Barack, Leor (2009) Gravitational self force in extreme mass-ratio inspirals. Classical and Quantum Gravity, 26 (21), 213001-213056. (doi:10.1088/0264-9381/26/21/213001).
Abstract
This review is concerned with the gravitational self-force acting on a mass particle in orbit around a large black hole. Renewed interest in this old problem is driven by the prospects of detecting gravitational waves from strongly gravitating binaries with extreme mass ratios. We begin here with a summary of recent advances in the theory of gravitational self-interaction in curved spacetime, and proceed to survey some of the ideas and computational strategies devised for implementing this theory in the case of a particle orbiting a Kerr black hole. We review in detail two of these methods: (i) the standard mode-sum method, in which the metric perturbation is regularized mode-by-mode in a multipole decomposition, and (ii) m-mode regularization, whereby individual azimuthal modes of the metric perturbation are regularized in 2+1 dimensions. We discuss several practical issues that arise, including the choice of gauge, the numerical representation of the particle singularity, and how high-frequency contributions near the particle are dealt with in frequency-domain calculations. As an example of a full end-to-end implementation of the mode-sum method, we discuss the computation of the gravitational self-force for eccentric geodesic orbits in Schwarzschild, using a direct integration of the Lorenz-gauge perturbation equations in the time domain. With the computational framework now in place, researchers have recently turned to explore the physical consequences of the gravitational self-force; we will describe some preliminary results in this area. An appendix to this review presents, for the first time, a detailed derivation of the 'regularization parameters' necessary for implementing the mode-sum method in Kerr spacetime.
This record has no associated files available for download.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.