-opt Koulamas et al. (1994)
15 Edge Exchange Selection Mode Random (ibid.)
16  Local Search 1,8 (ibid.)
17  Maximum Expected In-Line Edges 7 -
18  Edge Length Reduction Constant 0.05 -
19 Link Edge Angle Range [-1°,1°] -
21  Start Position (X, y) (25, 25) -
22  Horizontal and Vertical Grid Spacing 50 -

Notes: 1) Cost and Parameter Temperatures annealed. 2) For code only. 3) Not rounded in code.

For the validation of the dredge cut nesting model all penalty factors and exponents for
tour length and sum of turning angles are set to unity (see Equation 5.10). In Table 5.4,
the values for items 2 to 8 inclusive are set to default values taken from the Adaptive
Simulated Annealing Code Manual version 26.22 (Ingber, 2006). The value for item 9 is
derived from Johnson (1990), which states that initial acceptance temperatures can be
used which are “roughly’ equal to half the average edge length of the initial random tour.
In contrast to exploring combinations of fixed values for parameter and cost control tuning
factors, as done for dredge cut nesting problems, the values of items 12 and 13 in Table
5.4, are calculated according to guidelines given in Ingber (2006). These guidelines
recommend using the following values for the control coefficients of Equation 3.33 (see
Section 3.5.4):

m, =-In(0.01) (5.24)
n, =In(99) (5.25)

In Table 5.4. values for item 16, the local search, are set to 1 and 8, the latter value being
an upper limit for local search recommended in Koulamas et al. (1994). To validate the
dredger routing model, a total of 2 different routing experiments are carried out, one with a
local search of 1 and the other with local search of 8. Each experiment of 99,999 base

iterations was repeated 20 times, totalling approximately 18 million iterations.
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5.4.2 Variation of Nesting Problem Variables

After validation, the performance of the dredge cut nesting model is further tested on five
sub-groups of additional nesting problems, which includes an engineering application.
Table 5.5 gives the main settings of the dredge cut nesting model used for all additional

nesting problems.

Table 5.5 Main Dredge Cut Nesting model settings for all additional nesting problems

Iltem Description Value(s)/Setting Source
1 Sampled States 1,000 -
2 Annealing Limit Accepted States 1,000" Ingber (1989)
3 Annealing Limit Generated States 1,000? Ingber (2006)
4 Re-annealing Limit Accepted States 100 (ibid.)
5 Re-annealing Limit Generated States 1,000 -
6  Stop Limit Accepted States 10,000 (ibid.)
7  Stop Limit Generated States 99,999 (ibid.)
8 Initial Parameter Temperature 1.0 (ibid.)
9 Initial Cost Temperature Factor 1.0 -
10 Initial Placement Random Yuping et al. (2005)
11 Stencil Modification Selection Mode Sequential (ibid.)

Notes: 1) Cost Temperature annealed only. 2) Parameter Temperatures annealed only.

The following sections detail the additional groups of nesting problems and the nesting

problem solved in the engineering application of the dredge cut nesting model.

5.4.2.1 Dredge Cut Nesting — Relaxed Sheet Boundary Conditions

The first stage of evaluating if the dredge cut nesting model can be used for engineering
applications consists of investigating what effect increasing the number of relaxed sheet
boundary conditions has on final nests for the irregular nesting problem depicted in Figure
5.5. The relaxation of sheet boundary conditions consists of a step-wise increase in the

number of sheet boundaries across which stencils can escape.

It is thought the issue of having to provide for sets with many stencils of different size and
shape, so that all inner sheet dimensions can be matched, can be overcome by providing
selective escape regions for stencils. Figure 5.7 depicts the three modified sheet

arrangements used to investigate the effect of sheet boundary relaxation on final nests.
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Figure 5.7 Sheet arrangements with relaxed boundaries.

The same set of stencils as depicted in Figure 5.5, with a square unit cut side length of
100, is used for nesting in the modified sheet arrangements shown in Figure 5.7, therefore
the total inner sheet area to total stencil area ratio remains 1:1. Table 5.6 gives the

specific settings of the dredge cut nesting model used for this part of the experimentation.

Table 5.6 Specific model settings — Irregular nesting — Relaxed sheet boundaries

Iltem Description Value(s)/Setting Source
1 Parameter Space Dimensions 42 Yuping et al. (2005)
2 Square Unit Cut Side Length 100 -
3 Parameter Control Tuning Factor 3,4,5,6,7,8 Chen et al. (1999)
4 Cost Control Tuning Factor 3, ‘; 51‘06‘171’ 8, (ibid.)
5  Total stencil area / inner sheet area 1.0 -
6  Sheet dimensions 800x400 -

To investigate the effect of relaxing sheet boundary conditions on final nests all penalty
factors and exponents for escape, overlap and non-placement are set to unity in the
dredge cut nesting model. For this part of the experimentation a total of 3 x 6 x 9 = 162
different nesting experiments are carried out, one for each unique combination of sheet
arrangement and control tuning factors. Each experiment of 99,999 iterations is repeated
20 times, giving a total of approximately 324 million iterations.
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5.4.2.2 Dredge Cut Nesting — Reduced Sheet Areas

The second stage of evaluating if the dredge cut nesting model can be used for
engineering applications consists of investigating the effect of changing the ratio of total
inner sheet area to total stencil area on final nests. From now on this ratio is referred to as
the sheet to stencil area ratio. The effect of changing this ratio is investigated for variants
of the irregular nesting problem taken from Yuping et al. (2005) with two relaxed inner
sheet boundary conditions. Changes in sheet to stencil area ratios consist of step-wise

reductions of inner sheet dimensions whilst maintaining the total stencil area constant.

For a given sheet, Yuping et al. (2005) states that the number of stencils to be used in a
solving irregular stock cutting problems is that which results in the total stencil area being
“roughly” equal to the sheet area. Since feasible solutions to dredge cut nesting problems
are permitted to exhibit non-zero escape it is reasonable to expect that a surplus of stencil
area is required if the condition of zero non-placement is to be met. Figure 5.8 depicts the
four different sheet arrangements, with two relaxed boundary conditions each, used in this

part of the experimentation.
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Figure 5.8 Reduced inner sheet area arrangements.

The same set of stencils as depicted in Figure 5.5, with a square unit cut side length of
100, is used for nesting in the reduced inner sheet areas depicted in Figure 5.8, thereby
giving, from left to right, sheet to stencil area ratios of 1:1.1, 1:1.2, 1:1.3 and 1:1.4. Table
5.7 gives specific settings of the dredge cut nesting model used for investigating the effect

of decreased inner sheet areas on final nest layouts of irregular nesting problems.

81



Materials and Methods

Table 5.7 Specific model settings — Irregular nesting — Reduced inner sheets

Iltem Description Value(s)/Setting Source
1 Parameter Space Dimensions 42 Yuping et al. (2005)
2 Square Unit Cut Side Length 100 -
3 Parameter Control Tuning Factor 3,4,5,6,7,8 Chen et al. (1999)
4  Cost Control Tuning Factor 3, ‘; 51’06’171’ 8, (ibid.)
5 Total stencil area / inner sheet area 1.1,12,1.3,14 -
762x381,
. . 730x365,
6  Sheet dimensions 7025351
676x338

To investigate the effect of decreasing inner sheet area for constant total stencil area, all
penalty factors and exponents for overlap and non-placement in the dredge cut nesting
model are set to unity. The penalty factor for escape, however, is set to zero to eliminate
its influence on nesting solutions. For this part of the experimentation a total of 4 x 6 x 9 =
216 different nesting experiments are carried out, one for each unique combination of
reduced sheet size and control tuning factors. Each experiment of 99,999 iterations is

repeated 20 times, giving a total of approximately 432 million iterations.

5.4.2.3 Dredge Cut Nesting — Reduced Sheet Areas for Square Stencils

The third stage of evaluating if the dredge cut nesting model can be used for engineering
applications consists of investigating the effect of using square stencils only for nesting
problems with decreased inner sheets and two relaxes sheet boundaries. This is done for
the nesting problems with varying sheet to stencil area ratios described in Section 5.4.2.2.
The third sub-group of experiments therefore is almost identical to the second sub-group
with the exception that the third sub-group uses 32 square stencils giving 96 parameter

space dimensions instead of 42 for the original set of 14 stencils depicted in Figure 5.5.

Apart from the change in parameter space dimensions the specific settings used for
solving the third sub-group of additional nesting problems are the same as those given in
Table 5.7. To investigate using square stencils only, effectively regularizing the nesting
problems solved, a total of 4 x 6 x 9 = 216 nesting experiments are carried out, one for
each unique combination of reduced sheet size and control tuning factors. Each
experiment of 99,999 iterations is repeated 20 times, giving a total of approximately 432

million iterations.
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5.4.2.4 Dredge Cut Nesting — Cost Penalty Increase for Square Stencils

The fourth stage of evaluating if the dredge cut nesting model can be used for engineering
application consists of investigating the effect of increasing penalty factors and exponents
for overlap and non-placement cost. This is investigated for the nesting of 32 identical
square stencils in the sheet arrangements depicted in Figure 5.8. Table 5.8 gives specific
settings for the dredge cut nesting model used for the fourth sub-group of additional

nesting problems.

Table 5.8 Specific model settings — Regular nesting — Increased cost penalties

Iltem Description Value(s)/Setting Source
1 Parameter Space Dimensions 96 -
2 Square Unit Cut Side Length 100 -
3 Parameter Control Tuning Factor 10/9/11/9 -
4 Cost Control Tuning Factor 6/6/6/5 -
5  Total stencil area / inner sheet area 1.1/12/13/1.4 -
762x381 /
. . 730x365 /
6  Sheet dimensions 702x351 /
676x338
7 Escape penalty factor 0 -
8 Escape penalty exponent 0 -
9 Overlap penalty factor 4" Yuping et al. (2005)
10  Overlap penalty exponent 1" (ibid.)
11 Non-placement penalty factor 50" (ibid.)
12 Non-placement penalty exponent 2" (ibid.)

Note: 1) Penalty values taken from referenced source but applied differently to decision variables.

To investigate the effect of higher cost penalties using square stencils only, a total of 4
different nesting experiments of 99,999 iterations are carried out, each of which is

repeated 20 times, giving a total of approximately 8 million iterations.
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5.4.3 Variation of Routing Problem Variables

After validation, the performance of the dredger routing model is tested on three additional
routing problems, which includes an engineering application. Table 5.9 gives the main

settings of the dredger routing model used for all additional routing problems.

Table 5.9 Main Dredger Routing model settings for all additional routing problems

Iltem Parameter Description Value/Setting Source
1 Annealing Limit Accepted States 0 Ingber (2006)
2 Annealing Limit Generated States 1,000" (ibid.)
3 Re-annealing Limit Accepted States 100 (ibid.)
4 Re-annealing Limit Generated States 10,000 (ibid.)
5  Stop Limit Accepted States 10,000 (ibid.)
6  Stop Limit Generated States 99,999 (ibid.)
7 Initial tour Random Henderson et al. (2003)
8 Parameter Space Dimensions 12 -
9  Parameter Control Tuning Factor 0.047 Ingber (2006)
10  Cost Control Tuning Factor 0.047 (ibid.)
11 Edge Exchange Mode 2-opt Koulamas et al. (1994)
12  Edge Exchange Selection Mode Random (ibid.)

Notes: 1) Cost and Parameter Temperatures annealed. 2) For code only.

The following sections detail the additional routing problems, including the problem solved

in the engineering application of the dredger routing model.

5.4.3.1 Dredger Routing — 64 Node Square Grid Problem

The first additional routing problem solved with the dredger routing model consists of a
planar square grid problem with 64 nodes representing the centroids of square dredge cut
stencils in an optimum solution of a hypothetical dredge cut nesting problem. Figure 5.9
depicts the 64 node routing problem and Table 5.10 gives the specific model settings

used for solving this problem.
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Figure 5.9 Square grid routing problem with 64 nodes.
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Table 5.10 Specific model settings — Regular routing — 64 Nodes

Iltem Description Value/Setting Source

1 Sampled States 1,000 -

2 Initial Cost Temperature Factor 0.0079 Johnson (1990)

3 Local Search 1,8 Koulamas et al. (1994)
4  Link Edge Angle Range [-1°, 1°] -

5  Horizontal and Vertical Grid Spacing 50 -

6  Start Position (x, y) (25, 25) -

7 Maximum Expected In-Line Edges 7 -

8 Edge Length Reduction Constant 0.05 -

To investigate the performance of the dredger routing model on the 64 node routing
problem a total of 2 routing experiments are carried out, one with local search of 1 and the
other with local search of 8. Each experiment of 99,999 base iterations is repeated 20

times, giving a total of approximately 18 million iterations.

5.4.3.2 Dredger Routing — 256 Node Square Grid Problem

The second additional routing problem solved with the dredger routing model is a planar
square grid problem with 256 nodes representing the centroids of squares of an optimum
solution to a hypothetical dredge cut nesting problem. Figure 5.10 depicts the 256 node

routing problem and Table 5.11 gives the specific model settings used for optimization.
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Figure 5.10 Square grid routing problem with 256 nodes.
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Table 5.11 Specific model settings — Regular routing — 256 Nodes

ltem Parameter Description Value/Setting References
1 Sampled States 1,000 -
2 Initial Cost Temperature Factor 0.0020 Johnson (1990)
1, 8, 16, 32,
3 Local Search 64. 128 -
4  Link Edge Angle Range [-1°,1°] -
5  Horizontal and Vertical Grid Spacing 50 -
6  Start Position (x, y) (25, 25) -
7  Maximum Expected In-Line Edges 15 -
8  Edge Length Reduction Constant 0.05 -

To investigate the performance of the dredger routing model on the 256 node routing
problem a total of 6 routing experiments are carried out, with local search equal to 1, 8,
16, 32, 64 and 128. Each experiment of 99,999 base iterations is repeated 20 times,
giving a total of approximately 498 million iterations.

5.4.4 Engineering Application

The performance of the dredge cut nesting and dredger routing models for engineering
applications is evaluated by solving a two-dimensional cut planning problem for cutter
suction dredgers derived from the Laem Chabang Port Project Phase 2 Stage 1 in
Thailand. Figure 5.11 depicts the project in plan view. The hatched area seen in Figure
5.11 was dredged between 1998 and 1999 with the cutter suction dredger “Cyrus”, at the
time operated by Dragomar S.p.A. of Italy.

Figure 5.11 Engineering application — Dredging area.
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Appendix B gives a daily dredger report showing that cutter suction dredger “Cyrus”
achieved dredge cut widths of up to 112 metres wide on the Laem Chabang Port Project.

For the dredger’'s main characteristics Appendix C is referred to.

5.4.4.1 Dredge Cut Nesting — Engineering Application

Whilst awaiting results of the experimentation on nesting problems, over 15 different
preliminary dredge cut nesting experiments were carried out for the real-world dredging
area depicted in Figure 5.11. The model settings used in these preliminary experiments
were not those which performed best in other nesting experiments, since results of these
experiments were not yet available. Some results of this preliminary experimentation on
the real-world dredge cut planning problem are of interest to the research presented here
because they influenced the final shapes of escape regions and stencils used in the
engineering application of the dredge cut nesting model. However, the model settings
used for the preliminary experiments vary considerably and it is felt that clarity would be
lost if they are included now. Therefore, appendices with relevant model settings, will be
referred to in Section 6, Results and Discussion, if and when preliminary results of the
engineering application of the dredge cut nesting model are mentioned. Figure 5.12
depicts the inner sheet, escape regions and a sample of a square unit dredge cut used in

the engineering application of the dredge cut nesting model.

105 % 105m Sarnple Square Cut Unit (to scale)

Escape Zone 2

WA (~47 306 m2)

Figure 5.12 Engineering application — Inner and outer sheets.
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Appendix D gives the coordinate pairs defining the inner and outer sheets depicted in
Figure 5.12. Figure 5.13 depicts the stencil set used in the engineering application of the

dredge cut nesting model.

Stencil Set 3: 5 Nos. 1 Nos. 1 Nos. Total Stencil Area:
(105m Base Cut Width) 735m x 735m 630m x 630m 525m x 52.5m 3,125,587.50 m2
Stencil Area: Stencil Area: Stencil Area:
540,225 m2 396,900 m2 27 562.50 m2

Figure 5.13 Engineering application — Stencil set.
The stencil set in Figure 5.13 gives a sheet to stencil area ratio is 1:1.439. Table 5.12
gives the specific settings used in the engineering application of the dredge cut nesting

model.

Table 5.12 Specific model settings — Irregular nesting — Engineering application

Iltem Description Value(s)/Setting Source
1 Parameter Space Dimensions 21 -
2 Square Unit Cut Side Length 105 -
3  Parameter Control Tuning Factor 7 -
4 Cost Control Tuning Factor 5 -
5  Total stencil area / sheet area 1.439 -
6 Escape penalty factor 0 -
7 Escape penalty exponent 0 -
8  Overlap penalty factor 4" Yuping et al. (2005)
9 Overlap penalty exponent 1" (ibid.)
10  Non-placement penalty factor 50" (ibid.)
11 Non-placement penalty exponent 2" (ibid.)

Note: 1) Penalty values taken from referenced source but applied differently to decision variables.

The value of 105 for item 2 in Table 5.12 is taken from the daily dredger reports given in
Appendix B. For the engineering application of the dredge cut nesting model 20

replications of 99,999 iterations are carried out.

5.4.4.2 Dredger Routing — Engineering Application

The model of the real-world dredger routing problem is derived from a final solution of the
engineering application of the dredge cut nesting model. Route nodes are made up of
centroids of the square unit dredge cuts which are wholly inside or intersect a boundary of
the inner sheet representing the dredging area. Figure 5.14 illustrates how centroids of
square unit cuts which intersect a dredging area boundary are selected for inclusion in the
engineering application of the dredger routing model.
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Figure 5.14 Engineering application — Route node selection.

Where dredge cut stencils overlap to the extent that square unit cuts of one stencil lie
entirely within another stencil the following guidelines are used for the elimination of

unnecessary route nodes:

1) Route nodes of stencils of bigger size take priority over those of smaller ones.

2) When stencils of equal size overlap, route nodes of the stencil which overlaps with
the highest number of other equally sized stencils take priority.

3) When two stencils of equal size overlap and each one overlaps with an equal
number of other equally sized stencils, route nodes of the stencil which has the

least amount of escape take priority.

The selection of valid route nodes extracted from a final solution of the engineering
application of the dredge cut nesting model is given in Section 6 where results are
presented and discussed. Table 5.13 gives specific model settings used in the

engineering application of the dredger routing model.

Table 5.13 Specific model settings — Irregular routing — Engineering application

Iltem Description Value/Setting Source
1 Initial Cost Temperature Factor Ys-(Total nodes)” Johnson (1990)
2  Local Search 128 -
3  Link Edge Angle Range [-1°, 1°] -
4  Start Position (x, y) 204, 1625 -
5 Horizontal and Vertical Grid Spacing Variable -

For the engineering application of the dredger routing model 10 replications of 99,999
base iterations are carried out. For clarity, Table 5.14 lists all the experiments with a short
description and their main objectives, after which results of all experiments are presented

and discussed.
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Table 5.14 Experimentation summary with objectives

No. Experiment Objective Section

1 Irregular _nesting — taken from Validation of Dredge Cut Nesting 5411
Yuping et al. (2005) Model

2 Regular routing — 32 nodes Validation of Dredger Routing 5412

derived from Yuping et al. (2005) Model for local search of 1 and 8

Irregular nesting — with increasing
number of relaxed sheet
boundaries and sheet to stencil
area ratios of 1:1

To conclude if allowing escape of
stencils leads to better final dredge 54.2.1
cut nesting solutions

Irregular nesting — with 2 of To conclude if providing an excess
relaxed sheet boundaries and P 9

4 of stencil area leads to better final 54.2.2

sheet to stencil area ratios of dredae cut nesting solutions
1:1.1,1:1.2, 1:1.3 and 1:1.4 9 9

Regular nesting — with 2 of To conclude if irregular or regular
relaxed sheet boundaries and 9 9

5 ; : stencils lead to better final dredge 54.2.3
sheet to stencil area ratios of : .
cut nesting solutions

1:1.1,1:1.2,1:1.3and 1:1.4

Regular nesting — with 2 of

relaxed sheet boundaries and To conclude if revised cost
6 sheet to stencil area ratios of penalties lead to better final dredge 5424
1:1.1, 1:1.2, 1:1.3 and 1:1.4 with cut nesting solutions

revised cost penalties

To conclude if for local search of 1

7 Regular routing — 64 nodes and 8 optimal dredger routes can be 5.4.3.1
found
To conclude if for local search of 1,
8 Regular routing — 256 nodes 8, 16, 32, 64 and 128 optimal 5432

dredger routes can be found

To conclude if the Dredge Cut

9 Irregular nestlr_Ig — engineering Nesting Model can optimize a real- 5441
application
world problem
Irreqular routing — endineerin To conclude if the Dredger Routing
10 guiar routing 9 9 Model can optimize a real-world 5442
application 228 nodes problem
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6 Results and Discussion

This section presents and discusses results of experiments in the same order as the

previous section described the sub-groups of nesting and routing experiments.

6.1 Validation of Dredge Cut Nesting Model

On average each validation nesting experiment of 99,999 iterations required 22.83
minutes to complete. The average of 22.83 minutes observed here is much higher than
the solution time of 1.22 minutes reported in Yuping et al. (2005) for the same nesting
problem, especially since Yuping et al. (2005) reports having used a computer with a
processor speed of 333 megahertz and 128 megabytes of random access memory. It is
not known if the experiments of Yuping ef al. (2005) were run for the same number of
iterations as done here. Although not explicitly mentioned, it is possible that Yuping et al.
(2005) used stopping criteria for early termination of nesting optimization processes. Also,
Yuping et al. (2005) does not explicitly state how stencils were rotated during the nesting
process, but in the original solution approach of Jain et al. (1998) stencils were rotated in
steps of 90 degrees only. The model used here allows for near-continuous rotation of
stencils, and rotation angles expressed to the nearest 1x10”° of a degree were observed.
With early stopping criteria and by limiting stencil rotation it is thought solution times can
be reduced, but a limitation on the rotation of stencils can reduce the effectiveness of the
dredge cut nesting model to cope with nesting in irregular sheets with boundaries which
are not parallel to coordinate axes. Figure 6.1 depicts an example of a random initial
placement of stencils used as an initial solution at the start of the nesting optimization
process, which has an overlap area equal to 47.71% and a non-placement area equal to
47.70% of the sheet area.

Figure 6.1 Random initial nest — Irregular nesting — Validation.

The difference in overlap and non-placement calculated for the nest in Figure 6.1 is

explained after Table 6.1. Table 6.1 presents the results of the validation experiment for
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the dredge cut nesting model. Values of overlap and non-placement given are for 20

replications carried out, and are expressed as a percentage of total sheet area.

Table 6.1 Irregular nesting — Sheet to stencil area ratio 1:1

Tuning
Factor Overlap (% of Sheet Area) Non-placement (% of Sheet Area)
Parameter
/ Cost 1] a Min Max J a Min Max
3/3 36.14 4.91 27.62 43.32 36.16 4.92 27.63 43.35
3/4 9.77 2.59 6.88 16.57 9.77 2.60 6.89 16.58
3/5 5.17 1.26 3.38 8.35 5.17 1.26 3.37 8.34
3/6 7.00 1.93 4.26 10.96 7.00 1.93 4.26 10.96
3/7 7.23 2.61 3.73 12.82 7.23 2.62 3.74 12.83
3/8 6.67 2.05 3.02 11.16 6.67 2.05 3.03 11.16
4/3 36.84 4.10 27.29 45.64 36.85 4.10 27.31 45.66
4174 8.32 2.24 5.24 15.18 8.33 2.24 5.25 15.19
4/5 4.38 1.76 2.44 7.88 4.39 1.76 2.45 7.88
4/6 6.42 1.85 3.19 10.92 6.43 1.85 3.19 10.93
417 6.29 2.46 2.35 12.57 6.29 2.46 2.36 12.58
4/8 5.08 2.14 1.75 9.74 5.08 2.14 1.75 9.75
5/3 37.28 3.87 29.50 44.32 37.30 3.87 29.51 44.34
5/4 5.68 2.22 2.65 12.68 5.70 2.22 2.67 12.68
5/5 3.43 1.90 1.78 9.35 3.44 1.90 1.79 9.37
5/6 4.26 2.68 1.28 9.65 4.26 2.68 1.27 9.66
5/7 4.96 2.73 1.15 10.29 4.96 2.73 1.15 10.30
5/8 5.37 3.07 0.97 11.65 5.37 3.07 0.98 11.65
6/3 36.65 4.48 25.50 43.77 36.67 4.48 25.52 43.79
6/4 4.62 1.70 1.89 9.09 4.63 1.70 1.89 9.09
6/5 1.36 1.36 0.50 4.82 1.36 1.36 0.51 4.82
6/6 3.05 2.30 0.35 8.52 3.05 2.30 0.35 8.52
6/7 4.33 2.88 0.93 9.54 4.34 2.88 0.93 9.54
6/8 4.81 2.79 0.38 8.87 4.81 2.79 0.38 8.83
713 36.65 2.37 32.36 40.63 36.66 2.38 32.37 40.64
714 3.01 0.78 1.84 4.82 3.02 0.78 1.84 4.84
715 1.70 2.32 0.20 7.52 1.71 2.32 0.21 7.54
716 3.08 3.08 0.12 10.06 3.08 3.08 0.12 10.07
717 4.22 2.94 0.07 9.34 4.22 2.94 0.08 9.35
7/8 5.56 2.65 0.28 8.74 5.56 2.65 0.26 8.75
8/3 35.76 4.94 25.72 48.95 35.78 4.94 25.74 48.96
8/4 2.06 1.12 0.32 5.45 2.07 1.13 0.33 5.46
8/5 2.40 2.33 0.02 6.76 2.40 2.33 0.02 6.78
8/6 3.81 1.59 0 6.63 3.81 1.59 0 6.64
8/7 3.1 212 0 8.42 3.1 2.1 0 8.43
8/8 4.10 2.72 0 8.88 4.09 2.72 0 8.83
9/3 36.68 4.74 29.99 45.10 36.70 4.74 30.01 4511
9/4 1.24 0.83 0.54 4.20 1.25 0.83 0.54 4.22
9/5 2.38 2.43 0 5.77 2.38 2.44 0 5.83
9/6 4.11 2.36 0 7.31 4.11 2.36 0 7.31
9/7 3.70 2.61 0 8.79 3.69 2.61 0 8.77
9/8 4.18 2.43 0 7.62 4.16 2.42 0 7.60
10/3 35.41 3.36 28.04 41.44 35.42 3.36 28.08 41.45
10/4 0.83 0.67 0.27 2.99 0.84 0.67 0.28 3.01
10/5 2.33 2.76 0 7.33 2.34 2.77 0 7.33
10/6 3.14 2.81 0 8.53 3.14 2.81 0 8.55
10/7 4.39 2.80 0 8.89 4.38 2.80 0 8.90
10/8 4.55 3.72 0 11.99 4.53 3.71 0 11.99
11/3 35.08 4.91 27.32 45.77 35.10 4.91 27.35 45.78
11174 1.14 1.59 0.08 7.16 1.15 1.59 0.08 7.18
11/5 1.42 2.39 0 8.05 1.43 2.40 0 8.07
11/6 3.47 2.75 0 8.55 3.47 2.76 0 8.56
1177 3.54 3.25 0 11.50 3.53 3.25 0 11.53
11/8 5.60 3.18 0 10.57 5.58 3.18 0 10.54

Table 6.1 shows that on average the best final nests were obtained with a parameter

tuning factor of 10 and a cost tuning factor of 4. The relevant row in Table 6.1 is grey

scaled and minimum averages are given in bold text. As mentioned for the nest in Figure

6.1, Table 6.1 shows small differences in average values for overlap and non-placement

for each pair of control tuning factors. When escape is not allowed and the total stencil

area is equal to the sheet area, Equations 5.2 and 5.3 (see Section 5.2) are the same,
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and therefore areas of overlap and non-placement should be equal for every nest found.
In Table 6.1 this is not reflected. The differences in values for overlap and non-placement
are thought to be the result of the standard C-sharp methods used in the code of the
dredge cut nesting model to calculate areas of polygons. Yuping et al. (2005) reported
having used the Weiler algorithm (Weiler, 1980) for polygon comparison. To calculate
areas of polygons in the code of the dredge cut nesting model, corresponding regions
were filled with a limited number of non-overlapping rectangles with sides parallel to the
coordinate axes. Next, the area sum of these rectangles was calculated and taken as the
area of the polygon considered. Polygon edges, as shown in Figure 6.1, were not always
parallel to the coordinate axes and because the number of filling rectangles is limited,
polygons were not always completely covered. The incomplete coverage of polygon
regions is what must have caused errors in calculating overlap and non-placement areas,
in the order of the differences seen in Table 6.1. The average difference between
percentage values of overlap and non-placement observed was 0.008%, with a maximum
of 0.025% of the total sheet area. Figure 6.2 depicts an overview of average final costs of

overlap and non-placement expressed as percentages of total sheet area.

Parameter
Tuning Factor

% Final Cost/ Total Sheet Area
{Average For 20 Replications)

Cost
Tuning Factor

Figure 6.2 Overview irregular nesting results — Validation.
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Figure 6.2 shows that final costs are more sensitive to the value of the cost tuning factor
than to that of the parameter tuning factor. It also shows that using a cost tuning factor of
3 consistently resulted in the poorest final nest layouts, indicating a lack in annealing of
the acceptance function to below the threshold required for finding minima. Figure 6.2
shows that for a cost tuning factor of 4 a clear trend of improved final nest layouts was
observed up to a parameter tuning factor of 10, after which a slight increase in final costs
was observed for a parameter tuning factor of 11. None of the other cost tuning factors
used showed such a clear trend for different values of parameter tuning factors. The lack
of clearer trends can be the result of the limited number of replications (20 for each
experiment) that were carried out. Table 6.2 compares the best performing pair of tuning
factor values identified here with values used/recommended in literature (see Equations
3.33, 5.24 and 5.25).

Table 6.2 Adaptive Simulated Annealing settings for different applications

Variable Dredge Cut Nesting  Leather Nesting Signal Processing A.S.A. Theory
Validation (Yuping et al., 2005) (Chen et al., 1999) (Ingber, 2006)
Parameter Space
Dimensions 42 45 2and 4 42
Control Coefficient m; - An(1x10™%) - An(=1x107)
Control Coefficient n; - In(200) - In(100)
P ter Tuni
e or 10 61.40 [1,10] 10.32
Cost 4 61.40 [1,10] <10.32

Tuning Factor

Table 6.2 shows that values of parameter and cost tuning factors for which, on average,
the best nesting results were obtained here, fall within the theoretical ranges
recommended in Ingber (2006). If the values of the parameter and cost tuning factors
would have exceeded the values recommended in Ingber (2006) then the statistical
guarantee of finding global optima would have been lost because simulated quenching
would have been carried out instead. This could have been the case in the leather nesting
experiments carried out in Yuping et al. (2005) for which, as shown in Table 6.2, it is

thought a much higher value of 61.40 was used for the parameter and cost tuning factor.

Yuping et al. (2005) actually states having used a value of In(1x10°°) = -69.08 for the
control coefficient m; (see Equation 5.24). However, a negative value for the control
coefficient m; would lead to negative values of tuning factors (see Equation 3.33), in the
case of Yuping et al. (2005) minus 61.40, which in turn would give negative values of
rescaled annealing times for uneven parameter space dimensions (see Equation 3.35).
Negative annealing times will in turn cause an increase in annealing temperatures as the
solution process progresses (see Equation 3.32), therefore heating instead of annealing
the system. Since the leather nesting problem solved in Yuping et al. (2005) has 45

parameter space dimensions, an uneven number, it is thought that a value of plus 61.40
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was used for tuning factors instead, otherwise the nesting processes could not have
converged to global optima as reported in Yuping et al. (2005). If so, then it can be said
that in Yuping et al. (2005) the leather nesting problem was indeed solved by adaptive

simulated quenching instead of adaptive simulated annealing.

The parameter and cost tuning factor values of 10 and 4 which performed best here also
fall within the bounds recommended in Chen et al. (1999). When the default values for
control coefficients in Table 6.1 are used for parameter space dimensions of 2 and 4,
values for tuning factors of 1.15 and 3.64 are arrived at, respectively. Considering Figure
6.2, which shows poor results for a cost tuning factor of 3, it is thought the use of a cost
tuning factor of 1.15 for the nesting problem discussed here would have given equally

poor or worse results.

The difference in parameter space dimensions between problems solved here and in
Chen et al. (1999) was initially overlooked at the stage of experimental design: Originally,
only the use of parameter tuning factor values between 3 and 8 was foreseen, which
covered the majority of the range of 1 to 10 recommended in Chen et al. (1999). Further
to the perceived shortage of good quality final nests, as confirmed by visual inspection of
all final nests, additional experiments were carried out for parameter tuning factors 9, 10
and 11.

All 1,080 final nest layouts were inspected visually for nearness to global optima. The
criterion used was subjective, and was satisfied if it was thought that by further simulated
annealing or quenching the final nest observed was likely to converge to a nest with zero
overlap and zero non-placement. With the results of visual inspections it can be argued
that for parameter and cost tuning factor combinations of 6 /4,7 /4,8/4,9/4 and 10/ 4,
20 out of 20 final nest satisfy this subjective criterion. These tuning factor values are all
within the tuning factor value ranges required for finding global optima as recommended in
Ingber (2006). Figure 6.3 depicts the final nest with the highest final cost which was still
considered near-optimal, and which was found for a parameter and cost tuning factor

combination of 6 and 4.
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W

Figure 6.3 Sub-optimal nest — Irregular nesting — Validation.

The nest shown in Figure 6.3 has an overlap area and a non-placement area each equal
to 9.09% of the sheet area. Figure 6.4 depicts the best local minimum final nest found,
which has an overlap area equal to 2.63%, and a non-placement area equal to 2.57% of
the sheet area. Figures 6.3 and 6.4 illustrate the usefulness of visually inspecting final
nests: The final cost of the nest depicted in Figure 6.3 is approximately 4 times higher
than that of the nest depicted in Figure 6.4. However, the nest in Figure 6.4 was
considered a local minimum which is unlikely to converge to a nest with zero overlap and

zero non-placement after further simulated annealing or quenching.

Figure 6.4 Local minimum nest — Irregular nesting — Validation.

Table 6.1 also shows that the dredge cut nesting model is capable of arriving at final nests
which exhibit zero overlap and zero non-placement. Figure 6.5 shows the percentages of
20 final nests which exhibited zero overlap and zero non-placement and gives the
parameter and cost tuning factors with which they were arrived at.
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Figure 6.5 Percentages global minima — Validation.

Figure 6.5 shows that, out of a total of 1,080 nesting experiments carried out, only 39 of
the final nests found, exhibited zero overlap and non-placement, which equates to a
success rate of 3.61%. The highest percentage of 35% (7 out of 20) in Figure 6.5 was
observed for a parameter tuning factor of 11 and a cost tuning factor of 5. A tuning factor
value of 11 is greater than the maximum of 10.32 recommended in Ingber (2006), and
therefore the use of a tuning factor of 11 can be said to have compromised the ergodicity
of the adaptive simulated annealing-based solution process. Figure 6.6 depicts the first
final nest found with zero overlap and zero non placement, which was obtained with a

parameter tuning factor of 11 and a cost tuning factor of 5.

Figure 6.6 Global minimum nest — Irregular nesting — Validation.
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For the nesting problem discussed here, if the statistical guarantee of finding a global
optimum is to be maintained then values of tuning factors should not exceed those
recommended in Ingber (2006). However, results obtained here with values of tuning
factors which guarantee finding a global optimum and which satisfy the zero non-
placement constraint of the dredge cut nesting model (see Constraint 5.5), gave at most 5
satisfactory final nests out of 20 replications for the best performing pair of tuning factors,
or 22 satisfactory final nests out of a total of 980 experiments carried out. This equates to
a success rate of 2.24%. This success rate is lower than the 3.61% achieved when

simulated quenching of parameter temperatures is accepted.

It is thought that invalidating the guarantee of finding a global optimum by using a
parameter and cost tuning factor combination of 11 and 5 can be accepted for the nesting
problem solved here if finding a greater number of final nests which exhibit zero non-
placement is seen as important, in this case an increase of 10% (up from 5 to 7 out of 20).
Another reason for accepting the use of a value which goes against theory can be that it
was used as a tuning factor which influences parameter temperatures for stencil motion,
which, as seen in Figure 6.2, does not affect final costs as much as the value of the cost
tuning factor. For the nesting problem discussed here, more caution should be taken

when using cost tuning factor values which are outside the theoretical range.

Despite achieving low overall success rates, the global minima in Figure 6.5 validate the
dredge cut nesting model for the irregular nesting problem with 14 stencils taken from
Yuping et al. (2005). The fact that 7 of the global minima in Figure 6.5 were obtained with
a parameter tuning factor value outside the recommended upper bound highlights a
criticism often levelled at simulated annealing-based solution approaches. This criticism is
that in some instances simulated annealing can be a very poor algorithm to search for
global optima, which leads to simulated quenching-based solution approaches being
adopted instead (Ingber, 1993).

The low success rates of finding final nests with zero overlap and zero non-placement
obtained here suggest that the adaptive simulated annealing algorithm is not well suited to
searching for global optima of the irregular nesting problem discussed here. However, as
noted in Ingber (1993), to some extent the low success rates can be considered to have
been offset by the relative ease with which the dredge cut nesting problem was
approached and coded. In contrast to the 4,000 lines of code developed here to optimize
nesting problems, Heistermann et al. (1995) reports that the implementation of a heuristic
greedy algorithm to solve leather nesting problems for industrial use required 115,000
lines of code. Validation results for the dredger routing model are presented and

discussed next.
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6.2 Validation of Dredger Routing Model
Using Equations 5.19 and 5.20 for the 32 node routing problem, with a square grid

spacing of 50, the minimum route length is 1,550 and the minimum sum of turning angles
is 540 degrees. Figure 6.7 depicts a random route used as an initial solution at the start of
the routing optimization process. The route length and the sum of turning angles of the

route depicted in Figure 6.7 are 5,120.48 and 3,610.08 degrees, respectively.

"

Figure 6.7 Random initial route — Regular routing — Validation.

The initial route depicted in Figure 6.7 does not have any links, while for the 32 node
routing problem, with a square grid spacing of 50, the maximum link length is 350 and the
optimum number of maximum length links is 4 (see Equations 5.21 an 5.22). Table 6.3
reports the mean, y, standard deviation, o, and minimum and maximum of route attributes
for 20 final routes arrived at for local search, LS, values of 1 and 8 for the validation of the

dredger routing model on the 32 node square grid routing problem solved here.

Table 6.3 Regular Routing — 32 Nodes

LS J o] Min Max

—_

1,5655.61 17.90 1,550.00 1,620.71

Route
Length (m)

8 1,652.07 9.26 1,550.00 1,591.42

1 549.00° 27.70° 540.00° 630.00°

8 567.00° 120.75° 540.00° 1,080.00°

Sum Turning
Angles

1 334.21 35.86 214.29 350.00

Average Link
Length (m)

8 335.67 40.31 183.33 350.00
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For a local search of 1 each 32 node routing experiment of 99,999 base iterations on
average took 13.35 minutes to complete, whereas each experiment with 99,999 base
iterations and a local search of 8 on average took 17.23 minutes to complete. For a local
search of 1 the dredger routing model found final routes with optimum route lengths and
sums of turning angles 17 out of 20 times and for a local search of 8 it did so 19 out of 20
times. These results correspond with Koulamas et al. (1994) which, for a simulated
annealing-based solution approach, reported finding improved final tours of symmetric

travelling salesperson problems when local search was increased from 1 to 8.

Of the 17 final routes found with a local search of 1 which had optimal route lengths and
sums of turning angles, 16 also had 4 maximum length links, giving them an optimal
average link length of 350. Therefore, 16 out of 20 routes found with a local search of 1
were optimal dredger routes. Figure 6.8 depicts the first optimal dredger route arrived at
with a local search of 1 and the depicted route is identical to all other optimal dredger
routes found. It should be noted that they were identical because of the fixed starting

position.

Figure 6.8 Optimal route — Regular routing — Validation.

Figure 6.9 on the next page depicts the one final route found with a local search of 1
which had an optimal route length and sum of turning angles, but which only had 3
maximum link lengths. The optimal route in Figure 6.8 has an average link length of 350

whereas the near-optimal route in Figure 6.9 has an average link length of 290.
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Figure 6.9 Near-optimal route — Regular routing — Validation — Local search 1.

Figures 6.8 and 6.9 highlight the intended effect which the edge length reduction factor
(see Equation 5.23) has on the average link length of final routes. Without an edge
reduction factor the dredger routing model, given enough replications, would find final
routes like those depicted in Figures 6.8 and 6.9 in equal measure, but as an optimal

dredger route only routes like the one in Figure 6.8 should be accepted.

For a local search of 8, all of the 17 out of 20 routes found with optimal route lengths and
sums of turning angles were also found to have 4 maximum length links. For a local
search of 8 one exceptional final route was found, which had a sum of turning angles of
1,080.00 degrees, exactly double the optimum, and had an average link length of 183.33,

approximately half the optimum. Figure 6.10 depicts the relevant final route.

Figure 6.10 Sub-optimal route — Regular routing — Validation — Local search 8.

The final record of the optimization process leading to the final route depicted in Figure

6.10 shows that the best ever recorded route length and sum of turning angles were both
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optimal at some point. However, no record of the corresponding average link length
exists. It is reasonable to assume that increasing local search not only increases the
probability of finding better routes but also increases the probability of finding worse
routes with smaller cost differences from current routes. Therefore, as increasing the local
search from 1 to 8 increases probabilities of accepting worse routes, it can also increase

the probability of escaping from global minima.

In general, it is thought the final route depicted in Figure 6.10 resulted from having
escaped a global minimum with an optimum average link length. In particular, it is thought
a local search of 8 could have adversely affected the benefits normally experienced from
re-annealing events in the adaptive simulated annealing algorithm and have encouraged
the undesired escape from a global minimum. It has already been stated that increasing
local search increases probabilities of accepting better and worse states. When re-
annealing occurs the current solution cost is stored and used at the next annealing event
to rescale the acceptance temperature. Increased numbers of acceptances of better
states lead to more frequent re-annealing, especially in the early stages of the
optimization process when mostly better states are found, even more so with a local
search of 8. This in turn, after annealing, leads to reductions in the acceptance

temperature and therefore has a positive effect on the optimization process.

For this part of the experimentation re-annealing was carried out every 100 acceptances
of better states and after every 10,000 consecutive iterations during which no better state
was accepted. Annealing was carried out every 1,000 generated states, irrespective of the
number of better states accepted. Re-annealing based on generated states (caused by a
lack of acceptances of better states) does not tend to occur in the early stages of the
optimization process. Despite that no continuous records of annealing progress were
made for this part of the experimentation, it is thought that a re-annealing event triggered
at a very late stage of the solution process, which subsequently was not followed by
enough annealing events, played a significant part in arriving at the sub-optimal final route
depicted in Figure 6.10. The use of a local search of 8 made finding such a final route

more likely than when a local search of 1 was used.

Overall the results presented in this section validate the dredger routing model for 32 node
continuous square grid routing problems of rectangular shape. The majority of final routes
found were optimal dredger routes with optimal average link lengths. With a local search
of 1 a success rate of 80% was achieved and with a local search of 8 this rate increased
to 85%. Results of experiments with nesting problems of increased complexity are
presented next, starting with results obtained for nesting problems with relaxed inner

sheet boundaries.
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6.3 Dredge Cut Nesting — Relaxed Sheet Boundaries

Experimental results obtained from the application of the dredge cut nesting model to
irregular nesting problems with increasing numbers of relaxed sheet boundaries are
presented in Tables 6.4, 6.5 and 6.6, which report the mean, y, standard deviation, o, and
minimum and maximum of values of escape, overlap and non-placement for 20
replications carried out for each pair of tuning factors. Escape, overlap and non-placement

are expressed as a percentage of the total inner sheet area used.

Table 6.4 Irregular nesting — 1 Relaxed sheet boundary

Tuning
Factor Escape (% of Sheet Area) Overlap (% of Sheet Area) Non-placement (% of Sheet Area)
Parameter
/ Cost 1] a Min Max 1] a Min Max y g Min Max
3/3 8.79 4.75 1.28 1725 2984 585 19.39  40.64 38.66 3.73 31.73 45.38
3/4 1.21 0.87  0.09 3.38 10.31 2.44 6.82 15.94 11.53 243 7.82 18.04
3/5 0.99 0.95 0.02 3.58 6.70 1.71 4.08 10.44 7.69 1.60 5.39 10.86
3/6 1.29 1.05 0.08 3.39 7.37 1.82 4.52 10.99 8.66 1.66 5.81 12.06
3/7 0.78 0.74  0.03 3.07 7.80 2.15 3.28 11.23 8.58 2.07 4.52 11.54
3/8 1.59 1.10  0.01 3.93 7.76 1.62 4.11 10.17 9.36 1.48 6.48 12.10
4/3 7.89 3.63 1.16 15.59 29.21 5.89 17.74 43.21 3712 6.05 27.80 56.48
4/4 0.87 0.77  0.05 3.15 9.09 2.40 4.96 14.05 9.96 2.63 5.97 15.07
4/5 0.81 0.65 0.12 2.92 4.98 1.92 243 9.55 5.80 2.04 2.74 11.16
4/6 0.80 1.18  0.01 4.37 6.66 1.93 3.45 10.09 7.47 2.34 3.60 13.07
417 1.58 1.13  0.02 3.91 5.38 1.66 2.63 8.94 6.96 1.97 3.25 10.14
4/8 1.49 1.20  0.01 4.61 6.26 2.40 2.40 10.30 7.76 2.20 3.31 10.81
5/3 7.58 553 041 20.91 30.56  6.51 20.42 38.24 38.15 473 27.75 44.04
5/4 1.31 1.40 0.03 5.01 6.98 2.08 3.03 11.75 8.30 242 3.70 12.26
5/5 0.48 0.90 0 3.77 3.60 1.33 2.09 6.46 4.08 1.40 2.16 6.46
5/6 0.76 1.03  0.06 3.13 4.95 2.25 1.28 9.42 5.72 2.41 1.88 9.65
517 1.50 1.29  0.02 3.27 4.58 2.00 1.24 9.59 6.08 1.81 2.29 9.62
5/8 1.67 1.28 0 4.87 5.54 1.96 1.52 8.32 7.22 2.37 1.74 10.47
6/3 8.79 5.07 0.22 17.83 30.79  5.61 19.33  40.40 39.60 3.99 2882 48.26
6/4 0.55 0.54 0 2.1 6.44 2.71 3.39 12.35 7.00 3.03 3.58 14.47
6/5 0.59 0.80 0.03 3.15 2.85 2.13 0.73 9.10 3.45 2.46 0.77 10.15
6/6 1.06 1.13  0.02 3.52 3.25 2.57 0.42 7.26 4.31 277 0.64 9.03
6/7 1.38 1.24 0 3.34 5.56 2.26 1.07 9.1 6.95 2.05 1.08 9.75
6/8 0.92 1.01 0.04 3.08 5.10 2.87 0.43 9.11 6.02 3.11 0.50 11.03
713 9.14 5.07 3.22 19.55 30.54 435 19.42 38.34 39.70 4.31 31.30 47.01
714 0.30 0.20 0.03 0.66 3.68 2.03 1.75 11.28 3.99 2.06 1.93 11.75
715 0.26 0.53 0 2.29 1.85 1.98 0.23 6.73 2.1 2.13 0.35 7.42
716 0.64 0.97 0 3.14 2.85 2.29 0.10 7.22 3.49 2.66 0.23 7.50
717 0.99 1.03 0 3.09 4.16 2.64 0.12 8.02 5.16 2.70 0.30 8.98
7/8 1.47 1.27 0 3.22 3.92 2.69 0.17 9.74 5.38 2.37 0.17 10.19
8/3 9.34 5.47 1.37  20.98 29.21 458 2246 36.88 38.57 3.98 31.54 47.77
8/4 0.33 0.59  0.03 2.77 2.68 1.68 1.33 9.15 3.03 2.23 1.37 11.95
8/5 0.54 0.96 0 3.25 2.32 2.37 0.14 6.66 2.87 2.49 0.18 7.22
8/6 0.93 1.32 0 3.15 2.40 2.25 0.01 7.45 3.33 2.05 0.01 7.52
817 1.35 1.67 0 5.87 5.21 2.75 0.06 10.85 6.56 2.71 0.06 10.85
8/8 0.96 1.18 0 3.47 4.88 2.57 0.05 8.68 5.83 2.45 0.08 9.06
9/3 7.78 3.90 1.66 15.16 29.40 499 21.76 38.76 3720 3.39 3143 44.36
9/4 0.20 0.25 0 1.09 2.13 2.12 0.38 8.83 2.35 2.31 0.41 9.32
9/5 0.77 1.17 0 3.10 2.24 1.89 0.03 5.95 3.01 2.03 0.03 7.28
9/6 0.48 0.82 0 3.1 3.72 2.35 0.12 7.97 4.21 249 0.12 8.04
917 0.22 0.49 0 1.91 4.08 3.17 0 9.78 4.30 3.35 0 9.90
9/8 1.09 1.21 0 3.45 4.72 2.09 0.03 8.15 5.79 2.26 0.03 9.04
10/3 10.60 6.48 2.71 25.68 2799 548 16.14 38.26 38.61 558 2391 47.15
10/4 0.19 0.28 0 0.94 2.78 3.43 0.73 10.28 2.99 3.68 0.75 11.24
10/5 0.56 0.87 0 3.16 3.12 3.1 0 8.64 3.69 3.43 0 10.08
10/6 0.97 1.42 0 5.08 4.56 2.02 0.29 9.60 5.53 2.29 3.1 10.71
10/7 0.64 1.15 0 3.14 4.78 2.83 0 10.07 5.41 2.65 0.01 10.16
10/8 0.64 0.93 0 3.12 3.55 2.61 0 7.74 4.16 2.68 0 7.98
11/3 9.45 577 046  23.74 29.79  5.58 18.58 39.91 39.26 519 31.21 5047
11174 0.27 0.62 0 2.62 1.73 2.47 0.16 7.83 2.02 2.90 0.20 8.32
11175 0.90 1.28 0 3.54 3.20 2.74 0 9.60 4.11 2.87 0 10.49
111/6 1.13 1.32 0 3.13 2.28 2.24 0 6.10 3.42 2.35 0 6.60
1177 1.13 1.28 0 3.80 5.02 2.02 2.30 9.62 6.13 2.21 2.88 9.87
11/8 1.43 1.27 0 3.13 4.15 2.43 0.03 8.86 5.55 2.03 3.10 9.28
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Table 6.4 shows that on average, for one relaxed sheet boundary, the best final nests with
minimum non-placement — the most important decision variable for dredging — were
obtained with a parameter tuning factor of 11 and a cost tuning factor of 4. The relevant
row in Table 6.4 is grey scaled and minimum averages for all three decision variables are
given in bold text. Before summarizing results, results of nesting experiments with two

relaxed inner sheet boundaries are given in Table 6.5.

Table 6.5 Irregular nesting — 2 Relaxed sheet boundaries

Tuning
Factor Escape (% of Sheet Area) Overlap (% of Sheet Area) Non-placement (% of Sheet Area)
Parameter
/ Cost 1] g Min Max y g Min Max y g Min Max
3/3 16.01 3.93 10.81 2397 22.08 5.02 14.04  30.19 38.11 442 30.76  46.10
3/4 3.54 1.66 2.31 9.75 10.33  2.49 5.11 14.99 13.88  2.60 7.71 18.87
3/5 2.59 1.1 1.18 4.59 5.85 1.14 3.64 8.41 8.45 1.57 5.40 10.57
3/6 2.65 1.34 0.57 5.78 6.20 1.31 3.72 8.20 8.85 1.77 5.42 11.86
317 3.28 1.18 0.98 5.57 6.64 0.84 4.29 8.09 9.92 1.33 7.34 12.86
3/8 3.18 0.96 1.48 5.55 6.74 0.90 5.04 8.53 9.91 1.13 7.56 11.60
4/3 16.01 5.60 6.40 2549 2156 5.20 12.64  30.18 37.59 461 28.79  47.57
4/4 2.82 1.48 0.97 6.76 7.68 2.61 3.52 13.23 10.51 3.24 4.88 15.74
4/5 1.82 0.81 0.58 3.78 4.66 1.52 2.55 7.33 6.49 1.99 3.49 9.21
4/6 2.80 0.98 1.19 4.25 5.45 1.96 3.05 9.37 8.25 2.4 4.53 13.41
417 2.44 0.90 0.78 3.38 5.40 1.51 2.46 8.24 7.85 1.68 4.57 9.90
4/8 3.00 1.49 0.69 6.38 4.64 1.91 1.25 7.68 7.64 2.69 2.91 11.93
5/3 15.64 5.28 5.27 2548 2233 5.48 1270  31.40 3799 427 2999 4573
5/4 341 1.39 0.73 6.34 7.24 2.31 3.54 11.10 10.66  3.09 5.83 16.13
5/5 1.56 1.04 0.38 3.77 3.74 1.82 1.18 7.05 5.30 2.40 1.63 10.82
5/6 1.83 1.23 0.50 4.50 3.90 1.98 1.02 8.29 5.74 1.77 1.99 8.78
517 1.69 1.23 0.14 4.00 3.58 1.72 1.26 6.90 5.28 2.31 2.18 8.93
5/8 2.29 1.66 0.18 5.62 4.11 1.60 1.12 7.78 6.40 2.57 1.65 9.82
6/3 13.68  4.47 5.82 2224 2324 6.08 13.69  41.49 36.94 565 29.32 50.83
6/4 1.62 0.86 0.29 3.14 5.28 2.23 1.99 10.28 6.92 2.60 3.44 13.09
6/5 1.64 1.61 0.10 4.97 3.05 1.61 0.92 6.74 4.69 2.34 1.09 8.39
6/6 1.32 1.07 0.12 3.59 3.59 2.04 0.50 7.20 4.91 2.72 0.77 9.06
6/7 1.75 1.26 0.13 3.66 3.16 1.53 0.54 5.92 4.91 1.82 1.05 7.29
6/8 1.85 1.14 0.18 3.57 4.20 2.32 0.51 9.09 6.05 2.83 0.80 10.64
713 1712 6.31 6.19 3246 2048 5.26 8.13 30.87 37.63 508 2547 4455
714 1.12 0.51 0.32 1.97 3.45 1.35 1.45 7.28 4.59 1.52 2.70 8.84
715 0.88 0.72 0.05 2.20 2.80 2.07 0.32 6.53 3.69 2.43 0.63 7.26
716 1.83 1.27 0.07 3.90 3.16 1.91 0.47 6.16 4.99 2.31 0.59 7.47
717 1.83 1.48 0.06 4.42 3.91 2.53 0.28 8.04 5.74 3.24 0.36 10.14
718 1.67 1.42 0.02 5.28 3.38 1.59 0.59 6.47 5.06 1.89 0.73 9.03
8/3 14.02 484 0.97 2249 2324 4.87 14.45  32.93 37.28 463 3012 47.99
8/4 1.42 0.98 0.29 3.39 3.69 2.28 1.30 10.42 5.13 3.06 1.96 13.80
8/5 0.78 1.02 0.02 4.26 2.08 1.67 0.18 4.79 2.87 2.32 0.28 8.79
8/6 1.21 1.14 0 3.46 2.87 1.69 0.09 6.19 4.08 2.18 0.11 7.55
817 1.37 1.33 0 3.91 3.22 1.61 0.03 5.94 4.59 2.03 0.09 8.33
8/8 1.47 1.12 0.04 3.41 3.59 1.93 0.06 8.83 5.05 1.90 2.89 9.31
9/3 16.19 5.64 5.63 2456 2156 5.42 13.40  35.17 37.77 276 3254 43.67
9/4 1.30 1.1 0.27 4.38 2.91 2.03 0.53 8.97 4.22 2.78 1.22 10.62
9/5 1.03 1.18 0 4.55 2.72 2.16 0.02 6.80 3.76 2.95 0.07 8.31
9/6 1.35 1.34 0 4.21 3.01 1.94 0.04 6.20 4.37 2.30 0.06 7.30
917 2.43 1.72 0 6.59 4.33 2.01 0 6.43 6.76 2.87 0 10.40
9/8 2.58 1.51 0 4.77 3.02 2.02 0 6.99 5.58 2.71 0 10.01
10/3 1422 552 5.09 2280 2223 5.52 14.96  32.10 36.47 342 2564 41.28
10/4 1.53 1.75 0 5.63 11.89 272 7.36 18.42 13.43  3.17 742  20.31
10/5 0.58 0.86 0 3.12 7.60 1.27 5.88 10.45 8.20 1.52 6.14 11.29
10/6 0.58 0.61 0 1.73 8.34 1.78 5.03 12.81 8.93 1.70 6.21 12.82
10177 1.53 1.21 0 3.87 8.37 1.30 6.12 10.59 9.91 1.67 7.19 12.77
10/8 0.96 0.94 0 3.07 8.91 2.39 4.87 13.84 9.86 2.16 5.88 13.82
11/3 1553  6.57 5.75 29.03 2221 6.39 12.84  31.91 37.76  6.61 28.17  52.83
11174 2.03 2.01 0.06 6.51 10.17  1.81 7.92 14.31 1222 2.37 8.86 16.45
111/5 0.89 1.15 0 3.67 7.89 1.44 4.84 9.91 8.80 1.56 5.51 11.01
11/6 0.99 1.20 0 3.20 7.77 1.95 4.47 12.07 8.77 1.98 5.11 12.08
11717 1.30 1.09 0 4.02 8.44 2.10 6.03 15.04 9.73 1.95 6.21 15.61
11/8 1.63 1.76 0 5.55 8.38 1.91 5.14 11.92 10.01 1.75 6.88 13.69

Table 6.5 shows that on average, for two relaxed sheet boundaries, the best final nests
with minimum non-placement were obtained with a parameter tuning factor of 8 and a cost
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tuning factor of 5. Table 6.6 gives the results of nesting experiments with three relaxed

inner sheet boundaries.

Table 6.6 Irregular nesting — 3 Relaxed sheet boundaries

Tuning
Factor Escape (% of Sheet Area) Overlap (% of Sheet Area) Non-placement (% of Sheet Area)
Parameter
/ Cost 1] g Min Max y g Min Max y g Min Max
3/3 19.61 6.15 12.40 35.59 18.59  5.02 9.83 28.07 38.22 6.21 2514 48.04
3/4 4.70 217 1.79 9.38 9.56 2.32 5.49 14.70 14.27 3.17 8.18 21.73
3/5 3.31 1.02 1.05 5.67 5.62 1.76 2.92 9.58 8.93 2.03 5.79 12.64
3/6 3.59 1.27 1.24 6.17 6.54 1.32 4.67 9.81 10.13 1.21 7.35 12.06
3/7 3.77 1.16 1.78 5.71 6.08 1.16 272 7.56 9.85 1.62 5.28 12.44
3/8 4.56 1.40 1.45 7.27 5.84 1.32 3.39 9.32 10.40 1.65 5.94 13.41
4/3 17.87 6.74 7.90 41.95 18.16  4.50 9.70 26.61 36.05 553 29.16 54.52
4/4 4.13 1.68 1.83 8.74 8.47 2.01 3.85 12.56 12.61 1.90 9.27 15.87
4/5 2.07 0.74 0.73 3.43 4.52 1.18 2.52 6.27 6.60 1.74 3.70 9.06
4/6 3.19 1.42 1.26 6.63 5.14 1.41 2.77 8.54 8.33 1.87 4.31 11.36
417 3.16 1.62 0.80 6.42 4.85 1.69 2.21 7.67 8.01 2.05 3.44 10.39
4/8 2.89 1.25 0.91 5.11 5.43 1.49 2.23 8.32 8.33 1.92 4.36 11.92
5/3 20.88 5.98 11.30 34.52 16.68  5.07 10.87 30.19 3758 423 30.75 48.11
5/4 4.24 2.35 1.45 11.01 7.43 1.78 3.75 11.34 11.67 3.33 6.10 18.76
5/5 1.98 1.10 0.27 4.04 3.57 1.30 1.72 6.09 5.55 2.02 2.53 9.17
5/6 2.32 1.37 0.24 5.93 3.03 1.29 1.06 5.25 5.36 2.16 2.19 9.60
517 2.32 1.28 0.65 4.81 4.23 1.41 1.24 7.00 6.55 2.03 2.46 9.40
5/8 3.28 1.76 0.90 7.48 4.48 1.95 0.81 9.12 7.77 2.18 2.08 11.40
6/3 18.97 6.15 10.82 36.21 19.52  4.57 9.48 26.28 38.51 3.68 3261 45.71
6/4 2.93 1.14 0.87 5.78 5.82 1.58 3.39 9.48 8.77 2.29 4.71 13.20
6/5 1.42 0.91 0.16 3.39 3.27 1.97 0.78 6.86 4.69 2.79 1.21 9.33
6/6 2.01 1.39 0.31 5.11 2.97 1.44 0.70 4.70 4.98 2.27 1.01 7.76
6/7 2.35 1.73 0.31 5.91 3.48 1.94 0.80 6.39 5.83 3.07 1.33 9.95
6/8 3.10 1.74 0.09 6.41 4.44 1.46 0.73 7.60 7.54 2.12 1.07 10.28
713 18.63 3.67 13.44 24.64 17.53 415 10.57 27.68 36.18 4.75 2879 46.63
714 2.42 1.07 0.74 4.37 4.80 1.89 1.79 8.42 7.24 2.71 2.83 12.31
715 1.30 1.04 0.17 3.43 2.61 1.87 0.43 7.58 3.92 2.37 0.71 9.12
716 1.90 1.40 0.14 4.07 2.95 1.93 0.25 5.90 4.86 2.74 0.43 8.12
717 1.83 1.58 0.06 6.78 3.66 2.32 0.29 7.86 5.50 2.99 0.40 9.98
7/8 1.58 1.07 0.06 3.53 4.47 1.72 0.65 7.29 6.05 1.84 3.11 9.72
8/3 19.23 6.81 10.11 33.64 18.03  4.45 9.65 25.71 37.28 5.54  29.57 4817
8/4 2.06 1.39 0.57 6.26 3.93 2.18 1.30 9.08 6.01 3.48 2.36 15.37
8/5 1.45 1.18 0.06 4.53 3.04 1.81 0.20 5.97 4.49 2.45 0.40 7.40
8/6 1.45 1.15 0.05 3.77 3.06 1.81 0.28 6.48 4.52 2.38 0.42 9.19
817 2.48 1.70 0 6.64 3.04 2.13 0.07 7.15 5.51 2.56 0.11 8.94
8/8 2.35 1.24 0.28 4.48 3.94 1.10 2.21 6.00 6.28 1.59 3.43 8.42
9/3 21.21 6.74 9.63 40.52 15.09 4.45 453 23.06 36.32 437 2855 45.05
9/4 1.53 1.03 0.48 3.66 3.64 2.28 1.35 8.31 5.19 3.12 2.04 11.20
9/5 1.39 1.21 0.02 4.34 2.87 1.99 0.02 5.87 4.27 2.85 0.05 8.60
9/6 1.70 1.24 0.04 3.32 3.38 2.24 0.15 6.66 5.09 2.70 0.19 9.55
917 2.03 1.58 0 4.52 3.83 1.95 0.01 7.53 5.85 2.66 0.08 9.47
9/8 1.69 1.14 0.02 3.79 3.83 1.96 0.11 8.92 5.51 2.27 0.10 11.34
10/3 19.84 6.31 10.11 33.14 17.35 3.53 11.12 24.45 37.21 515  28.25 47.72
10/4 1.65 1.63 0.18 5.51 3.09 2.24 0.68 8.80 4.76 3.73 1.03 14.33
10/5 1.14 1.20 0 3.90 2.92 2.28 0.02 6.48 4.07 3.15 0.02 9.03
10/6 2.38 1.40 0 4.33 2.81 1.84 0 6.06 5.19 2.47 0 8.52
10/7 2.29 1.58 0 4.94 3.45 2.40 0.04 7.58 5.73 2.59 0.04 9.78
10/8 2.49 1.43 0 4.46 3.50 1.54 0.80 6.87 5.97 2.36 2.89 10.47
11/3 19.80 6.69 12.42 41.67 17.69 4.73 12.22 28.85 37.51 6.35 28.12 5527
111/4 1.1 1.19 0.09 4.09 2.63 2.26 0.47 7.93 3.75 3.16 0.61 12.04
11/5 1.56 1.04 0 3.34 3.50 2.09 0.02 6.91 5.08 2.1 0.02 8.82
11/6 1.83 1.13 0 4.24 3.95 1.59 0 5.94 5.78 2.04 0 8.68
1117 2.74 1.40 0.24 5.06 3.70 1.87 0.01 6.98 6.43 2.10 2.64 10.18
11/8 2.70 1.58 0.02 6.26 4.31 1.77 0.05 7.27 6.98 2.23 0.06 9.38

Table 6.6 shows that on average, for a sheet with three relaxed boundaries, the best final

nests with minimum non-placement were obtained with a parameter tuning factor of 11

and a cost tuning factor of 4. Overall average solution quality in Tables 6.4 and 6.5 is

worse than in Table 6.1. Figure 6.11 summarizes average final costs consisting of

average final overlap and non-placement costs expressed as percentages of the total

inner sheet area used.
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Figure 6.11 Overview irregular nesting results — Relaxed sheet boundaries.

Figure 6.11 shows that the worst final nests for all sheet arrangements were found for a

cost tuning factor of 3, and that (for all tuning factor values used) the overall average

solution quality for 0, 1, 2, and 3 relaxed sheet boundaries, respectively, was 19.03,

19.79, 20.38, and 18.25. Therefore it can be said that increasing the number of relaxed

sheet boundaries up to 2 reduced the overall solution quality of final nests in comparison

to a sheet with fixed boundaries where no escape was allowed. The minimum overall

average solution quality was found for three relaxed sheet boundaries. However, the

minimum average final cost of 1.7 was found for a sheet with fixed boundaries. It should

be noted that cost penalties for escape, overlap and non-placement were all set to unity
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for this part of the experimentation. Table 6.7 gives minimum averages of overlap and
non-placement obtained for the irregular nesting problem with varying numbers of relaxed

sheet boundaries.

Table 6.7 Minimum averages irregular nesting — Relaxed sheet boundaries

Relaxed Sheet Minimum Average Overlap Minimum Average Non-placement
Boundaries (% of Sheet Area) (% of Sheet Area)
0 0.83 0.84
1 1.73 2.02
2 2.08 2.87
3 2.61" 3.75"

Note: 1) Not obtained with same combination of parameter and cost control tuning factors.

Table 6.7 shows that an increase in the number of relaxed sheet boundaries increased
average minima of overlap and non-placement for the irregular nesting problems solved,
all of which have sheet to stencil area ratio of 1:1. Figure 6.12 shows percentages of 20
final nests which exhibited zero overlap and zero non-placement and the parameter and
cost tuning factors with which they were arrived at. Note that Figure 6.12 shows that no

such final nests were found for two relaxed sheet boundaries.

25% 1

One Relaxed Sheet Boundary Three Relaxed Sheet Boundaries

20%

20% -

15% 15% 15%
15% -

10%
10% -

5% 5%
5% A

% Solutions with Zero Overlap and Non-Placement
(Out of 20 Replications for each combination of tuning factors)

0%

9/7 10/5 10/8 11/5 11/6 10/6 11/6
Parameter / Cost Tuning Factor Combination

Figure 6.12 Percentages global minima — Relaxed sheet boundaries.
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A comparison of Figures 6.5 and 6.12 further confirms that relaxing sheet boundaries
increased the difficulty of finding global optima with zero overlap and zero non-placement
with the dredge cut nesting model for irregular nesting problems with a sheet to stencil
area ratio of 1:1 and decision variable penalties all set to unity. Figure 6.12 shows that out
of a total of 3,240 nesting experiments carried out only 17 of the final nests found,
exhibited zero overlap and non-placement, which equates to an average overall success
rate of 0.52%, down from 3.61% for the 39 global optima found out of 1,080 experiments
with a sheet with fixed boundaries. The highest percentage of 20% (4 out of 20) in Figure
6.12 was observed for a parameter tuning factor of 11 and a cost tuning factor of 5. A
tuning factor value of 11 is greater than the maximum of 10.32 recommended in Ingber
(2006), and therefore it can be said again that the use of a tuning factor of 11 may have
compromised the ergodicity of the adaptive simulated annealing-based solution process.
Most notably, no global optimum final nests were found for a sheet with two relaxed
boundaries. Figure 6.13 depicts the best final nest for two relaxed sheet boundaries which

was found with parameter and cost tuning factors 9 and 7, respectively.

Figure 6.13 Best nest — 2 Relaxed sheet boundaries.

The final nest in Figure 6.13 has an overlap area and a non-placement area each equal to
0.000031% of the inner sheet area. The graphical representation of the final nest shown in
Figure 6.13 appears optimal. However, since the dredge cut nesting model found a
multiple of final nests with zero overlap and zero non-placement for other sheet
arrangements the minimal values of overlap and non-placement themselves are not
thought to be the result of calculation error, and therefore the nest in Figure 6.13 has to be
considered near-optimal. Results of nesting experiments with two relaxed sheet

boundaries and reduced sheet areas are presented and discussed next.
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6.4 Dredge Cut Nesting — Reduced Sheet Areas

Experimental results obtained from the application of the dredge cut nesting model to

irregular nesting problems with two relaxed sheet boundaries and reduced sheet areas

are presented in Tables 6.8, 6.9, 6.10 and 6.11, which report the mean, y, standard

deviation, o, and minimum and maximum of values of overlap and non-placement for 20

replications carried out for each pair of tuning factors. Overlap and non-placement are

expressed as a percentage of the total inner sheet area used. Escape penalties were zero

for this part of the experimentation and thus escape is excluded from these tables.

Table 6.8 Irregular nesting — Sheet to stencil area ratio 1:1.1

Tuning
Factor Overlap (% of Sheet Area) Non-placement (% of Sheet Area)
Parameter
/ Cost 1] a Min Max y a Min Max
3/3 13.05 4.06 4.92 20.72 41.14 5.28 28.29 47.62
3/4 3.39 1.1 2.00 6.38 16.18 3.62 11.01 23.85
3/5 2.98 1.02 1.02 4.89 10.52 1.66 6.60 13.34
3/6 2.41 0.95 1.07 4.52 13.20 3.12 8.20 18.47
317 2.58 0.83 1.28 3.97 14.34 2.32 10.73 19.96
3/8 2.29 0.91 0.90 4.34 14.66 2.97 6.37 18.43
4/3 12.09 4.36 4.56 21.44 39.54 5.16 32.47 54.70
4/4 3.05 1.52 0.86 6.82 13.06 4.38 7.51 23.10
415 2.37 1.1 0.77 4.29 10.16 1.52 7.76 13.10
4/6 2.14 1.03 0.76 4.41 11.67 2.35 7.87 16.12
417 2.04 0.74 0.36 3.55 12.31 2.04 7.04 15.87
4/8 1.71 0.75 0.73 3.28 13.98 2.34 9.89 19.27
5/3 10.69 4.05 5.23 21.98 39.85 5.90 28.75 58.46
5/4 2.81 1.24 0.81 5.20 12.97 4.93 5.58 23.58
5/5 2.02 1.03 0.35 3.91 8.24 2.39 4.22 13.65
5/6 1.87 0.52 1.01 3.06 8.93 2.44 5.09 13.95
5/7 1.91 1.10 0.77 5.63 10.53 2.63 5.88 15.56
5/8 1.65 0.72 0.59 3.04 12.31 2.62 8.51 16.55
6/3 12.31 4.27 6.01 19.09 38.07 4.61 30.10 44.99
6/4 2.60 1.21 0.73 4.79 11.42 3.85 5.64 18.33
6/5 1.67 1.16 0.12 3.84 7.76 2.32 4.88 13.80
6/6 1.41 0.65 0.39 3.06 9.12 2.60 4.28 14.98
6/7 1.55 0.65 0.59 3.00 9.42 2.50 4.81 14.28
6/8 1.60 0.72 0.39 2.74 11.30 2.37 7.31 16.34
713 12.77 5.46 6.49 30.17 40.89 5.35 30.41 48.60
714 2.55 1.13 0.67 4.88 11.73 4.34 4.88 20.41
715 1.67 0.95 0.29 3.63 7.43 3.02 0.86 15.54
716 1.63 0.87 0.23 3.04 8.64 2.69 3.79 13.89
717 0.95 0.55 0.11 2.23 9.29 2.06 6.48 14.26
718 1.41 0.83 0.28 3.23 9.02 2.63 3.61 14.06
8/3 12.98 5.07 4.33 24.19 41.63 4.92 34.83 50.16
8/4 2.26 0.94 0.82 4.06 10.65 4.34 3.86 22.61
8/5 1.43 0.82 0.17 2.79 6.12 2.84 0.33 11.71
8/6 1.53 0.75 0.26 2.60 9.16 2.44 4.73 15.48
817 1.61 0.80 0.14 3.52 9.17 2.99 4.84 16.05
8/8 1.33 1.04 0.01 4.43 8.88 3.54 2.41 15.88
9/3 11.48 3.90 5.43 20.59 37.00 6.91 23.94 52.68
9/4 2.38 1.08 0.45 4.22 9.50 4.82 1.35 18.79
9/5 1.96 1.38 0.07 3.97 5.34 3.12 0.26 11.20
9/6 1.45 0.82 0.10 3.75 8.32 2.80 2.18 12.40
9/7 1.28 0.77 0.02 2.55 10.57 2.56 6.89 16.54
9/8 1.34 0.63 0.36 2.91 10.63 2.49 5.89 15.51
10/3 12.61 4.38 5.42 21.34 38.03 6.06 29.13 50.50
10/4 2.42 1.45 1.04 6.65 9.29 4.04 4.02 19.56
10/5 1.46 1.13 0 3.53 5.39 3.01 0.25 10.34
10/6 1.68 1.18 0.01 4.18 6.93 2.63 0.07 11.88
10/7 1.52 0.70 0.20 2.67 9.50 2.83 4.10 15.82
10/8 1.33 0.78 0.10 2.55 9.81 2.40 3.58 13.68
11/3 12.39 3.87 6.17 21.74 39.64 4.41 29.86 47.69
11/4 2.65 0.93 1.33 4.50 11.06 4.52 2.94 19.01
11/5 1.64 0.95 0.08 3.22 7.31 3.23 2.02 14.42
11/6 1.24 0.92 0.01 2.64 8.24 3.33 2.81 14.15
1/7 1.75 1.00 0 3.54 8.74 2.69 2.79 12.96
11/8 1.63 1.01 0.32 4.61 10.63 2.82 4.74 15.21
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Table 6.8 shows that on average, for a sheet to stencil area ratio of 1:1.1, the best final

nests with minimum non-placement — the most important decision variable for dredging —

were obtained with a parameter tuning factor of 10 and a cost tuning factor of 5. The
relevant row in Table 6.8 is grey scaled and minimum averages for overlap and non-
placement are given in bold text. Before summarizing results, results of nesting

experiments with a sheet to stencil area ratio of 1:1.2 are given in Table 6.9.

Table 6.9 Irregular nesting — Sheet to stencil area ratio 1:1.2

Tuning
Factor Overlap (% of Sheet Area) Non-placement (% of Sheet Area)
Parameter
/ Cost 1] a Min Max y a Min Max
3/3 10.63 4.70 2.98 20.67 35.57 5.31 25.48 46.49
3/4 3.41 1.21 1.33 5.81 14.63 4.42 7.83 25.05
3/5 2.89 0.96 1.24 4.54 11.79 1.86 9.36 15.36
3/6 3.08 1.19 1.68 6.11 12.43 2.53 7.54 15.96
3/7 2.69 1.28 0.58 4.63 12.40 1.94 8.66 15.06
3/8 2.70 1.38 0.57 6.30 13.18 2.92 5.46 17.63
4/3 11.74 4.29 6.51 20.35 35.33 6.57 23.93 46.94
474 3.19 1.54 1.43 6.56 11.32 4.42 6.75 21.72
4/5 2.36 0.99 0.60 4.20 9.60 1.99 6.47 13.29
4/6 2.04 0.82 0.53 3.83 11.09 3.33 5.67 18.55
417 2.16 0.96 1.05 4.78 11.75 3.12 7.34 17.94
4/8 2.25 1.15 0.39 4.22 12.10 2.48 8.62 16.39
5/3 11.85 4.82 6.47 20.96 41.01 7.48 28.28 52.93
5/4 2.74 1.44 0.55 5.88 10.02 3.29 5.63 16.49
5/5 1.97 0.80 0.66 3.34 9.13 2.16 4.50 12.50
5/6 1.56 0.59 0.54 2.33 8.19 2.07 4.36 11.68
5/7 2.20 0.67 0.83 3.34 10.73 2.53 5.60 16.01
5/8 2.05 0.82 0.90 3.60 11.28 2.93 6.92 19.22
6/3 11.75 5.37 5.08 24.00 34.18 5.07 25.86 42.38
6/4 2.23 1.19 0.96 5.70 9.52 5.18 2.67 20.84
6/5 1.63 1.10 0.12 3.66 6.59 2.79 2.85 12.51
6/6 1.80 0.81 0.56 3.51 8.25 2.03 4.58 11.98
6/7 1.49 0.86 0.24 3.50 8.66 2.89 5.29 15.55
6/8 1.75 0.97 0.53 4.53 10.51 3.30 3.50 15.20
713 12.74 4.42 5.53 21.44 36.76 5.24 25.34 46.01
7/4 1.82 1.20 0.56 4.43 7.97 4.54 2.88 19.49
715 2.02 1.21 0.18 4.31 7.15 2.73 1.92 11.73
716 1.50 0.91 0.09 2.89 7.60 2.70 2.22 11.96
717 1.66 0.87 0.31 3.21 9.21 2.06 6.49 12.94
7/8 1.88 0.66 0.95 3.09 9.83 2.34 5.38 13.74
8/3 12.38 4.76 2.08 21.94 35.42 6.22 25.30 49.03
8/4 1.99 0.87 0.73 4.43 8.24 3.97 3.77 17.36
8/5 1.93 1.27 0.19 5.06 7.07 3.15 3.66 13.52
8/6 1.61 0.99 0.01 3.16 7.67 2.66 3.26 11.44
8/7 1.92 0.78 0.25 3.12 8.70 3.08 3.05 15.75
8/8 1.56 1.16 0 4.43 8.10 3.39 3.59 14.20
9/3 12.84 3.67 6.69 18.33 38.51 5.06 29.24 50.22
9/4 2.49 1.06 0.57 4.26 9.48 3.82 3.98 16.73
9/5 1.54 1.01 0.11 3.38 6.40 2.72 1.69 11.58
9/6 2.04 1.35 0.03 4.75 7.57 2.93 2.23 12.28
9/7 1.50 0.99 0.01 3.66 8.69 3.32 3.15 15.33
9/8 1.88 0.75 0.40 3.05 10.30 2.72 4.21 14.86
10/3 10.76 3.41 5.63 16.35 38.78 6.19 27.47 54.79
10/4 1.84 1.33 0.32 4.58 8.66 4.25 3.05 16.19
10/5 1.68 1.26 0.07 3.52 6.84 3.81 2.20 13.90
10/6 1.93 0.95 0.09 3.24 7.68 2.07 4.19 11.05
10/7 1.40 0.75 0.05 2.92 9.66 2.59 4.10 14.33
10/8 1.37 0.65 0.05 2.34 9.68 3.13 4.20 13.89
11/3 9.74 4.08 4.52 20.33 36.77 6.14 25.87 50.90
11/4 2.30 1.48 0.49 5.80 9.64 5.11 1.94 19.24
11/5 1.96 0.97 0 3.47 6.29 2.59 0.86 10.98
11/6 1.86 1.10 0.10 4.12 7.75 2.04 4.14 10.76
1/7 1.91 0.89 0.52 3.85 8.13 2.94 4.34 16.04
11/8 1.82 1.06 0.16 3.97 9.19 2.97 4.61 16.98

110



Results and Discussion

Table 6.9 shows that on average, for a sheet to stencil area ratio of 1:1.2, the best final
nests with minimum non-placement were obtained with a parameter tuning factor of 11
and a cost tuning factor of 5. Table 6.10 gives the results of nesting experiments with

sheet to stencil area ratio of 1:1.3.

Table 6.10 Irregular nesting — Sheet to stencil area ratio 1:1.3

Tuning
Factor Overlap (% of Sheet Area) Non-placement (% of Sheet Area)
Parameter
/ Cost 1] g Min Max J g Min Max
3/3 12.32 3.18 4.98 18.25 35.91 6.18 22.61 49.07
3/4 3.44 1.38 0.91 6.25 14.04 3.08 6.46 19.02
3/5 3.03 1.12 1.62 4.61 12.40 2.06 8.75 16.10
3/6 2.78 1.05 0.58 5.18 12.23 2.05 8.62 16.20
3/7 2.81 1.24 0.78 5.42 12.87 2.29 8.98 16.39
3/8 2.65 1.37 0.57 6.07 13.72 2.38 10.03 18.25
4/3 11.29 4.38 4.71 22.70 35.54 6.70 25.55 50.84
474 2.93 1.17 0.96 5.42 11.42 4.23 5.90 20.19
4/5 2.05 0.98 0.74 3.78 8.98 3.15 3.52 15.76
4/6 2.41 0.98 0.71 3.84 10.31 2.20 6.24 15.30
417 212 0.83 0.84 3.70 10.65 3.07 4.98 15.38
4/8 2.30 1.08 0.46 4.98 11.84 2.06 7.51 15.91
5/3 13.89 3.59 8.29 20.83 35.67 7.54 25.05 49.23
5/4 1.95 0.84 0.47 3.45 7.83 3.84 2.87 15.84
5/5 1.76 1.20 0.28 3.95 7.92 3.50 1.93 15.80
5/6 1.82 0.68 0.61 3.12 9.32 2.31 4.87 12.71
5/7 1.77 0.87 0.41 3.78 8.49 2.57 3.96 13.30
5/8 1.70 0.62 0.50 3.07 10.53 3.73 2.94 16.59
6/3 11.44 2.46 7.33 15.75 35.02 5.39 22.71 47.60
6/4 1.79 1.06 0.41 4.31 7.45 4.65 217 15.53
6/5 2.09 1.35 0.17 4.72 7.43 3.86 0.88 14.41
6/6 1.70 0.89 0.09 2.99 6.92 2.60 2.59 11.76
6/7 1.92 1.33 0.06 4.65 8.08 2.95 4.16 13.79
6/8 2.04 0.77 0.45 3.45 9.18 2.63 4.79 15.35
713 12.60 3.72 6.53 18.35 34.08 5.83 22.26 42.69
714 1.73 1.27 0.33 4.80 5.86 4.66 1.12 13.66
715 1.91 1.16 0.09 3.81 6.49 3.91 0.46 13.84
716 1.61 1.16 0.05 3.48 6.84 3.41 0.76 12.97
717 2.1 0.95 0.12 3.68 8.34 2.82 1.69 14.09
7/8 1.65 0.68 0.05 3.25 9.25 2.43 3.94 13.89
8/3 12.18 4.39 5.45 22.15 33.28 4.38 21.69 43.27
8/4 1.90 1.72 0.16 6.65 6.62 4.22 0.95 17.14
8/5 1.85 1.00 0.03 4.06 5.96 2.82 0.40 10.98
8/6 2.05 1.46 0 4.25 5.90 2.78 0.40 10.51
8/7 1.77 1.18 0 4.76 8.09 2.51 2.55 11.57
8/8 2.04 1.09 0.56 4.77 8.02 2.28 4.02 12.42
9/3 12.73 5.09 2.95 28.90 34.07 7.22 24.28 54.38
9/4 1.81 1.36 0.18 4.68 6.64 5.11 0.96 15.17
9/5 1.87 1.47 0 4.46 5.24 2.93 0.27 9.96
9/6 2.21 0.91 0 3.61 6.28 2.61 0.46 11.22
9/7 1.84 1.26 0.09 4.23 6.43 2.74 0.64 10.28
9/8 1.56 0.78 0 2.73 9.41 2.38 6.06 12.98
10/3 13.93 4.62 7.25 22.50 32.91 5.27 24.63 41.10
10/4 1.92 1.00 0.16 3.37 7.57 5.41 0.85 19.63
10/5 1.92 1.54 0 4.54 5.77 3.51 0.29 11.72
10/6 1.91 1.16 0 4.55 7.25 1.94 3.69 9.81
10/7 2.05 0.95 0.42 3.81 8.06 2.31 1.95 11.08
10/8 1.84 0.76 0.22 3.24 9.86 2.18 6.56 15.11
11/3 12.53 5.08 4.78 21.99 33.10 5.37 24.28 45.75
1174 1.92 1.40 0.03 4.70 7.16 5.27 0.47 17.89
11175 1.51 0.89 0.02 2.85 5.34 2.73 0.16 10.10
11/6 1.71 1.20 0 4.44 6.19 2.73 0.58 10.37
1/7 1.51 0.98 0 3.49 6.80 3.18 0.48 11.33
11/8 1.98 1.09 0.42 5.09 9.03 2.56 5.48 14.82

Table 6.10 shows that on average, for a sheet to stencil area ratio of 1:1.3, the best final
nests with minimum non-placement were obtained with a parameter tuning factor of 11
and a cost tuning factor of 5. Table 6.11 gives the results of nesting experiments with a
sheet to stencil area ratio of 1:1.4.
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Table 6.11 Irregular nesting — Sheet to stencil area ratio 1:1.4

Tuning
Factor Overlap (% of Sheet Area) Non-placement (% of Sheet Area)
Parameter
/ Cost 1] g Min Max J g Min Max
3/3 12.93 3.97 6.74 21.65 34.01 6.90 20.72 43.92
3/4 2.92 1.76 0.35 8.19 14.14 2.96 9.28 20.94
3/5 2.78 0.88 1.17 4.58 11.87 2.19 8.72 17.06
3/6 2.71 1.23 0.68 5.36 11.40 2.38 6.65 17.78
3/7 2.47 0.91 0.53 3.82 12.14 1.73 9.74 16.64
3/8 2.76 1.19 1.31 6.02 12.58 2.36 8.58 17.60
4/3 13.98 6.78 5.58 25.93 32.82 5.94 19.75 42.42
474 2.93 1.22 0.63 5.88 12.44 3.25 7.72 18.76
4/5 2.19 1.42 0.37 6.30 9.73 2.61 5.84 14.39
4/6 2.52 1.10 0.57 4.79 9.57 291 2.93 14.01
417 1.86 0.87 0.26 3.38 9.95 2.17 6.69 14.67
4/8 2.40 0.92 0.90 4.12 11.06 1.70 6.90 13.51
5/3 11.58 4.95 4.93 26.44 32.43 7.34 18.55 45.02
5/4 212 1.00 0.49 4.34 10.30 3.94 4.73 19.18
5/5 1.94 1.18 0.48 4.50 7.10 3.27 2.53 14.20
5/6 2.13 0.84 0.63 3.71 9.19 2.77 4.77 13.74
5/7 2.08 1.28 0.75 6.31 7.45 2.10 4.10 11.48
5/8 1.91 0.97 0.61 4.56 9.37 2.20 4.34 13.23
6/3 13.97 5.63 1.93 27.38 35.14 7.51 24.29 55.94
6/4 1.90 1.34 0.52 5.44 7.33 3.79 2.79 17.09
6/5 2.08 1.28 0.38 4.31 6.61 2.29 1.32 9.39
6/6 1.76 1.34 0.09 6.54 7.55 2.02 1.57 9.72
6/7 1.91 0.93 0.18 3.81 7.50 2.70 2.26 12.85
6/8 1.94 1.25 0.43 4.55 8.93 2.74 4.03 14.73
713 14.60 4.82 7.94 23.84 33.03 4.98 22.31 41.05
7/4 2.83 1.35 0.32 5.62 9.09 4.50 1.21 19.18
715 1.73 1.41 0.15 4.25 4.51 3.30 0.36 10.84
716 1.96 1.07 0.17 4.14 7.59 1.76 3.98 10.54
717 1.64 1.21 0 4.04 6.21 2.94 1.15 13.77
7/8 2.23 0.95 0.14 3.83 7.89 2.68 2.32 12.06
8/3 13.04 3.97 5.06 18.72 33.07 7.10 21.18 46.70
8/4 2.20 1.14 0.12 4.32 7.89 3.53 0.69 12.67
8/5 1.86 1.29 0.05 3.96 6.28 3.25 1.83 14.44
8/6 1.65 1.24 0.01 3.31 5.52 3.08 1.18 11.81
8/7 1.94 0.84 0.66 4.10 8.24 2.68 2.26 13.10
8/8 2.04 0.93 0.54 3.91 7.29 2.30 2.45 11.09
9/3 12.94 4.50 5.52 23.69 30.65 5.80 18.36 44.27
9/4 2.09 1.40 0.12 4.13 7.62 5.16 0.48 19.86
9/5 2.24 1.27 0.04 4.49 6.10 3.10 0.78 9.84
9/6 2.06 1.00 0.15 3.93 5.93 2.04 2.65 9.65
9/7 1.88 1.04 0.07 4.93 7.40 2.73 3.66 13.94
9/8 2.17 1.04 0.72 4.10 7.82 3.34 1.83 11.65
10/3 12.68 4.95 4.64 20.92 32.58 5.23 23.08 42.66
10/4 2.33 1.51 0.23 5.41 7.96 5.03 0.48 16.05
10/5 2.23 1.12 0.24 4.19 5.71 2.87 1.58 11.43
10/6 2.07 1.29 0.01 4.40 7.70 3.49 0.61 13.52
10/7 2.13 1.22 0 4.51 7.75 2.56 2.50 11.69
10/8 1.69 0.84 0.13 3.04 7.96 3.39 0.57 12.18
11/3 14.81 5.24 6.10 25.63 35.37 6.14 22.18 48.02
1174 1.86 1.33 0.04 5.08 6.28 5.08 0.35 22.43
11/5 2.34 1.15 0 4.47 6.42 3.77 0.18 12.17
11/6 1.90 1.50 0.03 4.75 6.14 2.49 2.38 9.75
1/7 2.23 1.08 0.06 4.52 7.76 291 3.83 14.40
11/8 1.98 1.00 0.03 4.30 7.50 3.34 1.12 13.41

Table 6.11 shows that on average, for a sheet to stencil area ratio of 1:1.4, the best final

nests with minimum non-placement were obtained with a parameter tuning factor of 7 and

a cost tuning factor of 5. Overall average solution quality in Tables 6.8 to 6.11 is better

than that achieved for the nesting problem with two relaxed sheet boundaries with a sheet

to stencil area ratio of 1:1, results of which are given in Table 6.5. It should be noted

however, that results in Table 6.5 were arrived at with escape penalties set to unity whilst

the results in Tables 6.8 to 6.11 were obtained with escape penalties of zero. Figure 6.14

summarizes average final costs for increasingly smaller sheet sizes.
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Figure 6.14 Overview irregular nesting results — Reduced sheets.

Figure 6.14 shows that the worst final nests for all sheet arrangements were found for a

cost tuning factor of 3, and that (for all tuning factor values used) the overall average

solution quality for sheet to stencil area ratios of 1:1.1, 1:1.2, 1:1.3, and 1:1.4,
respectively, was 18.63%, 17.58%, 16.55%, and 16.46%. Therefore it can be said that

reducing the sheet areas improved the overall solution quality of final nests. The minimum

overall average solution quality was found for a sheet to stencil area ratio of 1:1.4. In

addition, the minimum average final cost of 6.2 was also found for a ratio of 1:1.4. It

should be noted that the overall average solution quality for a sheet to stencil area ratio of

1:1 was 20.38%, but then escape penalties were unity instead of zero. Table 6.12 gives

113



Results and Discussion

minimum averages of overlap and non-placement, expressed as percentages of inner
sheet area, obtained for each irregular nesting problem of varying sheet to stencil area

ratio.

Table 6.12 Minimum averages irregular nesting — Variable sheet areas

Sheet to Stencil Minimum Average Overlap Minimum Average Non-placement
Area Ratio (% of Sheet Area) (% of Sheet Area)
1:1" 2.08 2.87
1:1.1? 0.95 5.39
1:1.2? 1.37 6.29
1:1.3? 1.51 5.25
1:1.4% 1.64 4.51

Notes: 1) Escape penalties unity 2) Escape penalties zero.

Table 6.12 shows that when escape penalties are zeroed, minimum averages for non-
placement approximately doubled for all non-equal sheet to stencil area ratios, while
minimum averages for overlap at first more than halved and then steadily increased as

inner sheets got smaller.

Perhaps contrary to expectation, none of the 4,320 final nests generated for irregular
nesting problems where the total stencil area exceeded the inner sheet area were found
to have zero non-placement. It is thought this poor result was mainly caused by having set
escape penalties to zero: Stencils were no longer ‘drawn’ into inner sheets by both escape
and non-placement cost, but the optimization process now solely depended on non-
placement cost to ‘draw’ stencils into the inner sheet. This suggested that non-equal
penalties for overlap and non-placement could produce better final nests for problems
where total stencil area exceeds inner sheet areas. For the total of 5,400 final nests
generated for each sheet size, Table 6.13 gives a summary of the number of final nests
found with zero stencil overlap and gives the parameter and cost tuning factors with which

these nests were obtained.
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Table 6.13 Zero overlap instances irregular nesting — Variable sheet areas

Sheet to Stencil

Area Ratio Instances of Zero Overlap Parameter / Cost Tuning Factor
1:1" 1 9/8
442 1 10/5

1:11 1 11/7
1:1.2? - -
3 9/5
1 9/6
1 9/8
1:1.3? 1 10/5
1 10/6
1 11/6
1 1117
1:1.4% - )

Notes: 1) Escape penalties unity 2) Escape penalties zero.

Table 6.13 further illustrates the poor performance of the dredge cut nesting model in this
last set of experiments: only 11 out of 4,320 final nest generated had zero stencil overlap.
Results in Table 6.13 further strengthen the argument that, if achieving zero non-
placement is to be prioritized over achieving zero stencil overlap, more weight should be
given to non-placement cost in the solution process. Because no final nests were found
with zero non-placement for this part of the experimentation, final nests with minimum
non-placement were looked at. Figure 6.15 depicts the final nests found with minimum
non-placement costs, expressed as percentages of inner sheet area, for sheet to stencil
area ratios of 1:1.1, 1:1.2, 1:1.3 and 1:1.4.
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Figure 6.15 Minimum final cost nests — Irregular nesting — Reduced sheets.
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The parameter and cost tuning factor combinations with which the final nests in Figure
6.15 were arrived at were 10/ 6 for a sheet to stencil area ratio of 1:1.1 and 11/ 5 for
ratios of 1:1.2, 1:1.3, and 1:1.4. The final nests depicted in Figure 6.15 not only exhibited
minimum non-placement costs for each sheet size, but also had minimum sums of overlap
and non-placement costs. Despite that none of the final nests depicted in Figure 6.15
satisfy the zero non-placement constraint of the dredge cut nesting model, final nests 1, 3
and 4 could be considered for use in determining nodes for the dredger routing model. It is
thought that the non-placement of these three layouts can be neglected and that coverage
of the inner sheet can be considered adequate enough to ensure complete excavation of
the inner sheet if it represented a dredging area. However, it must be noted that a total of
4,320 nesting experiments were carried out for this part of the experimentation, and then
to only find 3 final nests suitable for further use in the dredger routing model reflects

poorly on the adopted approach.

In Figure 6.15 final nest 4 displays a desired side-effect of the dredge cut nesting solution
process: A stencil has been left completely outside of the inner sheet. For this to happen
escape cost must be very small in comparison to overlap and non-placement costs, and
this is why for nesting experiments with reduced inner sheet areas escape penalties were
set to zero. As explained in Section 5.4.4.2, unit dredge cuts of stencils, which are entirely
outside inner sheets can be left undredged by not including their centroids as nodes in the

dredger routing model.

In Figure 6.15 final nest 2 has to be rejected for use in determining nodes for the dredger
routing model as the non-placement area exhibited (marked in solid black) is considered
too large to be neglected and therefore would result in areas not being dredged. The other
19 final nests found with a parameter and cost tuning factor combination of 11 and 5 (for
which the minimum average non-placement was reported in Table 6.8) were inspected
visually and were all considered unsuitable as well. As a final check, for a sheet to stencil
area ratio of 1:1.2, the final nest with the second lowest final cost was looked at to see if it
would be suitable for use in determining nodes for the dredger routing model. Figure 6.16

depicts the relevant final nest.
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1

B

Figure 6.16 Second best nest — Irregular nesting — Sheet to stencil area ratio 1:1.2.

The final nest depicted in Figure 6.16 was arrived at with a parameter and cost tuning
factor combination of 9 and 5, and has an overlap area equal to 0.11%, and a non-
placement area equal to 1.69% of the inner sheet area. As is clear from Figure 6.16 the
depicted final nest should also be considered unfit for determining nodes for the dredger
routing model as the non-placement areas (marked in solid black) are too large to be

neglected.

Gradual increase in the number of relaxed sheet boundaries and gradual reduction of
inner sheet sizes, for two relaxed sheet boundaries and constant total stencil area, caused
the solution quality of best final nests found to gradually deteriorate to the point that for the
experimentation discussed here none of the 4,320 final nests generated satisfied the zero
non-placement constraint of the dredge cut nesting model. It was thought that allowing for
relaxed sheet boundaries and providing total stencil areas which exceeded inner sheet
areas was key to solving irregular dredge cut nesting problems: Without these attributes it
was considered difficult to achieve zero non-placement for irregularly shaped dredging

areas.

The results presented in this section suggested adding more weight to non-placement
cost in comparison to overlap cost to obtain better final nest layouts. Before this was
done, the stencil set used for nesting was regularized. It was thought the nesting of
square stencils, representing individual cuts with sides equal to an effective cut width of
cutter suction dredgers could lead to increased numbers of final nests with zero non-
placement. So, instead of the irregular stencil set shown in Figure 6.15 a set of 32
identical square stencils were nested in problems with sheet to stencil area ratios of 1:1.1,
1:1.2, 1:1.3 and 1:1.4. The results of the regular nesting experiments carried out with a

stencil set consisting of 32 identical squares are presented and discussed next.
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6.5 Dredge Cut Nesting — Reduced Sheet Areas for Square Stencils

Figure 6.17 depicts an example of a random initial placement of 32 square stencils used

as an initial solution at the start of a nesting optimization process for a nesting problem

s
e

Figure 6.17 Random initial nest — Regular nesting.

with a sheet to stencil area ratio of 1:1.1.

The random initial nest in Figure 6.17 has an overlap area equal to 32.05%, and a non-
placement area equal to 57.90% of the inner sheet area. Experimental results obtained
from the application of the dredge cut nesting model to regular nesting problems with two
relaxed sheet boundaries and reduced sheet areas are presented in Tables 6.14, 6.15,
6.16 and 6.17. These tables report the mean, y, standard deviation, ¢, and minimum and
maximum of values of overlap and non-placement for 20 replications carried out for each
pair of tuning factors. Overlap and non-placement are expressed as a percentage of the
total inner sheet area used. Escape penalties were zero for this part of the

experimentation and thus escape is excluded from these tables.
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Table 6.14 Regular nesting — Sheet to stencil area ratio 1:1.1

Tuning
Factor Overlap (% of Sheet Area) Non-placement (% of Sheet Area)
Parameter

/ Cost 1] g Min Max J g Min Max
3/3 17.35 3.62 10.99 23.75 49.20 4.28 43.30 57.24
3/4 9.70 1.79 5.71 12.33 35.27 4.70 29.29 46.75
3/5 4.15 0.67 3.01 5.47 15.16 1.83 11.97 19.73
3/6 3.01 0.98 1.58 5.68 12.26 1.28 9.42 14.43
3/7 2.68 0.64 1.68 3.68 12.30 1.26 10.38 15.04
3/8 3.02 0.86 1.58 4.35 12.16 1.71 9.44 15.69
4/3 16.99 2.92 12.28 23.20 48.63 4.88 39.88 61.16
474 9.22 2.33 5.73 13.77 36.26 4.32 30.42 45.66
4/5 4.24 0.89 2.40 6.62 13.08 1.88 9.60 16.56
4/6 2.16 0.50 1.24 3.00 11.47 1.44 8.54 14.73
417 2.00 0.44 0.90 2.51 11.20 1.48 8.08 14.63
4/8 2.39 0.95 1.14 4.87 11.17 1.10 8.26 12.60
5/3 16.58 2.76 12.04 23.09 50.48 4.37 42.62 57.69
5/4 10.61 2.80 6.21 18.42 36.02 3.28 29.38 43.28
5/5 3.20 0.80 1.72 4.96 11.24 1.35 8.01 13.56
5/6 1.73 0.49 1.00 2.87 9.81 1.79 5.30 12.15
5/7 1.62 0.63 0.75 2.99 9.62 1.58 6.54 13.15
5/8 1.69 0.51 0.89 2.92 10.48 1.97 6.79 13.26
6/3 17.05 4.58 9.1 25.49 50.26 4.06 40.54 57.37
6/4 10.08 2.22 6.07 15.17 37.43 3.17 30.76 42.18
6/5 2.64 0.54 1.94 3.85 10.51 0.97 9.07 12.67
6/6 1.46 0.47 0.71 2.49 8.26 1.40 5.74 10.64
6/7 1.32 0.50 0.54 2.19 8.53 1.57 5.99 11.51
6/8 1.20 0.47 0.47 2.22 9.37 1.95 5.83 12.22
713 17.17 4.30 8.82 25.51 50.02 4.70 43.27 58.66
714 10.62 2.56 6.28 16.01 35.30 3.45 29.07 43.35
715 2.40 0.70 1.33 4.08 9.94 1.62 7.68 14.19
716 1.31 0.54 0.74 2.69 6.58 1.27 5.12 9.59
717 1.13 0.37 0.54 1.84 7.79 1.76 5.03 11.66
7/8 1.37 0.47 0.25 2.34 8.07 1.76 3.65 10.56
8/3 17.06 3.1 9.13 22.94 49.54 4.32 43.19 58.31
8/4 9.14 1.60 6.45 11.82 37.84 4.09 30.73 44.67
8/5 2.24 0.66 1.23 3.50 8.43 1.69 5.72 12.83
8/6 1.24 0.38 0.60 1.90 6.78 1.40 3.81 9.81
8/7 1.14 0.41 0.32 2.06 7.22 1.64 4.94 11.22
8/8 1.18 0.42 0.60 1.92 7.84 1.54 3.52 10.26
9/3 15.72 2.86 11.28 20.90 48.45 3.60 40.33 54.80
9/4 10.01 2.76 5.25 18.40 35.37 3.99 27.77 42.39
9/5 2.01 0.65 1.03 3.45 8.02 1.71 5.19 11.87
9/6 1.13 0.44 0.47 212 6.68 1.35 3.59 9.05
9/7 1.16 0.36 0.48 1.99 7.02 1.09 4.71 9.21
9/8 1.07 0.47 0.33 2.22 8.58 2.15 5.33 12.22
10/3 15.53 3.05 8.38 22.65 48.91 5.60 36.63 58.99
10/4 9.41 1.79 5.09 12.24 35.37 3.50 27.45 41.35
10/5 2.08 0.72 0.88 3.61 8.66 2.20 3.47 12.44
10/6 1.37 0.74 0.22 3.20 5.87 1.59 &8 10.01
10/7 1.20 0.35 0.60 1.99 7.12 2.05 4.15 11.46
10/8 1.37 0.61 0.62 2.54 7.75 1.53 4.77 11.04
11/3 16.89 4.10 10.32 25.01 51.58 4.70 41.82 59.37
1174 10.67 3.19 6.13 17.66 36.30 3.43 28.31 41.21
11/5 1.84 0.69 0.88 3.44 8.36 1.82 4.77 11.08
11/6 1.16 0.49 0.27 2.00 6.50 1.44 3.83 9.33
1/7 1.25 0.38 0.77 2.38 7.37 1.64 4.60 11.04
11/8 1.16 0.33 0.53 1.71 7.72 1.63 4.24 10.69

Table 6.14 shows that on average, for a sheet to stencil area ratio of 1:1.1, the best final
nests with minimum areas of non-placement — the most important decision variable for
dredging — for square stencils were obtained with a parameter tuning factor of 10 and a
cost tuning factor of 6. The relevant row in Table 6.14 is grey scaled and minimum
averages for overlap and non-placement are given in bold text. Before summarizing
results, results of regular nesting experiments with a sheet to stencil area ratio of 1:1.2 are
given in Table 6.15.
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Table 6.15 Regular nesting — Sheet to stencil area ratio 1:1.2

Tuning
Factor Overlap (% of Sheet Area) Non-placement (% of Sheet Area)
Parameter
/ Cost 1] a Min Max y a Min Max
3/3 18.43 4.77 10.93 28.08 48.87 4.75 41.60 57.47
3/4 10.49 2.98 5.63 17.30 35.23 3.01 29.93 40.54
3/5 4.28 0.93 2.67 6.24 14.62 1.76 12.29 19.33
3/6 3.28 0.99 1.46 5.36 12.84 1.41 11.01 16.62
3/7 2.81 0.58 1.66 3.89 13.08 1.50 10.56 16.59
3/8 3.16 1.16 1.96 6.60 12.78 1.84 8.85 16.43
4/3 18.19 2.30 13.14 23.06 49.82 5.03 39.74 58.08
4/4 11.15 2.95 6.29 16.41 33.50 3.96 25.76 42.46
4/5 3.71 0.63 2.22 4.82 12.52 1.99 8.86 15.95
4/6 2.55 0.62 1.54 3.53 10.94 1.50 8.50 14.02
417 2.24 0.61 1.01 3.14 10.72 1.47 8.08 13.53
4/8 2.24 0.74 1.12 4.19 10.98 1.73 7.46 14.20
5/3 17.86 3.92 11.68 26.34 49.99 4.04 43.60 57.16
5/4 10.09 2.47 5.37 14.16 33.29 4.51 26.14 40.02
5/5 3.16 0.76 2.03 4.60 10.61 2.10 6.66 14.42
5/6 1.95 0.48 1.1 2.86 9.50 1.43 6.92 12.63
5/7 1.79 0.69 0.69 3.47 10.05 1.46 8.01 12.03
5/8 1.66 0.65 0.41 2.68 10.27 1.05 7.89 12.02
6/3 17.46 4.64 11.05 30.25 48.19 5.11 39.32 61.94
6/4 8.95 2.53 4.53 13.52 34.20 4.78 22.26 43.10
6/5 2.70 0.81 1.1 3.97 9.32 1.70 6.36 12.96
6/6 1.52 0.57 0.31 2.37 7.77 1.02 5.55 9.52
6/7 1.68 0.82 0.49 3.36 8.90 1.73 5.69 12.43
6/8 1.48 0.62 0.15 2.65 9.86 1.82 6.99 13.53
7/3 17.70 3.37 12.95 24.50 49.69 5.43 37.51 56.60
7/4 9.67 2.53 4.59 15.47 33.95 3.73 27.55 40.22
7/5 2.61 0.69 1.19 3.82 9.14 1.48 5.66 12.29
7/6 1.57 0.51 0.38 2.63 6.98 1.19 4.23 8.56
717 1.26 0.55 0.08 2.46 8.29 2.1 3.63 12.09
7/8 1.43 0.65 0.45 2.70 9.04 1.31 6.49 11.46
8/3 17.81 3.74 10.93 25.07 49.74 4.70 39.96 58.77
8/4 9.49 1.84 5.65 13.20 32.93 3.07 24.12 37.22
8/5 2.16 0.84 0.70 3.09 7.80 1.39 5.76 10.93
8/6 1.37 0.44 0.49 212 6.29 1.41 3.30 9.40
8/7 1.38 0.40 0.73 2.08 7.48 1.63 415 11.08
8/8 1.39 0.51 0.53 2.29 8.97 1.87 5.58 12.93
9/3 17.46 3.58 12.18 26.81 49.81 5.93 36.03 58.00
9/4 9.59 1.55 6.10 13.00 33.75 3.92 26.89 43.44
9/5 1.90 0.69 0.65 3.01 7.31 1.15 5.48 9.32
9/6 1.29 0.63 0.31 2.69 6.10 1.50 2.98 9.52
9/7 1.16 0.52 0.31 2.08 7.53 2.05 4.00 10.55
9/8 1.50 0.57 0.75 2.64 8.27 1.74 4.83 11.63
10/3 17.87 4.15 9.57 28.84 49.20 4.87 41.73 57.20
10/4 10.12 3.08 5.98 18.09 33.56 2.82 29.85 40.11
10/5 217 1.02 0.60 3.93 7.87 1.96 4.49 11.44
10/6 1.60 0.67 0.16 3.00 6.48 1.52 3.80 8.98
10/7 1.26 0.58 0.07 2.69 7.73 2.00 3.21 11.00
10/8 1.23 0.41 0.78 2.1 8.49 1.67 5.44 11.04
111/3 17.35 3.52 11.68 24.95 49.08 4.16 40.36 58.93
1174 9.90 2.98 4.62 15.69 31.66 4.20 25.98 41.90
111/5 217 0.95 0.63 4.83 7.84 2.04 5.23 12.89
11/6 1.40 0.55 0.16 2.38 6.70 1.71 3.90 10.17
11/7 1.14 0.50 0.36 2.14 6.17 1.74 3.27 9.26
11/8 1.43 0.55 0.58 2.70 8.35 1.60 6.23 12.40

Table 6.15 shows that on average, for a sheet to stencil area ratio of 1:1.2, the best final

nests with minimum non-placement were obtained with a parameter tuning factor of 9 and

a cost tuning factor of 6. Table 6.16 gives the results of regular nesting experiments with a

sheet to stencil area ratio of 1:1.3.
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Table 6.16 Regular nesting — Sheet to stencil area ratio 1:1.3

Tuning
Factor Overlap (% of Sheet Area) Non-placement (% of Sheet Area)
Parameter

/ Cost 1] g Min Max J g Min Max
3/3 20.89 4.84 8.93 28.17 50.38 4.65 42.78 64.80
3/4 10.15 2.32 5.42 14.42 30.96 5.15 22.94 43.59
3/5 3.93 0.90 1.98 5.33 14.74 1.95 11.49 19.60
3/6 2.92 0.80 1.58 4.56 13.13 1.48 10.59 15.54
3/7 3.34 0.90 1.48 4.70 11.97 1.51 8.78 15.02
3/8 3.37 1.32 1.15 5.76 12.44 1.58 10.29 14.73
4/3 18.94 2.96 12.90 25.27 47.92 4.57 39.55 55.33
474 10.29 2.50 6.38 13.80 30.97 3.14 24.74 36.31
4/5 3.66 0.82 2.20 5.14 12.76 1.52 9.96 16.56
4/6 2.36 0.64 1.31 3.50 11.12 1.22 9.36 13.59
417 2.14 0.56 1.28 3.51 11.66 1.51 7.88 13.53
4/8 2.76 0.78 1.64 4.38 11.00 1.48 8.42 14.40
5/3 19.78 3.82 14.87 26.64 47.95 5.12 40.89 58.83
5/4 10.89 3.56 4.93 18.56 32.44 3.25 25.54 39.01
5/5 3.25 0.63 2.20 4.43 10.61 1.58 8.38 13.82
5/6 1.78 0.55 0.93 2.70 9.17 1.43 6.84 13.23
5/7 1.82 0.64 0.99 2.87 9.86 2.03 5.37 13.52
5/8 1.80 0.58 0.51 3.00 10.15 1.40 7.15 13.10
6/3 20.16 3.91 12.74 27.34 48.02 4.13 37.18 53.65
6/4 9.95 2.89 4.33 17.08 32.62 3.76 26.15 38.97
6/5 2.37 0.68 1.25 4.20 7.70 1.45 5.02 11.04
6/6 1.76 0.60 0.58 2.99 7.80 1.58 5.48 10.13
6/7 1.34 0.54 0.31 2.4 8.86 1.38 5.92 11.49
6/8 1.62 0.66 0.63 2.92 8.86 1.52 5.86 11.84
713 19.06 5.33 11.15 32.58 48.09 4.44 37.65 54.74
714 10.27 3.13 5.26 17.44 33.32 2.73 28.42 37.84
715 2.49 0.71 0.85 3.53 7.76 1.76 4.31 11.62
716 1.28 0.61 0.44 2.50 6.87 1.57 4.13 9.71
717 1.45 0.72 0.19 2.98 7.44 1.48 3.83 9.68
7/8 1.73 0.67 0.34 2.79 9.32 1.55 5.16 12.78
8/3 19.71 3.97 12.16 25.14 46.06 7.21 36.43 64.52
8/4 9.80 2.70 5.21 15.56 31.30 3.75 25.34 38.26
8/5 1.96 0.78 0.65 3.46 6.66 1.89 3.51 10.02
8/6 1.27 0.86 0.23 2.78 6.06 1.75 2.66 9.48
8/7 1.43 0.74 0.23 3.00 6.82 0.91 5.23 8.66
8/8 1.47 0.74 0.29 2.96 8.16 1.69 4.83 11.01
9/3 20.33 4.29 11.70 26.68 47.70 3.67 40.34 56.73
9/4 9.58 2.42 3.98 14.21 30.63 4.23 23.66 38.06
9/5 1.89 0.80 0.51 3.30 6.68 2.09 2.16 10.11
9/6 1.47 0.69 0.19 2.82 6.07 2.39 1.34 9.55
9/7 1.12 0.44 0.52 1.88 6.95 1.80 3.89 11.61
9/8 1.29 0.52 0.50 2.14 7.97 1.88 3.46 10.10
10/3 19.72 3.93 11.70 29.05 46.80 5.85 35.68 57.13
10/4 9.91 2.92 4.78 17.03 31.56 3.66 24.64 38.92
10/5 1.71 1.10 0.40 3.93 5.96 2.45 2.53 10.85
10/6 1.54 0.55 0.16 2.28 6.06 1.84 1.93 9.37
10/7 1.50 0.60 0.07 2.52 6.87 1.68 4.03 9.62
10/8 1.56 0.59 0.18 2.72 7.86 1.62 4.48 10.03
11/3 18.95 4.64 11.24 28.76 48.43 3.94 41.55 57.42
1174 9.74 2.80 5.29 15.65 32.27 4.69 22.55 43.94
11/5 2.20 1.14 0.49 4.62 7.49 2.43 3.75 11.12
11/6 1.14 0.54 0.10 2.08 5.73 1.81 2.16 9.14
1/7 1.72 0.69 0.68 3.41 6.58 1.67 3.91 11.00
11/8 1.40 0.70 0.44 3.31 8.38 1.97 4.83 11.04

Table 6.16 shows that on average, for a sheet to stencil area ratio of 1:1.3, the best final
nests with minimum non-placement for square stencils were obtained with a parameter
tuning factor of 11 and a cost tuning factor of 6 for square stencils. Table 6.17 gives the

results of regular nesting experiments with a sheet to stencil area of 1:1.4.
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Table 6.17 Regular nesting — Sheet to stencil area ratio 1:1.4

Tuning
Factor Overlap (% of Sheet Area) Non-placement (% of Sheet Area)
Parameter

/ Cost 1] g Min Max J g Min Max
3/3 20.89 4.87 10.87 28.85 46.04 4.62 39.36 54.65
3/4 9.58 2.43 6.13 15.76 29.51 2.60 24.96 34.46
3/5 3.56 0.77 2.39 4.87 15.17 2.04 10.89 20.08
3/6 3.35 0.78 2.05 4.69 12.25 1.41 9.91 15.78
3/7 3.25 0.81 1.76 4.78 12.43 1.35 9.85 14.26
3/8 3.32 0.69 2.04 5.01 12.45 1.41 9.51 15.35
4/3 20.32 4.95 11.35 29.26 47.52 4.43 38.43 55.88
474 11.55 2.32 7.80 16.50 29.37 3.69 22.86 37.86
4/5 3.46 0.92 1.53 5.39 11.76 1.83 8.56 15.39
4/6 2.33 0.62 1.19 3.51 10.43 1.50 7.38 13.11
417 2.56 1.00 1.05 4.72 11.32 1.36 9.69 13.63
4/8 2.22 0.46 1.34 2.97 11.70 1.31 10.09 14.81
5/3 20.83 4.48 11.13 27.19 50.27 5.60 40.21 62.28
5/4 10.81 2.23 7.20 15.56 29.93 3.28 23.48 34.63
5/5 2.47 0.72 1.24 4.18 11.09 2.16 7.15 15.46
5/6 2.08 0.74 0.74 3.91 9.53 1.69 5.61 13.41
5/7 1.72 0.56 0.74 2.68 10.09 1.33 7.86 12.29
5/8 1.75 0.60 0.64 3.27 10.63 1.26 8.96 13.14
6/3 19.55 4.01 8.68 24.28 50.61 6.50 38.01 60.59
6/4 9.32 2.42 4.46 13.73 28.63 2.93 23.97 34.04
6/5 2.39 0.91 0.80 4.15 9.10 1.77 6.65 12.71
6/6 1.50 0.52 0.47 2.60 7.88 1.06 4.94 9.74
6/7 1.56 0.72 0.52 3.14 8.60 1.40 5.92 11.20
6/8 1.82 0.75 0.76 3.30 9.02 1.69 5.62 13.15
713 19.80 4.81 11.18 29.90 47.49 6.52 40.26 61.70
714 9.09 2.45 5.31 16.56 29.45 3.50 23.92 36.11
715 2.37 0.95 0.97 4.26 7.33 1.94 3.86 10.77
716 1.61 0.54 0.24 2.58 6.61 1.25 3.80 8.58
717 1.26 0.46 0.30 2.43 8.05 1.72 3.93 12.34
7/8 1.49 0.64 0.68 2.61 8.75 1.56 5.79 11.35
8/3 21.55 3.98 15.28 29.97 47.63 5.01 36.48 54.79
8/4 9.81 2.50 2.76 12.74 29.36 3.90 22.79 38.28
8/5 2.32 0.79 0.87 3.46 7.53 1.51 4.28 10.82
8/6 1.36 0.51 0.66 2.70 7.09 1.50 4.13 9.93
8/7 1.34 0.49 0.46 2.4 7.47 1.60 4.34 11.44
8/8 1.60 0.60 0.60 2.53 7.50 1.47 4.64 10.21
9/3 20.40 4.95 12.24 31.93 47.80 5.84 35.04 60.88
9/4 9.83 2.33 6.08 14.38 29.10 3.96 23.08 36.59
9/5 1.68 0.59 0.81 2.75 5.68 1.65 2.06 9.38
9/6 1.42 0.64 0.22 2.38 6.28 1.60 3.09 9.18
9/7 1.53 0.74 0.70 3.81 6.92 1.40 4.35 9.25
9/8 1.51 0.71 0.17 3.19 7.96 1.60 5.57 11.26
10/3 20.24 3.46 14.14 26.13 49.04 4.66 40.15 58.21
10/4 9.92 2.04 6.75 13.53 28.69 2.76 23.95 34.89
10/5 2.47 0.79 0.78 3.61 7.22 2.09 4.08 10.18
10/6 1.20 0.73 0.02 2.59 6.04 1.52 2.65 8.39
10/7 1.37 0.54 0.44 2.68 7.16 1.44 4.56 9.81
10/8 1.16 0.74 0.07 2.58 7.50 1.76 4.75 10.91
11/3 20.15 4.25 11.13 27.42 47.01 5.22 33.94 58.53
1174 10.40 2.54 6.54 15.45 28.48 3.81 17.99 35.43
11/5 1.89 0.76 0.71 3.84 6.45 2.32 2.51 13.43
11/6 1.34 0.65 0.22 2.33 5.98 1.63 3.30 9.84
1/7 1.40 0.58 0.06 2.25 6.93 1.47 3.51 9.45
11/8 1.36 0.75 0.62 3.19 8.08 1.78 4.47 11.53

Table 6.17 shows that on average, for a sheet to stencil area ratio of 1:1.4, the best final
nests with minimum non-placement for square stencils were obtained with a parameter
tuning factor of 9 and a cost tuning factor of 5. For this part of the experimentation, which
nested square stencils, no optimal final nests, having zero overlap and zero non-
placement, were found. Figure 6.18 summarizes averages of final costs for increasingly

smaller sheet sizes with square stencils.
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Figure 6.18 Overview regular nesting results — Reduced sheets.

Figure 6.18 shows that the worst final nests for all sheet arrangements were found for a

cost tuning factor of 3, that a cost tuning factor of 4 also consistently gave poor results,

and that (for the tuning factor values used) the overall average solution quality for sheet to
stencil area ratios of 1:1.1, 1:1.2, 1:1.3, and 1:1.4, respectively, were 26.08%, 25.84%,

25.39%, and 25.13%. It can be said that for the regular nesting problems solved with two

relaxed sheet boundaries, the smaller the sheet area the better the overall average

solution quality of final nests. The minimum overall average solution quality was found for

a sheet to stencil area ratio of 1:1.4. However, the minimum average
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final cost of 6.9% was found for a ratio of 1:1.3. Figure 6.19 depicts the final nest of
squares with minimum final cost, which was found for a sheet to stencil area ratio of 1:1.3

and with a parameter and cost tuning factor combination of 9 and 6.

|
_

|

Figure 6.19 Best nest — Regular nesting — Sheet to stencil area ratio 1:1.3.

The final nest of Figure 6.19 has an overlap area equal to 0.43% and non-placement area
equal to 1.34% of the inner sheet area. In Figure 6.19 the centroids of stencils which
intersect with inside the inner sheet could be considered for use as nodes in the dredger
routing model. Despite that the regular nesting problems should have been easier to solve
than the irregular ones, none of the 4,320 regular nesting problems solved for this part of
the experimentation resulted in final nests with zero non-placement. A reason for the lack
of improvement in solution quality for regular nesting problems can be that the total

number of iterations remained constant at 99,999.

The dredge cut nesting model modifies nesting solutions by sequentially disturbing the
position of stencils. Therefore for the nesting problems with 14 irregular stencils the
position of each stencil was perturbed around 7,142 times over 99,999 iterations, while for
the regular nesting problems each of the 32 square stencils was perturbed around 3,124
times over 99,999 iterations. The fact that for irregular nesting problems positions of each
stencil were perturbed approximately twice more than in regular nesting problems is
thought to have played a part in the observed lack of improved solution quality. However,
Chen et al. (1999) states that because of the “excellent” ability of the adaptive simulated
annealing to self adapt the performance of the algorithm is not critically influenced by
chosen values the for total number of iterations. Chen et al. (1999) reports this has been

observed for a variety of problems solved with adaptive simulated annealing.
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Another way of searching for better solutions could have been to explore more
combinations of parameter and cost tuning factors. However, as explained with Table 6.2,
this option is limited for the problems solved here if the solution process is to remain one

of adaptive simulated annealing, that is if simulated quenching is to be avoided.

Tables 6.18 presents an overview of results for all nesting experiments discussed so far,
giving minimum average final costs for 20 replications expressed as percentages of sheet
areas used. Table 6.18 also gives the number of times final nests were found with zero
overlap and zero non-placement and with zero non-placement only (the acronym GM
stands for global minimum) out of a total of 1,080 replications carried out for each

experiment.

Table 6.18 Overview irregular and regular nesting results

Sheet 0 Relaxed 1 Relaxed 2 Relaxed 3 Relaxed
Type Boundaries Boundary Boundaries Boundaries
Nest Irregular Irregular Irregular Regular Irregular
Type

et Min GM/ Min GM/ Min GM/ Min GM/ Min GM/

Area Average 1080 Average 1080 Average 1080 Average 1080 Average 1080

Overlap + Non-placement

1:1 1.68 39 3.76 15 4.95 0 - - 6.38 2
1:1.1 - - - - 6.85 0 7.24 0 - -
1:1.2 - - - - 7.94 0 7.31 0 - -
1:1.3 - - - - 6.85 0 6.87 0 - -
1:1.4 - - - - 6.24 0 7.24 0 - -

Non-placement only

1:1 0.84 43 2.02 15 2.87 1 - - 3.75 2
1:1.1 - - - - 5.34 0 5.87 0 - -
1:1.2 - - - - 6.29 0 6.10 0 - -
1:1.3 - - - - 5.24 0 5.73 0 - -
1:1.4 - - - - 4.51 0 5.68 0 - -

Note: All figures are percentages of (inner) sheet areas used.

Table 6.18 shows that when, for a sheet to stencil area ratio of 1:1, sheet boundaries were
relaxed, overlap and non-placement costs of final nests increased. Table 6.18 also shows
that reductions in sheet area for constant total stencil area beyond a ratio of 1:1.1 did not
cause final costs to vary as much in comparison, for irregular as well as regular nesting.
The main problem with results obtained so far, as shown in Table 6.18, is that when sheet
areas were reduced for the irregular and regular nesting problem solved, no final nests
with zero non-placement — the most important decision variable for dredging — were
found. This is a problem because non-zero non placement for a given sheet equates to
leaving parts of a dredging area undredged. It should be noted that so far all overlap and

non-placement cost penalties were set to unity.
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As mentioned after Table 6.13, to find more final nests with zero non-placement more
weight can be added to non-placement cost than to overlap cost in the objective function
of the dredge cut nesting model. To find out if this was true this was done for the next set
of regular nesting experiments. Details of cost penalties used and results obtained are

presented and discussed next.

6.6 Dredge Cut Nesting — Cost Penalty Increase for Square Stencils

For irregular nesting experiments with 0, 1, 2, and 3 relaxed inner sheet boundaries all
cost penalty factors and exponents in the objective function (see Equation 5.4) were set to
unity. For irregular and regular nesting problems with 2 relaxed sheet boundaries and
sheet to stencil area ratios of 1:1.1, 1:1.2, 1:1.3, and 1:1.4 escape cost penalties were
zeroed, but cost penalties for overlap and non-placement were kept equal to unity. The
experimental results discussed so far showed that for these values of cost penalties,
solution quality, in terms of finding final nests with zero non-placement, deteriorated as the
complexity of nesting problems increased, even when the irregular stencil set was

substituted with a regular set of identical squares.

To solve leather nesting problems Yuping et al. (2005) selected values greater than unity
for 5 out of 6 cost penalties used. However, these values could not be applied in the same
way to dredge cut nesting problems as two-dimensional dredge cut nesting differs
fundamentally from conventional two-dimensional stock cutting problems (see Section 5.2
and Table 5.1). Therefore, although increased cost penalties used in this part of the
experimentation have values similar to those used in Yuping et al. (2005), they have been
applied differently to decision variables. Table 6.19 gives cost penalty values used in
Yuping et al. (2005) and those used here for regular nesting on sheets with two relaxed

boundaries and sheet to stencil area ratios of 1:1.1, 1:1.2, 1:1.3, and 1:1.4.

Table 6.19 Revised cost penalties — Leather and Dredge Cut Nesting

Leather Nesting Dredge Cut Nesting

Decision Variable (Yuping et al., 2005)
Factor Exponent Factor Exponent
Escape 50 2 0 0
Overlap 50 2 4 1
Non-placement 4 1 50 2

Table 6.19 shows that penalties for escape cost were kept zero here for dredge cut
nesting problems, since escape is not relevant to dredging: The centroids of unit dredge
cuts which are completely outside the inner sheet are not used as nodes in the dredger
routing model. For leather nesting problems Yuping et al. (2005) subjects overlap cost to
much greater penalties than non-placement cost. This relationship was inversed since for

dredge cut nesting minimizing non-placement is more important than minimizing overlap.
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Table 6.20 reports the mean, y, standard deviation, o, and minimum and maximum of
values of non-placement area obtained for 20 replications carried out for each pair of
tuning factors with the revised overlap and non-placement penalties for regular nesting

with reduced inner sheet areas.

Table 6.20 Effect of revised cost penalties on non-placement — Regular nesting

Sheet to Par. /

Stencil Cost Original Penalties” Revised Penalties”

Q;%i TF:r;'tr;? g o Min Max g o Min Max
1:1.1 10/6 17,035 4,606 9,092 29,056 897 1,965 1 7,796
1:1.2 9/6 16,254 3,993 7,937 25,353 94 143 4 654

1:1.3 1/6 14,117 4,449 5314 22515 73 144 1 499

1:1.4 9/5 12,969 3,780 4,699 21,439 20 19 0 66

Notes: 1) Overlap and non-placement penalties unity 2) Overlap penalty factor = 4; Overlap penalty
exponent = 1; Non-placement penalty factor = 50; Non-placement penalty exponent = 2.

In Table 6.20 values for non-placement have not been expressed as percentages of inner
sheet areas because this would have given averages of zero to two numbers after the
decimal point for results obtained with the revised cost penalties. The combinations of
parameter and cost tuning factors shown in Table 6.20 are values for which the minimum
average non-placement was achieved when overlap and non-placement cost penalties

equal to unity were used.

Table 6.20 shows that the use of the revised cost penalties resulted in drastic reductions
of non-placement — the most important decision variable for dredging — of final nests for all
inner sheet to stencil area ratios used. With the revised cost penalties one final nest was
found with zero non-placement for a sheet to stencil area ratio of 1:1.4. Having reduced
non-placement of final nests for regular nesting problems, the next step was to asses the
suitability of final nests for use in determining node grids for the dredger routing model.
Figure 6.20 shows final nests with minimum non-placement, found with original and
revised cost penalties together with relevant cost and parameter tuning factor
combinations. It should be noted that the minimum non-placement final nest 3 of Figure
6.20 was arrived at with a cost and parameter tuning factor combination of 9 and 7, whilst
the minimum average non-placement for a sheet to stencil area ratio 1:1.3, given in Table

6.20, was found with a combination of 11 and 6.
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Figure 6.20 Minimum non-placement — Original (1-4) and revised (5-8) cost penalties.

In Figure 6.20 the inner sheet areas are 290,322; 266,450; 246,402; and 228,488 for

sheet to stencil area ratios of 1:1.1, 1:1.2, 1:1.3, and 1:1.4, respectively. Final nests 1 to 4

were arrived at with overlap and non-placement penalties set to unity, and final nests 5 to

8 were found with the revised cost penalties for dredge cut nesting given in Table 6.19. In

Figure 6.20 only one of the final nests depicted, number 8, satisfies the constraint of the

dredge cut nesting model that non-placement must be zero. However, final nest 8 has to

be rejected for use in determining nodes for the dredger routing model because of
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excessive overlap: If the square stencils in final nest 8 have sides which are equal to the
maximum effective cutting width of a cutter suction dredger, then inefficient use of the
dredger can be expected if the centroids of the stencils were used as nodes in a dredger

routing problem.

In Figure 6.20, final nests 5, 6, and 7 can be considered for use in determining nodes for
the dredger routing model. It is thought that the non-placement of these layouts can be
neglected and that coverage of the inner sheet is adequate to ensure complete excavation
of the inner sheet if it were a dredging area. Final nests 1 and 2 have to be rejected
outright for use in determining nodes for the dredger routing model as the displayed
arrangements of stencils intersecting the inner sheet are too irregular. In addition, the
main areas of non-placement of final nests 1 and 2 (marked in solid black) are considered
too large to be neglected.

In Figure 6.20, final nests 3 and 4 can also be considered for use in determining nodes for
the dredger routing model because they have regular arrangements of stencils on the
inner sheet. However, it is more difficult to justify relaxing the dredge cut nesting model’s
constraint of zero non-placement for final nests 3 and 4 than it is for final nests 5, 6, and 7.
Selecting final nest 3 or 4 increases the risk of leaving areas undredged. Therefore, out of
all the final nests depicted in Figure 6.20, final nest 5 would have to be considered most
appropriate for determining nodes for use in the dredger routing model as non-placement
is near zero and the overlap is the smallest of final nests 5 to 8.

The fact that a final nest arrangement with considerable overlap has to be settled for
indicates that varying overlap and non-placement cost penalties required more research,
but this was not possible due to time constraints. As argued for final nest 8, increased
overlap reduces the efficiency of the cutter suction dredger employed because sub-
optimal use is made of its maximum effective cutting width. It should be noted that not all
of the stencil overlap given in Figure 6.20 is situated inside the inner sheet, but this does

not change the essence of the argument presented regarding inefficient dredger use.

Adaptive simulated annealing theory states that the algorithm comes with a statistical
promise of being able to find global optima for complex combinatorial problems with multi-
dimensional parameter spaces. However, the results discussed so far (taking over 5,000
hours to complete on the computers used) indicate it was difficult to tune algorithm and
cost penalty settings for the dredge cut nesting model, such that globally optimum final
nests — having zero overlap and zero non-placement — were easily found for the irregular

and regular nesting problems solved here.
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The tuning problem for dredge cut nesting was largely solved by changing the approach to
the selection of stencil sets used for nesting, which is discussed in more detail in Section
6.9. First, results of the application of the dredger routing model to two additional square

grid routing problems are presented and discussed.

6.7 Dredger Routing — 64 Node Square Grid Problem

Using Equations 5.19 and 5.20 for the 64 node routing problem with a square grid spacing
of 50, the minimum route length is 3,150 and the minimum sum of turning angles is 1,250
degrees. Figure 6.21 depicts a random route used as an initial solution at the start of the
routing optimization process. The route length and the sum of turning angles of the route

depicted in Figure 6.21, respectively, are 12,915.00 and 7,181.54 degrees.
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Figure 6.21 Random initial route — Regular routing — 64 Nodes.

The initial route depicted in Figure 6.21 has no links, while for the 64 node square grid
routing problem solved here, the maximum link length is 350 and the optimum number of
maximum length links is 8 (see Equations 5.21 an 5.22). Table 6.21 reports the mean, y,
standard deviation, o, and minimum and maximum of route attributes for 20 final routes
arrived at for local search, LS, values of 1 and 8 in the application of the dredger routing
model to the 64 node square grid routing problem solved here. Values given in Table 6.21
are for 20 replications.
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Table 6.21 Regular Routing — 64 Nodes

LS p o Min Max

—_

3,180.25 58.88 3,150.00 3,374.26

Route
Length (m)

8 3,174.05 48.42 3,150.00 3,320.71

1 1,351.84° 165.38° 1,260.00° 1,980.00°

Sum Turning
Angles

8 1,318.50° 128.20° 1,260.00° 1,800.00°

1 256.80 30.34 214.72 316.67

8 208.06 45.19 220.83 350.00

Average Link
Length (m)

For a local search of 1, the dredger routing model determined final routes with optimum
route lengths and sums of turning angles 9 out of 20 times and for a local search of 8 it did
so 13 out of 20 times. As observed for the 32 node routing problem, these results
correspond with Koulamas et al. (1994), which, for a simulated annealing-based solution
approach, reported finding improved final tours of symmetric travelling salesperson

problems when local search was increased from 1 to 8.

None of the 9 final routes found with a local search of 1 which had optimal route lengths
and sums of turning angles also had 8 maximum length links. Therefore, for a local search
of 1 no optimal dredger routes were found for the 64 node square grid routing problem. Of
the 13 final routes found with a local search of 8 which had optimal route lengths and
sums of turning angles, 6 also had 8 maximum length links, giving them an optimal
average link length of 350. Figure 6.22 depicts the two types of optimal dredger routes

found for the 64 node square grid routing problem.
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Figure 6.22 Optimal dredger routes — Regular routing — 64 Nodes.

In summary, the success rate of finding optimal dredger routes for the 64 node square
grid routing problem was 0% for a local search of 1 and 30% for a local search of 8. For
the 32 node square grid routing problems these success rates, respectively, were 80%
and 85%. For an increase in the number of nodes from 32 to 64, a 55% drop in the

success rate of finding optimal dredger routes with a local search of 8 was observed.

As a result of this 55% drop it was decided to increase values of local search for the 256
node square grid routing problem beyond the upper limit of 8 as suggested in Koulamas et
al. (1994). To optimize the 256 node square grid routing problem local searches of 1, 8,

16, 32, 64, and 128 were used, and the results of these experiments are presented next.
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6.8 Dredger Routing — 256 Node Square Grid Problem

Using Equations 5.19 and 5.20 for the 256 node routing problem, with a square grid
spacing of 50, the minimum route length is 12,750 and the minimum sum of turning angles
is 2,700 degrees. Figure 6.23 depicts a random route used as an initial solution at the
start of the routing optimization process. The route length and the sum of turning angles of

the route depicted in Figure 6.23, respectively, are 109,873.78 and 28,161.02 degrees.

Figure 6.23 Random initial route — Regular routing — 256 Nodes.

The initial route depicted in Figure 6.23 has no links, while for the 256 node square grid
routing problem solved here, the maximum link length is 750 and the optimum number of
maximum length links is 16 (see Equations 5.21 an 5.22). Table 6.22 reports the mean, y,
standard deviation, o, and minimum and maximum of route attributes for 20 final routes
arrived at for local search, LS, values of 1, 8, 16, 32, 64 and 128 in the application of the
dredger routing model to the 256 node square grid routing problem solved here. Values
given in Table 6.22 are for 20 replications.
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Table 6.22 Regular Routing — 256 Nodes

LS p o Min Max
1 17,646.10 571.71 16,749.23 18,793.22
::E/ 8 13,532.23 272.93 13,082.51 13,912.11
5 16 12,949.52 163.59 12,791.42 13,436.73
% 32 12,789.21 66.24 12,750.00 12,982.51
ER 12,787.25 53.12 12,750.00 12,911.80
T 12,757.50 24.47 12,750.00 12,850.00

1 14,059.02° 833.97° 12,559.35° 15,956.97°
> 8 5,893.68° 861.55° 3,960.00° 7,596.87°
€8 16 3,771.10° 565.64° 2,790.00° 5,062.62°
EE’ 32 2,935.84° 242.33° 2,700.00° 3,420.00°
@ 64 2,775.69° 122.97° 2,700.00° 3,150.00°

128 2,704.50° 20.12° 2,700.00° 2,790.00°

1 165.42 13.99 143.42 188.90
£ 8 313.19 50.99 223.79 455.77
j;:E' 16 430.44 61.64 329.73 566.07
§? 32 518.29 67.96 422.41 677.78
Z- 64 659.45 85.22 480.77 750.00

128 725.68 43.16 580.95 750.00

Table 6.21 shows that when local search was increased beyond the upper limit of 8
suggested in Koulamas et al. (1994) average solution quality continued to improve. Figure

6.24 illustrates the effect of increased local search on average solution quality.
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Figure 6.24 Solution quality for increased local search — Regular routing — 256 Nodes.
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Figure 6.22 can explain why Koulamas et al. (1994) advises against using values of local
search greater than 8 when optimizing symmetric travelling salesperson problems with
simulated annealing where tours are modified with a 2-Opt edge exchange mechanism.
When considering route length only the greatest improvement in solution quality was
observed when local search was increased from 1 to 8. For the 256 node square grid
routing problem, Table 6.23 gives average improvements in route lengths, sums of turning
angles and average link lengths expressed as a percentage of overall average

improvements observed between a local search of 1 and 128.

Table 6.23 Local search solution quality gains — 256 Nodes — Regular routing

LS 1-8 8-16 16 - 32 32-64 64128
st 84.15% 11.92% 3.28% 0.04% 0.61%

Turmime Angles 71.91% 18.69% 7.36% 1.41% 0.63%

e 26.37% 20.93% 15.68% 25.20% 11.82%

Table 6.23 shows that for the 256 node regular routing problem optimized here the
greatest improvement in the sum of turning angles was also observed for an increase of
local search from 1 to 8. The same cannot be said of improvements found for the average
link length of final routes. To observe an improvement in average link length exceeding
improvements of 84.15% and 71.92% found for average route length and sum of turning
angles with a local search of 8, a local search of 64 was required. An increase in local
search from 64 to 128 resulted in a further 11.82% improvement in average link length,
although, as explained in Section 5.3, caution should be taken when reviewing values of
average link length alone. Figure 6.25 depicts the two types of optimal dredger route

found for the 256 node square grid routing problem.

A G O O B A O |

Figure 6.25 Optimal dredger routes — Regular routing — 256 Nodes.

135



Results and Discussion

For different values of local search, LS, Table 6.24 gives the number of instances in which
optimal routes with optimal length and sums of turning angles were found and those in
which optimal dredger routes with the optimal number of maximum length links were

found.

Table 6.24 Local search optimal routes found — Regular routing — 256 Nodes

LS 1 8 16 32 64 128

Optimal
Length & 0 0 0 6 9 17
Angle Sum

Optimal
Dredger 0 0 0 0 6 12

Routes

Table 6.24 reinforces the argument for using values of local search greater than 8 in
combination with the adaptive simulated annealing algorithm, especially when optimal
dredger routes are searched for. Figure 6.26 shows the effect increasing local search had

on average solution times for the 256 node square grid routing problem.

1,000 -
LS =128

Solution Time in minutes
(Averaged for 20 replications)

0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000 12,000,000 14,000,000

Total lterations

Figure 6.26 Solution times for increased local search — 256 Nodes — Regular routing.

It is thought the change in trend in Figure 6.26 after 2,000,000 iterations in part resulted
from a freeing up random access computer memory for experiments with a local search of
32, 64, and 128. Results of the engineering application of the dredge cut nesting problem
are presented and discussed next.
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6.9 Dredge Cut Nesting — Engineering Application

As mentioned in Section 5.4.4.1, preliminary experiments were carried out for the
engineering application of the dredge cut nesting model. Figure 6.27 depicts six
preliminary final nests which played an important part in the selection of the stencil set

used in the engineering application of the dredge cut nesting model.

Figure 6.27 Preliminary nesting results — Engineering application.
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Appendix E gives the main dredge cut nesting model settings with which the final nests
depicted in Figure 6.27 were found. All final nests depicted in Figure 6.27 were found
using the revised cost penalties given in Table 6.19. To reiterate, in Section 6.6 it was
shown that the use of revised overlap and non-placement cost penalties drastically
reduced the non-placement — the most important decision variable for dredging —
exhibited by final nests of regular nesting problems where the stencil set consisted of 32
identical squares. The observed reduction of non-placement, for the first time, allowed the
centroids of square stencils of final solutions to nesting problems to be considered as

nodes of a dredger routing problem.

Previously, in Figure 6.20 a final dredge cut nest with negligible non-placement and
overlap of 6.89% of the inner sheet area was chosen for possible determination of nodes
for a routing problem. However, the non-negligible overlap of the chosen final nest still
posed a problem: If the side length of square stencils is equal to the selected effective
cutting width of a cutter suction dredger, non-zero overlap in the final nest will lead to
inefficient use of the cutter suction dredger when the centroids of the overlapping stencils
are used as routing nodes. In short, overlap of stencils causes a cutter suction dredger to

dredge at widths which are less than the selected effective cutting width it can achieve.

Figure 6.27 shows how the problem of overlapping dredge cuts was largely solved by
using rectangular stencils which are large conglomerates of square unit dredge cuts.
These larger rectangular stencils, referred to as super stencils here, have sides which are
exact multiples of a fraction of an effective cutting width of a cutter suction dredger.
Fractions are still required to be able to match all dimensions of irregular dredging areas.
The final nests A to F in Figure 6.27 show a gradual reduction in the total number of
stencils used, as smaller stencils are grouped into larger super stencils. Table 6.25 gives
the amounts of overlap and non-placement of final nests A to F expressed as a
percentage of the inner sheet area (which was constant), the sheet to stencil area ratios

and numbers for the amount of smallest, medium and super stencils nested.

Table 6.25 Overlap and non-placement of preliminary nests — Engineering application

Nest Layout: A B C D E F
Overlap 7.55% 10.66% 14.67% 7.89% 4.48% 17.67%
lacamont 2.22% 0.03% 0.06% 0.17% 0.46% 0.02%
Smallest
Stencils 49 28 14 14 1 1
Medium
Stencils 0 6 3 1 2 1
Super Stencils 0 0 2 3 5 5
Sheet : Stencil . . . . . .
Area Ratio 1:1.112 1:1.180 1:1.270 1:1.225 1:1.154 1:1.338
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Table 6.25 shows that nesting greater numbers of larger super stencils does not
necessarily reduce the total amount of overlap of final nests in comparison to when a
greater number of smaller stencils are used. However, many of the centroids of unit
dredge cuts of overlapping super stencils are discarded and the valid centroids of the
remaining unit dredge cuts of super stencils give optimum use of a dredger’s effective
cutting width as the overlap between these unit cuts is zero by default. Table 6.25 also
shows that the nesting problem with the least amount of smallest and medium stencils

and the greatest sheet to stencil area ratio had the minimum final non-placement cost.

Figure 6.27 also shows another development which helped regularize final nest layouts: A
reduction in the number of relaxed inner sheet boundaries. Of the total number of 14
boundary lines (12 straight lines and 2 arcs) which can be said to make up the sheet
representing the dredging area, final nest layouts A to D have 10 relaxed boundaries
across which stencils can escape. For final nest layout E the number of relaxed inner
sheet boundaries was reduced to 9, and for final nest F it was reduced to 8. Reducing the
number of relaxed inner sheet boundaries resulted in better alignment of stencils, thereby,
in addition to the use of super stencils, further regularizing final nest layouts. The more
regular final nest layouts arrived at are, the more regular the associated dredger routing
problem will be, and the more efficient use is made of the selected effective cutting width

of the cutter suction dredger employed.

The stencil set used for the engineering application of the dredge cut nesting model (see
Figure 5.13) resulted from experience gained in the preliminary experiments. Further to
final nests E and F of Figure 6.27, mostly near-square super stencils were opted for.
Near-square super stencils were chosen because super stencils of rectangular shape,
such as those of final nests C and D in Figure 6.27, were found to rotate less frequently by
comparison. In this case, selecting near-square super stencils required one long narrow
stencil to be included to ensure complete coverage in the most southern part of the
dredging area, as shown, for example, in final nest F of Figure 6.27. Because the
engineering application of the dredge cut nesting model concerns a nesting problem
where the sheet and stencil set are both irregular, and where the total stencil area
exceeds the inner sheet area, the parameter and cost tuning factor combination used for
this part of the experimentation is the one for which the minimum average non-placement
was found for irregular nesting problems with reduced inner sheets. For a sheet to stencil
area ratio of 1:1.4 the minimum average non-placement was found for a parameter and
cost tuning factor combination of 7 and 5 (see Table 6.11). A sheet to stencil area ratio of
1:1.4 is closest to that used in the engineering application of the dredge cut nesting
model, which for the inner sheet of Figure 5.12 and stencil set of Figure 5.13 gives a ratio
of 1:1.439.
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Table 6.26 restates the minimum average overlap and non-placement costs found for the
irregular nesting test problem with two relaxed sheet boundaries and a sheet to stencil
area ratio of 1:1.4, and gives the results of the engineering application of the dredge cut
nesting model. Values of overlap and non-placement given in Table 6.26 are for 20
replications and are percentages of total inner sheet area. Since escape penalties were

zero for this part of the experimentation, values of escape have been excluded.

Table 6.26 Irregular dredge cut nesting — Engineering application

Sheet - Overlap Non-placement

Nesting  Stoncil (% of Sheet Area) (% of Sheet Area)

Problem Area g o Min Max y o) Min Max
3
q?-;ﬁ 114 1.73 1.41 0.15 4.25 4.51 3.30 0.36 10.84
é ‘_g_‘i 1:1.44  23.18 0.85 22.45 25.75 0.23 0.17 0.11 0.75
2 a5
w <

Table 6.26 shows that, as expected, the use of super stencils in the engineering
application increased average overlap, but average non-placement was reduced, which is
of greater importance from a dredging perspective. Figure 6.28 depicts the final nest
which was selected for the determination of nodes for the engineering application of the

dredger routing model.

Figure 6.28 Final nest for route node selection — Engineering application.
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Appendix F gives the coordinate pairs defining the positions of the stencils shown in
Figure 6.28. The final nest depicted in Figure 6.28 has one particular shortcoming: An
area of non-placement equal to 0.03% of the total sheet area, which is marked in solid
black and encircled. The marked area of non-placement is approximately 32 metres long
and 17 metres wide, and is considered negligible as long as it is excavated when the
dredger arrives in its vicinity when following the route determined with the dredger routing
model. Figure 6.29 shows the centroids of square unit dredge cuts with side lengths of
105 metres (the effective cut width used) which remained after eliminating centroids of

surplus square unit dredge cuts according to the guidelines described in Section 5.4.4.2.

Figure 6.29 Route nodes — Engineering application.

The total number of nodes in Figure 6.29 is 228 and these are the nodes used in the
engineering application of the dredger routing model. Appendix G gives the coordinate
pairs defining the route nodes shown in Figure 6.29. Results of the engineering

application of the dredger routing model are presented and discussed next.
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6.10 Dredger Routing — Engineering Application

It should be noted that the all dredger routes depicted in this section start at the left-most

route node, as encircled in Figure 6.30, which depicts a random dredger route used as an
initial solution at the start of the optimization process. The route in Figure 6.30 has a total

length of 245,260.93 metres, a sum of turning angles of 26,004.09 degrees and an

average link length of 1,236.64 metres for a total number of 3 links.

Figure 6.30 Random initial route — Engineering application — 228 Nodes.

Table 6.27 gives total route lengths, sums of turning angles and average link lengths of 10

replications carried out for the engineering application of the dredger routing model.

Table 6.27 Dredger routing — Engineering application — 228 Nodes

Replication Total Sum Turning Average Link Tota! No. of
Route Length Angles Length Links
(metres) (degrees) (metres) -
1 22,446.22 2,755.67 781.09 25
2 22,736.45 2,580.94 868.89 24
3 22,735.50 2,582.85 902.09 23
4 22,997.07 3,214.12 807.92 25
5 22,497.92 2,507.93 914.51 22
6 23,012.39 3,145.01 842.81 23
7 22,456.70 2,514.63 904.98 22
8 22,841.88 2,467.66 849.67 24
9 22,497.92 2,507.93 914.51 22
10 22,549.74 2,681.56 865.27 23
J 22,677.18 2,695.83 865.17 23.30
o 218.89 269.91 45.85 1.16
Min 22,446.22 2,467.66 781.09 22.00
Max 23,012.39 3,214.12 914.51 25.00
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Before discussing the results in Table 6.27, the main objective of the research presented
in Section 4 is reiterated: It is to contribute to improving the operational efficiency of cutter
suction dredgers by providing a tool with which the optimization of two-dimensional cut
planning for such dredgers can be automated. In Section 4, an optimal two-dimensional
cut plan for a cutter suction dredger was defined as a plan for excavating a dredging area
in which the amount of downtime resulting from non-productive dredger movements in

between dredge cuts is minimal.

For a given grid of nodes defining dredge cut locations, it was further stated that finding an
optimal cut plan consists of finding a route which visits each node exactly once and has a
minimum total length and a minimum sum of turning angles (see Section 2.2), and has the
minimum number of instances where dredging head on into previously dredged areas
occurs. It was also stated that for regular grids minimizing the number of instances where
dredging head on into previously excavated areas could be achieved by finding a route
with the maximum number of maximum length links. To evaluate routes found for irregular
grids it was stated that the route with the maximum average link length is likely to be an

optimal dredger route (see Section 5.3).

Results in Table 6.27 show that the minimum total length, minimum sum of turning angles
and maximum average link length were not found for the same route. Route 1 has the
minimum total length (marked in bold text), while route 7 has the minimum sum of turning
angles (marked in bold text), and routes 5 and 9 have the maximum average link length
(the relevant rows are grey scaled). This calls for a choice to be made if one of these 4
routes is to be identified as (near) optimal. Before limiting the number of candidates from
which the best route can be selected to routes 1, 7, 5 and 9, all 10 routes are looked at in

more detail. Figure 6.31 gives graphical representations of all 10 dredger routes found.
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The first observation that can be made when assessing the routes depicted in Figure 6.31
is that routes 4, 6, 8 and 10 all recommend dredging sequences where at some point
dredging is diverted to nearby dredge cut, which requires teleportation of the dredger over
some distance rather than having it continue dredging uninterrupted. In Figure 6.31 the
locations where dredging is interrupted in these routes are encircled. These interruptions
in turn cause additional interruptions of dredging activities and renewed teleportation of
the dredger when the route comes across cuts dredged as a result of earlier interruptions.

On the basis that interruptions of dredging require additional head on dredging into
previously excavated areas and that other routes found show that such interruptions can
be avoided, routes 4, 6, 8, and 10 are rejected as valid dredger routes. In addition,
dredger routes 4, 6, 8 and 10 all have average link lengths shorter or equal to the overall
average. This leaves six routes as candidates for best dredger route. Figure 6.31 also
shows that routes 5 and 9 are identical, reducing the number of routes to choose from to
five: Routes 1, 2, 3, 7 and 5/9. Table 6.28 ranks the remaining five routes in terms of

minimum total length, minimum sum of turning angels and maximum average link length.

Table 6.28 First ranking of dredger routes — Engineering application — 228 Nodes

Total

Dredger Route Route Length Sum Tuming Angles  Average Link Length Rank Sum
1 1 5 5 11
2 5 3 4 12
3 4 4 3 11
7 2 2 2 6
5/9 3 1 1 5

Table 6.28 shows that route 5/9 can be identified as the best dredger route on account of
having the minimum sum of turning angles, the maximum average link length and the third
longest total route length of all five routes considered. Route 7 is a close second, having a
total route length which is 41.22 metres shorter, a sum of turning angles which is 6.70
degrees greater and an average route length which is 9.53 metres longer than route 5/9.
In theory, a greater sum of turning angles equates to more dredger movements and
therefore more stoppage time and a lower operational efficiency. Arguably, minute
changes in the alignment of centrelines of consecutive dredge cuts can be absorbed
without incurring stoppage time, but this is not considered here. Both routes 7 and 5/9
have a total of 22 links, therefore the longer average link length of 9.53 metres of route 7,
means an equivalent length of dredge cut of about 210 metres (twice the effective cut
width of 105 metres) is dredged more in unaligned route edges, which is reflected by the

difference in the sum of turning angles of both routes.
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The total length of dredger routes 5 and 9 is 51.70 metres longer or 0.23% more, and their
sum of turning angles is 40.26 degrees or 1.63% more than the relevant minima found for
all routes. The average link length of routes 5 and 9 is 914.51 metres, the maximum found
for 22 links. Figure 6.32 depicts the dredger route representative of routes 5 and 9, where
a number of practical shortcomings of the route are encircled and marked with arrows. In
what follows, the assumption that dredging production is equal for all cut widths dredged,

as stated in Section 4, is discarded.

Figure 6.32 Best dredger route — Engineering application — 228 Nodes.

In Figure 6.32, the encircled route edges marked with A, as will be shown in more detail in
Figure 6.33, present an impractical dredging sequence. However, this impractical
sequence is shared with routes 1, 2, 3 and 7. In Figure 6.32, the encircled route edges
marked with B present a dredging sequence which can be difficult to execute in practice if
the dredge cut height is much greater than the diameter of the cutterhead of the cutter
suction dredger used. The difficulty lies in the capability of cutter suction dredgers to break
into undredged ground. To reach final excavation levels from the top of undredged ground
there is a limit on the maximum slope which cutter suction dredgers can achieve: As they
advance dredging depths are gradually increased over a minimum length of cut, where
the total length required to reach final depths depends on the overall height of excavation.
This issue is further complicated by the fact that the encircled link marked with B in Figure

6.32 intersects a limit of the dredging area diagonally.
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If link B in Figure 6.32 were to be dredged and the overall excavation height is much
greater than the diameter of the cutterhead used, then not only will the cutter suction
dredger have to start dredging from some distance outside the dredge limit for gradual
deepening, possibly resulting in over-dredging beyond permitted tolerances, but it will also
have to gradually widen the dredged cut once inside the dredging area. A combined
gradual widening and deepening of a dredge cut is not beyond the capabilities of modern
cutter suction dredgers with experienced crews, but it should be avoided where possible.
Figure 6.33 shows why the encircled route edges marked with A in Figure 6.32 present an

impractical dredging sequence.

Figure 6.33 Dredger route detail — Engineering application.

In Figure 6.33, the figures A1, A2 and A3 represent the dredger’s progress along the
recommended dredger route. Progress is indicated by encircling the centroids of square
unit dredge cuts and the corresponding areas excavated are hatched. As with the
impracticality of the link marked with B in Figure 6.32, when the dredge cut height is
greater than the diameter of the cutterhead of the cutter suction dredger used, the bottom-
most part of the L-shaped hatched area of A1 (presenting a sudden widening of dredge
cut) and the long and narrow hatched area of A2 in Figure 6.33 can be difficult to dredge
in practice. In addition, if it were possible to dredge the long and narrow hatched area of
A2 separately, dredging production in practice would be lower in comparison to that
achieved in wider dredge cuts, although the impact on average dredging production over

the entire route would have to be evaluated separately.
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The sequence B1-B2-B3 in Figure 6.33, with relevant cut centrelines shown, would be
more practical to dredge with a cutter suction dredger than the sequence A1-A2-A3. It can
be argued that dredging sequence A1-A2-A3 only requires two dredger movements in
practice, whereas B1-B2-B3 would need three dredger movements, albeit two of them
being relatively minor (the movements to and from the bold centreline in figure B2). The
encircled route edges marked with C in Figure 6.32 make up the last link of the best
dredger route and on this last link the dredger will dredge with previously excavated areas
on either side. Having previously excavated areas on either side of a dredge cut generally

results in lower dredging production than when experienced on one side only.

Figure 6.32 also shows black arrows on 7 route nodes. These arrows indicate locations in
the best dredger route where the cutter suction dredger will dredge head on into
previously dredged areas. As stated after Figure 5.3, for the same equivalent length of
cut, dredging head on into previously excavated areas results in lower dredging
production than when done sideways. Therefore in Figure 6.32, in practice lower dredging
productions can not only be expected at the 7 locations with arrows, but also in the whole
of the last link marked with C. Figure 6.34 shows locations (marked with solid circles)
where dredging head on into previously excavated areas occurs, and shows the last route
links (emboldened) where dredging will occur with previously excavated areas on either

side of dredge cuts for routes 1, 2, 3, and 7.

Figure 6.34 Dredging into previously excavated areas — Engineering application.
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Figure 6.35 shows that dredger routes 1, 2, 3 and 7, respectively, have 7, 4,2 and 7
locations where dredging head on into previously excavated areas will occur. Of all valid
dredger routes found, route 1 in Figure 6.34 has the shortest length where dredging

sideways into previously excavated areas on either side of the dredge cut will occur.

The practical issues raised in Figures 6.31 to 6.34 have resulted from applying the
dredger routing problem to an irregular dredger routing problem. Except for dredging head
on into previously excavated areas, none of these practical issues surfaced in global
optimum dredger routes found for the regular routing problems solved here. The additional
practical issues indicate that not all valid dredger routes found with the dredge cut nesting
and dredger routing models should necessarily be implemented in practice, and could
indicate that none of the valid dredger routes found in the engineering application of the
dredger routing model are indeed global optima.

To find out, in view of the additional practical issues raised, if route 5/9 can still be
considered as the best dredger route, a revised ranking of dredger routes 1, 2, 3, 7 and
5/9 seems in order. Table 6.29 adds to the previous ranking of routes in terms of minimum
instances of head on dredging into previously excavated areas and total length of dredge

cuts to be dredged with previously excavated areas on either side.

Table 6.29 Second ranking of dredger routes — Engineering application — 228 Nodes

Head on dredging Total length of

Dredger Route Previous into previously dredge cuts with New
Rank Sum previously excavated Rank Sum
excavated areas X .
areas on either side

1 11 3 1 15

2 12 2 3 17

3 11 1 2 14

7 6 3 4 13

5/9 5 3 4 12

Table 6.29 shows that route 5/9 can still be regarded as the best dredger route found, but
the overall supporting argument is weaker as reflected in the smaller differences in new
rank sums. Route 7 remains the most competitive, with only 6.70 degrees of additional
turning angle than route 5/9, 210 metres dredged less in aligned dredge cuts, but with a
total route length which is 41.22 metres shorter. To get a clearer picture, different settings
of cost penalty factors for the dredger routing model could be explored, reflecting
preferences for the type of optimum dredger route sought after. However, improving the

accuracy of the dredger routing model is preferable.
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Traditionally, overall execution times of dredging projects are calculated applying
estimated operational efficiencies and estimated production rates of dredgers to the total
estimated volume to be dredged, which includes volumes of over-dredging. Since the
dredging volume of the modelled dredging project is constant and unavoidable and
unforeseeable stoppage time is not considered here, the dredger route which leads to the
shortest overall execution time is the one which has the best combination of sum of
turning angles and the highest overall average dredging production. Other than being
biased towards avoiding instances in which dredging occurs head on into previously
dredged areas through the application of an edge length reduction factor, the objective
function of the dredger routing model does not take into account estimated dredging

production rates.

Route 7 therefore could be a better dredger route than route 5/9 if the time lost due to the
additional 6.70 degrees of turning the dredger and the 210 metres dredged less in aligned
dredge cuts is offset by the time gained by having to dredge a total route length which is
41.22 metres shorter. To arrive at such a conclusion the ranking systems used in this
section need to be replaced by a post-optimization assessment of routes found, which
takes into account the overall average dredging production rate of each route. To arrive at
overall average dredging production rates with which estimates can be made of the net
total time (excluding unavoidable and unforeseeable stoppage time) it takes the dredger
to excavate the total project volume, each dredger route can be split up into sections of
similar dredging conditions to which different dredging production rates apply.

Alternatively, the decision variables of the objective function of the dredger routing model
can be revised by, for example, including a stepwise reduction applied to dredging
production rates estimated for volumes to be dredged in particular unit dredge cuts related
to each node. For example, a fixed percentage reduction in the relevant dredging
production rate for each adverse factor. Adverse factors can be those already highlighted
here: Entering head on into a previously excavated area; reduced cut width; having
previously excavated areas on either side of dredge cuts; and can include dredging
production variation resulting from the direction of dredging, in particular with respect to
the dredging of side slopes of dredging areas. If the dredger touting model is revised as
such, then the assumption of homogeneity of material in the dredging area can be

discarded.
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It is important to note that nothing so far has been said about varying heights of
excavation in dredging areas. Rarely do dredging areas have a level pre-dredging
bathymetry/topography, and not all dredging projects have a single final depth of
excavation. Next to inhomogeneity of soils to be dredged, differences in total excavation
height in different parts of dredging areas also affect dredging production rates. The
excavation of a dredging area in stages at different heights of excavation before arriving at

final depths is a three-dimensional cut plan optimization problem.

Lastly, to illustrate that the inclusion of average link length as a decision variable in the
objective function of the dredger routing model can be useful, a manually modified
dredger route is presented. A review of all the valid dredger routes suggested making
minor modifications to dredger route 3 of Figure 6.34, following which the dredger route

depicted in Figure 6.35 was arrived at.

Figure 6.35 Manually modified dredger route — Engineering application — 228 Nodes.

The modified dredger route in Figure 6.35 has three locations where the cutter suction
dredger will dredge head on into previously dredged areas, four less than routes 7 and
5/9. In addition, nowhere in the modified dredger route will dredging have to be carried out
with previously excavated areas on either side of dredge cuts. Table 6.30 compares the
main characteristics of dredger route 5/9 and the manually modified dredger route shown
in Figure 6.35.
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Table 6.30 Modified dredger route — Engineering application — 228 Nodes

Total No. of Total Route

. . Locations Length in

Total Sum Turning Average Link Total No. of A
Dredger Route Route Length Angles Length Links lgigg]\?altgt; Et;(it:/zet);]d
Areas Areas

(metres) (degrees) (metres) - - (metres)

5/9 22,497.92  2,507.93 914.51 22 7 1,746.99
Modified  22,782.92  2,582.27 943.05 22 3 0

Table 6.30 shows that the modified dredger route is 285 metres longer than route 5/9. In
addition, the modified dredger route has a sum of turning angles which is 74.34 degrees
more than that of the best dredger route. However, the average link length of the modified
dredger route is 28.54 metres longer than that of the best dredger route. It is possible that
the new maximum average link length found is of interest for a dredging project carried
out with a fully automated dredger with minimal manning, since the longer links mean
greater time intervals in between dredger movements, which require additional human
and plant resources. Finding the modified route with the dredger routing model would
require the inclusion of average link length as a separate decision variable in the model's

objective function.

However, to find out which of the two dredger routes given in Table 6.30 leads to the
shortest overall execution time of the modelled dredging project, an assessment which
includes dredging production rates is again required. In view of this, the part of the route
depicted in Figure 6.35 marked with D should be noted. This route section, when dredged
as recommended in Figure 6.35, has a dredge cut width of less than 52.5 metres, the
width of the stencil used in the application of the dredge cut nesting model (see Figures
5.13 and 6.28).

Aside from the issue of cut centrelines intersecting dredging area boundaries diagonally,
the best dredger route in Figure 6.32 recommends covering route section D of Figure 6.35
with dredge cut widths of 105 metres, the effective cutting width used in the dredger
routing model, at which higher rates of dredger production can be expected than for a cut
of less than half that width. This suggests that using stencils with dimensions which are a
relatively small fraction of the effective cut width should be approached with caution.
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Instead, it could have been better to use a selection of stencils based on a wider effective
cut width, of up to 112 metres wide for the dredger considered here. The relevant part of
the dredging area is 664 metres long and about 580 metres wide (see Figure 5.12), and
therefore a single super stencil consisting of 6 cuts of 110.67 metres wide and 664 metres
long each would have ensured complete coverage. This casts some doubt on whether it
was necessary to automate the dredge cut nesting process. It is possible that a human
expert may find equally good or better nests of suitable dredge cuts with complete
coverage of the dredging area than found with the dredge cut nesting model, and in less

time

In summary, results of the engineering application of the dredge cut nesting and dredger
routing models developed and used here showed that, for a given cutter suction dredger
and dredging project, a two-dimensional cut planning problem was optimized and
therefore the hypothesis of this research can be accepted. However, the two-dimensional
cut plans found, although executable in practice, had a number of shortcomings related to
practical dredging issues. In addition, to arrive at more conclusive results for determining
cut plans which lead to the minimum execution time of modelled dredging projects the
dredger routing model also needs to take into account dredging production rates, a model
feature which, for the research presented here, was not included. Table 6.31 summarizes
the main results of the experimentation carried out as part of the work presented here.
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Table 6.31 Main results summary

No. Experiment Objective Main Result Section
1 Irregular nesting — taken from Validation of Dredge Cut Model 6.1
Yuping et al. (2005) Nesting Model validated )
Regular routing — 32 nodes Validation of Dredger 'Model
) ; : validated for
2 derived from Yuping et al. Routing Model for local 6.2
local search 1
(2005) search of 1 and 8
and 8
Irregular nesting — with To conclude if allowing
3 increasing number of relaxed escape of stencils leads to  Solution quality 6.3
sheet boundaries and sheet to better final dredge cut deteriorated ’
stencil area ratios of 1:1 nesting solutions
Irregular nesting — with 2 of To conclude if providing an
4 relaxed sheet boundaries and excess of stencil area leads  Solution quality 6.4
sheet to stencil area ratios of to better final dredge cut deteriorated )
1:1.1,1:1.2,1:1.3and 1:1.4 nesting solutions
Regular nesting — with 2 of To conclude if irregular or
5 relaxed sheet boundaries and regular stencils lead to Solution quality 6.5
sheet to stencil area ratios of better final dredge cut deteriorated ’
1:1.1,1:1.2,1:1.3and 1:1.4 nesting solutions
Regular nesting — with 2 of
relaxed sheet boundaries and To conclude if revised cost Solution qualit
6 sheet to stencil area ratios of penalties lead to better final vast] imqroveg 6.6
1:1.1,1:1.2, 1:1.3 and 1:1.4 with  dredge cut nesting solutions yimp
revised cost penalties
To conclude if for local Optimal
. search of 1 and 8 optimal solutions found
7 Regular routing — 64 nodes dredger routes can be for local search 6.7
found 8 only
To conclude if for local th|mal
. search of 1, 8, 16, 32, 64  Solutions found
8 Regular routing — 256 nodes L T for local search 6.8
and 128 optimal dredger
64 and 128
routes can be found
only
To conclude if the Dredge Confirmed, but
9 Irregular nesting — engineering Cut Nesting Model can facilitated by 6.9
application optimize a real-world the use of ’
problem super stencils
Irregular routing — engineering To conclude if the Dredger (lznc():rc])frl12211?3vgl|J1ct
10 Routing Model can optimize 6.10

application 228 nodes

a real-world problem

global minima
were found
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7 Conclusion

Two adaptive simulated annealing-based models were developed and used to solve
nesting and routing problems in search of optimal two-dimensional cut plans for cutter
suction dredgers to provide a tool for improving operational efficiencies of such dredgers.
This research pioneered the modelling of two-dimensional cut planning for cutter suction
dredgers as a combination of a modified stock cutting problem and a modified travelling
salesperson problem. This research was first to use adaptive simulated annealing to
optimize stock cutting problems where feasible solutions can exhibit escape of stencils
beyond sheets, and was first to use adaptive simulated annealing with increased local

search to optimize asymmetric routing problems with turning costs.

The research explored how the performance of the nesting model in finding optimal final
nest layouts with zero non-placement, signifying complete sheet coverage, is influenced
by selection of stencil set, sheet arrangement, and objective function cost penalty factors.
For nesting problems with an irregular stencil set, a rectangular sheet and all cost penalty
factors set to unity, model performance deteriorated significantly when stencils were
allowed to escape from sheets. Model performance deteriorated further when escape cost
penalty factors were set to zero and total stencil area was made to exceed sheet areas
which had two boundaries across which stencil escape was permitted. For the same sheet
arrangements and penalty factor settings, no significant improvement in model

performance was observed when a regular stencil set of identical squares was nested.

For regular as well as irregular nesting problems, where escape of stencils is permitted
and total stencil area exceeds sheet area, the use of revised cost penalty factors for non-
placement and overlap of stencils resulted in significant improvement in the performance
of the nesting model. The revised cost penalties increased non-placement cost in
comparison to the cost of stencil overlap. Further improvement of model performance was
observed when the total number of stencils nested was kept under 10 for irregular nesting
problems. With revised cost penalty factors and an irregular set of 7 stencils acceptable
final nest layouts were found in an engineering application of the dredge cut nesting
model. The average non-placement of final nest layouts found, was 0.23% of the total
sheet area with a standard deviation of 0.17%.
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For square grid routing problems of rectangular shape, the research also explored how
the performance of the dredger routing model in finding optimal dredger routes, signifying
routes with optimal numbers of maximum length links, is influenced by problem size and
increased local search. Using a 2-Opt route edge exchange mechanism to modify routes,
the model’s performance was found to deteriorate significantly when problem size was
increased from 32 to 64, and then to 256 nodes for a local search of 1. For a square grid
routing problem with 256 nodes model performance improved significantly when local
search was increased gradually from 1 to 128, with results showing that 60% of routes

found were global optima.

For an irregular grid routing problem with 228 nodes, derived from a final dredge cut nest
layout with 0.03% non-placement found in the engineering application of the dredge cut
nesting model, the dredger routing model’s performance with a local search of 128 was
found to be far from optimal. To cover an irregular dredging area of 2,172,151 square
metres, 10 dredger routes were found with an average route length of 22,677.18 metres
with a standard deviation of 218.89 metres, and an average sum of turning angles of
2,695.83 degrees with a standard deviation of 269.91 degrees. The minimum route length
and minimum sum of turning angles, were not found for the same route. After detailed
analysis of all 10 routes found, 4 routes were rejected as valid solutions because they
recommended unnecessary dredger teleportation.

Of the remaining 6 valid routes, 2 identical routes were considered to be the best dredger
route found on the basis of having the second smallest sum of turning angles and the
overall maximum average link length. However, the detailed analysis of the remaining 6
valid dredger routes showed it was not possible to conclude if the route identified as the
best dredger route found would also lead to the shortest overall execution time of the
modelled dredging project. To make conclude this dredging production rates need to be
taken into account. Either as part of a post-optimization appraisal of dredger routes found
or through a revision of the decision variables of the objective function of the dredger
routing model so that the overall average dredging production rate for routing problems

can be optimized.
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8 Future Work

A number of aspects which can lead to improved model performance in general are
mentioned first. For the dredge cut nesting model, further testing with values of parameter
and cost tuning factors in the between the integer values used here may lead to improved
results. Of particular interest to the nesting problems solved here should be rational
values of the cost tuning factor in between 3 and 5. For a cost tuning factor of 3 solution
quality was poor for all nesting test problems solved, while for increases to values of 4 and

5 the greatest improvements in solution quality, and best solution qualities were found.

For both the dredge cut nesting and dredger routing problem, further testing with different
settings for penalty cost factors of the objective functions is required. For the dredge cut
nesting model only one revised set of cost penalty factors was used, inspired by a set
used in Yuping et al. (2005). No other variations in cost penalty factors for the dredge cut

nesting model were researched here.

For the dredger routing model all cost penalty factors were set to unity for all routing
problems solved. Results of the engineering application of the dredger routing model
showed that additional evaluation of optimized routes was necessary to identify the best
route. The dredger routing model in its present form allows for varying cost penalty factors
for total route length and sum of turning angles. By setting penalty factors for sum of
turning angles to zero it could also be interesting to test the model’s performance, using

increased local search, on travelling salesperson problems taken from test libraries.

In its present form the dredger routing model is also capable of using a variable Opt edge
exchange mechanism to modify routes, up to the maximum number of edges possible for
a given problem. Helsgaun (2000) uses a heuristic solution approach with a variable Opt
edge exchange mechanism for up to 5 route edges to successfully solve large travelling
salesperson problems. The variable Opt edge exchange mechanism of the dredger
routing model was not used in the research here because the additional feature of being

able to select other edges nearby the edge under consideration was not fully verified.
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A 5-Opt edge exchange in Helsgaun (2000) is limited to the nearest five neighbours of the

edge considered. For an adaptive simulated annealing solution approach each edge can
be associated with a parameter temperature which influences which neighbouring edges
are considered for inclusion in a variable Opt edge exchange. The variable Opt exchange
mechanism itself can also be subjected to annealing and re-annealing. At present the 2-
Opt edge exchange used selects two edges randomly. The use of parameter
temperatures for a variable Opt exchange mechanism in the dredger routing model is
expected to improve the efficiency of increased local search. Clearly, for a local search of
128, as used in this research, not all of the 128 2-Opt edge exchanges considered at a
particular point in the solution process would have been useful, signifying a waste of

computer resources.

In addition, as done in Helsgaun (2000), previous route modifications can be remembered
so that they are not carried out again or accepted for a specified number of iterations.
After inclusion of an annealing and re-annealing system for a variable Opt edge exchange
mechanism it would be interesting to see how the model performed when tested against
travelling salesperson problems taken from test libraries.

Secondly, a number of issues related to increasing the complexity of the models
developed here and improving their accuracy are worth considering. As already
mentioned in the concluding section, dredging production rates need to be included as a
decision variable in the dredger routing model to search for dredger routes of which it can
be said that they will lead to the overall shortest execution time of the modelled dredging

projects.

Then the use of centroids of square unit dredge cuts (which make up super stencils
nested with the dredge cut nesting model) as nodes for a dredger routing problem needs
to be reviewed. Such a review would centre on considering the use of centroids of the
parts of square unit dredge cuts which are inside the dredging area instead of using
centroids of unmodified square unit dredge cuts. The use of unadjusted nodes for a
dredger routing problem results in what could be seen as false links edges because the
dredger routing model is biased towards adding edges which are aligned, but these edges
inaccurately define locations of cut volumes. Using centroids of partial unit dredge cuts will

improve the models of dredging projects.
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As part of increasing the accuracy of the dredge cut nesting model and the dredger

routing model, they can both be extended to three spatial dimensions. This is of particular
interest to the dredge cut nesting model. As mentioned briefly in the previous section,
cutter suction dredging production rates vary with excavation height. Differences in
excavation height are present in most dredging projects, especially capital dredging
projects. In addition, in view of spillage, it is sometime preferable to divide a dredging
project into two stages, one of so-called bulk dredging and one of final dredging. To
maximize dredger production it is necessary to model a dredging project in three
dimensions instead of two. How a three-dimensional dredge cut model is to function
exactly is not yet clear, but the model should aim at finding nests of three-dimensional cut

units which maximize overall average dredging production.

For multi-staged dredging projects the dredger routing model must also be able to cope
with routing in a third spatial dimension. In view of this, accretion rates in areas dredged to
final depth can be taken into account, in a fashion similar to, for example, lawn mowing
problems where rates of vegetation re-growth are taken into account. In addition, to
eliminate the assumption of unlimited access to dredging areas, the dredger routing model
can be extended to include user specified time windows in which certain parts of dredging
areas are inaccessible or, for instance, require early completion. Such an extension may
have to include allowing for revisiting nodes in the routing problems solved. Lastly, results
of the models developed here or extended versions thereof can be used to determine
construction schedules. The determination of a construction schedule related to an
optimized dredger route can include the optimization of transport of dredged materials
from cut to fill areas with solution approaches presented in Mayer et al. (1981), Ford
(1984) and Henderson et al. (2003).
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Appendix A — Mass Haul Diagram — Worked Example

The mass-haul diagram and experienced engineering judgement, together with deterministic

methods, have been the key factors in planning and estimating earth moving operations

(Jayawardane et al. 1994), in particular on road and railway projects. The following paragraphs

explain how a mass-haul diagram can be made with the aid of data from a hypothetical

road/railway project. A mass-haul diagram is plotted after the earthwork quantities have been

computed between cross-sections at chainages along the longitudinal profile of a road/railway

project for which the grades are known. Cut is taken as negative and fill as positive to evaluate

cumulative volumes from the beginning to the end of the project. The ordinates on the mass-haul

diagram show these volumes in cubic metres. The horizontal base line, plotted to the same scale

as the longitudinal profile, gives the points at which the cumulative volumes are obtained with total

positive volumes plotted above the base line and total negatives below it. Numerical data of a

hypothetical road/railway project taken from a textbook example (Bannister, 1984) is given in Table

A1,

Table A.1 Hypothetical data for a mass-haul diagram.

Volumes
Chainage along ﬁe'.‘”e ) .
Longitudinal eight Cut Fill Shrinkage Corrected Cumulative
Profile w.r.t. Constant Volume Volume
grade
(m) (m?) (m?)

1000 -1.22 0
1040 0 230 -230 -230
1100 1.52 480 0.90 +430 +200
1200 3.96 2560 0.90 +2300 +2500
1300 412 4560 0.90 +4100 +6600
1400 2.74 3940 0.90 +3550 +10150
1500 0 950 0.90 +850 +11000
1600 -3.05 1350 -1350 +9650
1700 -4.27 4010 -4010 +5640
1780 -4.72 4600 -4600 +1040
1820 -4.72 BRIDGE +1040
1900 -3.51 4130 -4130 -3090
2000 -1.22 2370 -2370 -5460
2035 0 60 -60 -5520
2100 1.98 510 0.90 +460 -5060
2200 3.96 3180 0.90 +2860 -2200
2300 3.66 4055 0.90 +3650 +1450
2400 2.44 3860 0.90 +3470 +4920
2500 0.61 1320 0.90 +1190 +6110
2530 0 100 0.90 +90 +6200
2600 -1.07 350 -350 +5850
2700 -1.52 1230 -1230 +4620
2800 0 420 -420 +4200
2900 1.68 1080 0.89 +960 +5160
3000 3.66 3730 0.89 +3320 +8480
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Assuming that the earthworks have been balanced before chainage 1000 and all cut is directly
usable as fill, the data from Table A.1 can be used to plot a mass-haul diagram as illustrated in

Figure A.1.

- Surplus
£ o Q
L S
= / e T
P y : | H
S I ] D o L1 G |
§ » T e
o | I | I |
T : I \_xﬂ__(: ! : I | :
1000 | 1200 1400 1600 MNI 2000 2200!] 2400 2600 2800 | 3000
i b IChainage (m) along 1 | | : :
L1 e ILongitudinal Section| | | | |
10000 —— ! F— ,
| | IR RE
I I
) : gt |
& 5000 —— TR X i A
| TTTIrrT T T r—= | |
% I |: ):L : : h 9
|
5 0 a L//tl _________ ___'.J.Fm%____ _____ [ 7p Base|Line
8 ik c )
"]
=
o
2 -5000 ol s
5] d
-10000 Mass|Haul Curye

Figure A.1 Mass haul diagram plotted with hypothetical data.

Where the mass-haul curve crosses the base line a change in the sign of the cumulative volume is
observed. Also, the cumulative volume between any two consecutive points between which the
mass-haul curve crosses the base line is zero. Between such points the cut and fill balance each
other. In addition, the following conclusions can be drawn from the mass-haul diagram depicted in

Figure A.1:

e Arising mass-haul curve indicates cut, a maximum point marking an end of cut.

e A falling mass-haul curve indicates fill, a minimum point marking an end of fill.

e The differences between the ordinates of two points represents the volume of cut or fill
between those points as long as there is no minimum or maximum point situated in

between them.

¢ Any horizontal line which intersects the mass-haul curve at two or more points, for instance
the dashed line between the points / and m in Figure A.1, is known as a balancing line as
the volume of cut and fill balance. In other words, there is no difference in cumulative
volume between the points / and m. The length of a balancing line is equal to the transport
distance between the points at which it intersects the mass-haul curve. The points of

intersection are also known as balancing points.

e When the mass-haul curve is above a balancing line, material must be moved to the right,

for instance in the case of the part of the mass-haul curve denoted by Ibm in Figure A.1,
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and when it is below such a line the material must be moved to the left, as with the curve

section rgs. In Figure A.1 the direction of movement is indicated by arrows.

The base line of the mass-haul diagram is in itself a possible balancing line, although not
necessarily the most economical one. If the base line in Figure A.1 is used as the balancing line
there will be a surplus of 8490 m® at the end of the project. Surplus can be considered for use

elsewhere, for instance on another earthwork project not too far away.

If there is no other use for surplus then, of course, it will remain, but by selecting the balancing
line(s) differently a more, or perhaps even the most economical way to carry out the works can be
determined based on minimal transport distances. For this purpose any number of balancing lines
may be drawn on the mass-haul curve, and it is not necessary for them to be continuous. For
instance, in Figure A.1 the balancing lines Im and np are separated by the bridge and np and grs

are not connected at all.

Earthwork that is excluded by balancing lines is not balanced. In Figure A.1 it can be seen that this
is the case between the points Kand L, and P and Q. As the mass-haul curve rises in the sections
corresponding to both these sets of points it is known that the imbalance in each case is a surplus.
Where imbalances amount to a shortage the selection of one or more borrow pits will be required

to complete the project.

It is common that the most economical solution for carrying out the earthwork is obtained by
selecting balancing lines which are not continuous. Balancing lines that are too long would result in
excessive and uneconomical transport distances. The cost of transporting excavated material
depends to some extent on the distance it must be carried. Usually, in the Bill of Quantities for a
project, a unit price for excavation will include the transport of the excavated material over a limited
distance. This limited distance is known as free haul. When the material has to be transported over
a distance greater than the free haul, the extra distance is referred to as overhaul. In some

contracts overhaul is provided for.

The term haul itself is defined as the total of the products of the separate volumes of cut and the
distances over which they are transported to areas containing volumes of fill, transport distances

being measured between the centroids of the cut and the fill volumes.

Where free haul is given it can be plotted on the mass-haul diagram allowing overhaul to be
estimated. In the mass-haul diagram depicted in Figure A.1 a free haul of 500 metres is
represented by the balancing lines xy and np. The balancing lines gr and rs each represent

transport distances equal to roughly half the free haul distance.

The areas delimited by the parts of the mass-haul curve cut off by the balancing lines and the
balancing lines themselves, for instance the area Ibm cut off by the balancing line xy, are equal to
the haul in the relevant section as they represent the product of volume and distance. One square

on the mass-haul diagram shown in Figure A.1 represents 5,000 x 200 = 1 x 10° m* of haul. If, for
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payment purposes, a unit is defined as 1 cubic metre transported over a distance of 100 metres
then 1 square is equal to 10,000 units. The area giving haul within the free haul distance is then
uxbyvu. The area giving haul exceeding the free haul distance is the area Ibm/ minus the area
uxbyvu, which in Figure A.1 is about 200,000 m*or 0.2 squares. By multiplying this net area
expressed in squares by 10,000 the amount of haul exceeding the free haul distance is expressed
in units, in this case 2,000 units. The volume for which additional transport costs are paid is given
by the dashed line xu, i.e. 3,000 m3, the additional distance over which this volume has to be

transported being approximately 67 metres.

A balancing exercise will have taken into account the free haul distance and will most likely include
borrowing for some sections and running waste from others. In addition, the balancing of
earthworks has to include the consideration that it is preferable to transport excavated material
downhill as this will require less effort. In cases where transporting material over long distances
along steep uphill sections between cut and fill costs more than wasting excavated material

followed by excavating once again from a borrow pit, the latter option may be chosen.

In summary, when haul costs are directly proportional to transport distance, a mass-haul diagram
has two useful properties which aid in determining the minimum amount of haul and therefore lead

to the most economic allocation of cut-and-fill (Mayer et al., 1981), and these are:

e Equal amounts of cut-and-fill can be indicated by horizontal balancing lines between two or

more balancing points intersecting the mass-haul curve, and;

e Quantities of haul can be minimized by distributing cut-and-fill between, rather than across,

balancing points.
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Appendix B — Daily Report Cutter Suction Dredger “Cyrus”

DAILY REPORT
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Appendix C

Appendix C — Main Characteristics Cutter Suction Dredger “Cyrus”
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Appendix D

Appendix D — Sheets Engineering Application Dredge Cut Nesting

Inner Sheet (Dredging Area)

Point ID X y Point ID X y
1 166 1575 27 1111 1299
2 567 556 28 1101 1333
3 639 318 29 1033 1313
4 658 269 30 973 1516
5 684 224 31 738 1912
6 717 184 32 710 1895
7 756 149 33 731 1853
8 799 121 34 745 1808
9 847 100 35 752 1762
10 897 87 36 751 1715
11 949 81 37 743 1668
12 1001 84 38 728 1624
13 1052 95 39 706 1582
14 1101 114 40 678 1544
15 1146 140 41 644 1511
16 1186 173 42 605 1484
17 1221 212 43 563 1463
18 1249 256 44 518 1450
19 1270 304 45 472 1443
20 1284 354 46 425 1444
21 1289 406 47 378 1452
22 1286 458 48 334 1467
23 1275 509 49 292 1489
24 1220 692 50 254 1517
25 3025 1233 51 221 1551
26 2848 1820 52 194 1589

Outer Sheet (Dredging Area + Escape Regions)

Point ID X y Point ID X y
1 128 1671 5 1220 692
2 567 556 6 3025 1233
3 734 0 7 2601 2647
4 1370 191
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Appendix E

Appendix E - Preliminary Engineering Application Dredge Cut Nesting

Model

Nest A Nest B Nest C Nest D Nest E Nest F
Parameter

Escape
Penalty 0 0 0 0 0 0
Factor

Overlap
Penalty 4 4 4 4 4 4
Factor

Non-
placement
Penalty
Factor

50 50 50 50 50 50

Escape
Penalty 0 0 0 0 0 0
Exponent

Overlap
Penalty 1 1 1 1 1 1
Exponent

Non-
placement
Penalty
Exponent

Sampled

States 100 5 5 5 5 5

Parameter
Tuning 10 10 9 9 11 11
Factor

Cost Tuning
Factor

Parameter
Temp Re-
anneal

150 AsS / 100 As / 60 AS / 60 AS / 100 As / 100 As /
1,500 Gs 1,000 GSs 600 GS 600 GS 1,000 GS 1,000 GS

Cost Temp

1,500 GS 1,000 GS 600 GS 600 GS 1,000 GS 1,000 GS
Re—-anneal

Parameter

1,500 GS 1,000 GS 600 GS 600 GS 1,000 Gs 1,000 Gs
Temp Anneal

Cost Temp

1,500 AS 1,000 AS 600 AS 600 AS 1,000 AS 1,000 AS
Anneal

Total

Tterations 149,999 99,999 59,999 59,999 99,999 99,999

Notes: AS = Accepted States; GS = Generated States
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Appendix F

Appendix F — Final Nest Layout Engineering Application

X-COORD, Y-COORD

1367.994, 197.0486
1217.104, 699.6717
1166.842, 684.5908
1317.726, 181.9639

735.2547, 1.743868
1338.07, 184.5971

1280.023, 375.9636
1155.218, 787.4132
743.7764, 662.6107
552.3987, 604.5595

403.9372, 970.5125
1088.2, 1238.755

1051.704, 1331.855
1015.209, 1424.952
819.9573, 1923.022
321.8846, 1727.768
228.7901, 1691.273
135.6947, 1654.776

1633.972, 816.7046
2337.902, 1028.039
2309.15, 1123.81

2280.397, 1219.581
2126.565, 1731.968
1614.18, 1578.138
1518.41, 1549.385
1422.637, 1520.632

338.2393, 1137.135
607.7052, 453.3772
700.7349, 490.0388
793.7618, 526.6989
1291.462, 722.8442
1095.323, 1220.543
1058.661, 1313.572
1022, 1406.603

2107.662, 1725.667
2320.183, 1022.084
2415.91, 1050.998
2511.637, 1079.912
3023.764, 1234.604
2869.077, 1746.739
2840.161, 1842.463
2811.248, 1938.189

937.1989, 1374.438
1148.963, 670.6453
1244.716, 699.4578
1340.47, 728.2677

1852.759, 882.4111
1698.615, 1394.694
1669.803, 1490.451
1640.993, 1586.204
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Appendix G

Appendix G — Route Nodes Engineering Application

Point % y Point % y Point % y Point % y

ID ID ID ID

1 204 1625 58 810 299 115 1194 1068 172 2011 1204
2 242 1527 59 815 930 116 1207 642 173 2021 1536
3 280 1430 60 829 1757 117 1212 421 174 2041 1103
4 319 1332 61 833 598 118 1224 967 175 2051 1435
5 357 1234 62 836 1164 119 1234 1299 176 2071 1003
6 378 1468 63 840 198 120 1237 541 177 2081 1335
7 395 1136 64 846 1426 121 1242 320 178 2112 1234
8 406 1108 65 849 530 122 1254 867 179 2122 1566
9 416 1370 66 853 832 123 1264 1199 180 2142 1134
10 445 1010 67 867 1659 124 1267 441 181 2152 1465
11 455 1272 68 871 98 125 1273 220 182 2172 1033
12 476 1506 69 874 1066 126 1285 766 183 2182 1365
13 483 912 70 880 430 127 1294 1098 184 2203 1590
14 493 1175 71 884 1328 128 1298 340 185 2212 1264
15 504 1146 72 892 735 129 1325 998 186 2234 1490
16 514 1408 73 895 1300 130 1328 240 187 2242 1164
17 522 814 74 905 1562 131 1334 1329 188 2264 1389
18 543 1048 75 910 329 132 1355 897 189 2273 1063
19 553 1311 76 913 968 133 1365 1229 190 2295 1289
20 560 717 77 930 637 134 1385 797 191 2304 1620
21 581 951 78 933 1202 135 1395 1128 192 2325 1188
22 591 1213 79 941 229 136 1425 1028 193 2334 1520
23 599 619 80 944 1464 137 1435 1360 194 2355 1087
24 602 1185 81 950 561 138 1455 927 195 2365 1419
25 612 1447 82 951 871 139 1465 1259 196 2395 1319
26 620 853 83 971 128 140 1486 827 197 2404 1651
27 637 521 84 972 1105 141 1496 1159 198 2425 1218
28 640 1087 85 980 460 142 1526 1058 199 2435 1550
29 648 469 86 982 1366 143 1536 1390 200 2456 1118
30 650 1349 87 990 773 144 1556 958 201 2465 1450
31 658 755 88 992 1339 145 1566 1289 202 2496 1349
32 671 1583 89 1003 1339 146 1586 857 203 2505 1681
33 679 989 90 1010 1007 147 1596 1189 204 2526 1249
34 679 369 91 1011 360 148 1626 1088 205 2535 1581
35 689 1251 92 1028 675 149 1636 1420 206 2556 1148
36 693 1817 93 1031 1241 150 1657 988 207 2566 1480
37 697 658 94 1033 1239 151 1666 1320 208 2596 1380
38 699 1223 95 1041 259 152 1687 887 209 2606 1712
39 709 268 96 1049 909 153 1697 1219 210 2626 1279
40 710 1485 97 1050 591 154 1719 1445 211 2636 1611
41 717 891 98 1063 1138 155 1727 1119 212 2657 1179
42 731 1719 99 1072 159 156 1750 1345 213 2666 1510
43 735 560 100 1081 491 157 1757 1018 214 2697 1410
44 738 1125 101 1087 812 158 1780 1244 215 2706 1742
45 740 168 102 1093 1038 159 1787 918 216 2727 1309
46 748 1387 103 1103 1370 160 1810 1144 217 2736 1641
47 749 500 104 1111 390 161l 1820 1475 218 2757 1209
48 756 794 105 1124 937 162 1840 1043 219 2767 1541
49 769 1621 106 1126 714 163 1850 1375 220 2797 1440
50 770 67 107 1133 1269 164 1870 942 221 2807 1772
51 776 1028 108 1142 290 165 1880 1274 222 2827 1340
52 779 399 109 1151 621 166 1910 1174 223 2837 1672
53 786 1290 110 1154 837 167 1920 1506 224 2858 1239
54 790 1855 111 1164 1168 168 1941 1073 225 2867 1571
55 794 696 112 1172 189 169 1951 1405 226 2898 1471
56 797 1262 113 1181 521 170 1971 973 227 2928 1370
57 807 1523 114 1184 736 171 1981 1305 228 2958 1270
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