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Abstract. We prove that the standard wreath product A oB has
Property (FA) if and only if B has Property (FA) and A is a finitely
generated group with finite abelianisation. We also prove an anal-
ogous result for hereditary Property (FA). On the other hand, we
prove that many groups with hereditary Property (FA) are not
quotients of finitely presented groups with the same property.

1. Introduction

Property (FA) was introduced by Serre in his monograph [14]: a
group G is said to have Property (FA) if every isometric action of G
on a (simplicial) tree has a fixed point. Serre’s fundamental result [14,
Theorem I.6.15] about Property (FA) says that a denumerable group G
has Property (FA) if and only if G is not an amalgam, G has no quotient
isomorphic to Z and G is finitely generated. Traditional examples of
groups with Property (FA) include

(1) finitely generated torsion groups;
(2) Coxeter groups such that the associated Coxeter matrix has no

occurrence of ∞;
(3) special linear groups over the integers, SLn(Z), for n ≥ 3;
(4) more generally, groups with Kazhdan’s Property (T);
(5) also more generally than (3), in another direction, irreducible

lattices in semisimple Lie groups of real rank at least two, e.g.
SL2(Z[

√
2]).

The first three of these examples are demonstrated in Serre’s original
account [14]; (4) was proved by Watatani in [18], using the characteri-
sation of property (T) in terms of affine actions on Hilbert spaces; and
finally (5) is due to Margulis [13].

The aim of this article is to investigate Property (FA) for wreath
products. We recall that the (standard) wreath product of two groups
A,B is defined as the group

A oB := ⊕b∈BAb oB,

where Ab denote isomorphic copies of A. If A and B are finitely gen-
erated then so is A oB.
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Theorem 1. Consider the wreath product G = A oB of two countable
groups A and B, with B non-trivial. The following are equivalent

• G has Property (FA);
• B has Property (FA) and A is a finitely generated group with

finite abelianisation.

Contrast with the following result on property (T) groups [6, Propo-
sition 2.8.2]: the wreath product A o B of two non-trivial groups A,B
has property (T) if and only if A has property (T) and B is finite.

The following is a well-known problem (it appears for instance as [3,
Question 7] and in [17]).

Question 2 (fg versus fp). Is every finitely generated group with Prop-
erty (FA) the quotient of a finitely presented group with property (FA)?

It can also be restated as “is Property (FA) open in the space of
marked groups?” (see [7, Section 2.6(h)]). The analogous question for
some other fixed point properties has a positive answer

• for Property (FR) (fixed point property on R-trees), a result
of Culler and Morgan [8, Proposition 4.1].
• Property (FH) (fixed point property on Hilbert spaces, also

known as Kazhdan’s Property (T)), a result independently due
to Shalom and Gromov ([16, Theorem 6.7] and [10, 3.8.B])
• more generally, again by Gromov [10, 3.8.B], the fixed point

property on any class of metric spaces which is stable under
“scaling ultralimits”, e.g. the class of all CAT(0)-spaces.

It is an old open question [15, Question A, p.286] whether Property
(FA) implies the a priori stronger Property (FR). Of course a positive
answer would imply a positive answer to Question 2.

Some evidence for a positive answer for Question 2 is given by the
case of wreath products, as the proof of Theorem 1 actually yields

Proposition 3. If A,B are finitely presented groups, A has finite
abelianisation and B has Property (FA), then A o B is the quotient
of a finitely presented group with Property (FA).

Note that Baumslag [1] proved that a wreath product of non-trivial
finitely presented groups A o B is finitely presented only when B is
finite.

Definition 4. A group G has hereditary Property (FA) if G and all its
finite index subgroups have Property (FA).

It is natural to address Question 2 when we replace Property (FA)
by hereditary (FA). Then the answer turns out to be negative, and
wreath products provide a large class of elementary examples.
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Theorem 5. Let G = A oB be the wreath product of two finitely gener-
ated groups. Assume that B is infinite and residually finite, and that A
has at least a non-trivial finite quotient. Then every finitely presented
group mapping onto G has a finite index subgroup with a surjective
homomorphism onto a non-abelian free group.

Examples in Theorem 5 where G has hereditary (FA) are provided
by the following theorem, which relies on Theorem 1 but also requires
further arguments.

Theorem 6. Let G = A o B be a wreath product of finitely generated
groups, with B infinite. The following are equivalent

• G has hereditary Property (FA);
• B has hereditary Property (FA) and A is a finitely generated

group with finite abelianisation.

Example 7. If G = F o SL3(Z) with F any non-trivial finite group,
then G has hereditary Property (FA) by Theorem 6, but is not the
quotient of any finitely presented group with the same property, by
Theorem 5.

Remark 8. Despite the analogy between Theorems 1 and 6, Theorem
5 shows that Proposition 3 is false when (FA) is replaced by heredi-
tary (FA).

Remark 9. Let Γ be the first Grigorchuk group [12, Chap. VIII]. This
is a finitely generated group every proper quotient of which is finite; in
particular it cannot be expressed as a non-trivial wreath product with
an infinite quotient. Also, it is a finitely generated torsion group and
therefore has hereditary Property (FA) as well as its finite index sub-
groups. It follows however from [9] (see also [2, Corollary 8]) that every
finitely presented group mapping onto Γ has a finite index subgroup
mapping onto the free group.

Remark 10. There are several possible variants or extensions of The-
orem 1, with the same proof:

• it is true with Property (FA) replaced by (FR);
• it is true for permutational wreath products

A oX B = ⊕x∈XAx oB,

where X is a B-set with finitely many B-orbits, and without
any B-fixed point.
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2. Standard wreath products

In this part, we prove Theorem 1 and Proposition 3. We begin by
two classical lemmas.

Lemma 11. Suppose that a group H acts on a tree X without in-
versions. Let A and B be subgroups of H such that XA and XB are
non-empty. If [A,B] = 1 then XA ∩XB 6= ∅.

Proof of Lemma. On the contrary, suppose that XA ∩ XB is empty.
Then, there is a unique geodesic α in X that realises the minimum
distance between XA and XB. However, as A and B commute, A
preserves the set XB. This means that A fixes the geodesic α. Similarly
B fixes α and the path α is common to both XA and XB. This proves
the Lemma. �

Lemma 12 (I.6.5.10 in [14]). Let X1, . . . , Xm be subtrees of a tree X.
If the Xi meet pairwise then their intersection is non-empty.

Proof of Theorem 1. Let G := A o B be the wreath product of A and
B. If G has Property (FA) then clearly B, being a quotient of G
has Property (FA). Moreover, G is finitely generated and this forces
A to be finitely generated. Finally G has finite abelianisation; but
Gab = Aab × Bab. Hence the abelianisation of A is also finite. It
therefore, suffices to prove the converse.

Suppose A is a finitely generated group with finite abelianisation and
B is a group with Property (FA). Let G act without inversions on a
tree X. We need to prove that XG is non-empty. As B is a subgroup
of G with Property (FA), it is clear that XB is non-empty.

Case XA 6= ∅. Recall that A oB is the semidirect product of ⊕b∈BA
with B, where B acts by permuting the components of ⊕b∈BA. We will
write the b-th copy of A in the direct sum as Ab. As G acts on X, each
of the groups Ab, for b ∈ B acts on X. As XA 6= ∅ and b.XA = XAb ,
the set XAb 6= ∅ for each b ∈ B. Moreover, since A and Ab , b 6= 1
commute, by Lemma 11, XA ∩XAb 6= ∅. In fact, by Lemma 12, every
finite subcollection of

{
XAb : b ∈ B

}
has non-empty intersection. To

prove the claim it suffices to show that ∩b∈BX
Ab 6= ∅.

As B acts on the direct sum ⊕b∈BA by permuting the components,
any vertex common to XB and one of the trees XAb is a global fixed
point for G. Therefore we may assume that for every b ∈ B, XB ∩XAb
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is empty. For each b ∈ B, let vb be the vertex in XAb which is closest
to the tree XB.

Consider b and b′, two distinct elements of B. Let v be a vertex
common to both XAb and XA′

b . Any path joining v to a vertex in XB

must pass through vb. But, any such path must also pass through vb′ .
This forces vb to be the same vertex as v′b. We deduce from here that
there is a vertex common to all XAb and so ∩b∈BX

Ab 6= ∅. The unique
point in ∩b∈BX

Ab that is closest to XB must be fixed by B. In other
words if both A and B have fixed points in a tree on which the wreath
product is acting then their fixed sets have to intersect and produce a
global fixed point for G.

Case XA = ∅. Observe that if G is a finitely generated group acting
on a tree without inversions and the action is such that every element
of G is elliptic on X, then XG is not empty. Therefore the hypothesis
that XA 6= ∅ implies the existence of an element a of A such that a
acts by translations on a line `. Take any 1 6= b from B. Then Ab

commutes with a and so every element of Ab acts as a translation on
`. This implies there exists a non-trivial homomorphism of Ab to R.
As Ab is finitely generated, such a homomorphism is given precisely by
a surjective map from Ab onto the integers. But then Ab and thus A
cannot have finite abelianisation. This completes the proof. �

Proof of Proposition 3. Consider the group K generated by A and B
along with the additional relations: [ab, a′] = 1, for each pair of gen-
erators a and a′ for A and all generators b for B. If A has finite
abelianisation and B has Property (FA) then the proof of Theorem 1
implies that K has Property (FA). The group A oB is clearly a quotient
of the finitely presented group K. �

3. Hereditary Property (FA)

Proof of Theorem 5. Let (uk)k≥1 be an enumeration of B−{1}. Define
G0 = A ∗ B and for k ≤ ∞, define Gk as the quotient of G0 by the
“relators” [A, ujAu

−1
j ] for j ≤ k. Note that G∞ = A oB.

Replacing G by a quotient if necessary, we can suppose that A is
finite. Let H be a finitely presented group having G as a quotient.
Then H has Gk as a quotient for some k. So we only have to prove that
Gk has a finite index subgroup mapping onto a free group. We borrow a
construction from [4, Section 2]. The group Gk has a natural semidirect
product decomposition M oB, where M is a “graph product”, namely
it is the free product of copies Ab of A, indexed by b ∈ B, quotiented
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by the relations [Ab, Abs] = 1 for all s = u1, . . . , uk, and u ∈ B shifts
Ab to Aub.

There exists a normal finite index subgroup C of B such that ui /∈ C
for all i := 1, . . . k. Let N be the normal subgroup of M generated by
all Ab for b ∈ B −C. It is immediate from the presentation of M that
the quotient of M by N is the free product of all copies Ab for b ∈ C,
because of the choice of C. Moreover, N is normalized by C. So the
semidirect product Gk/N = M/N oC is the free product of A and C.
So if C ′ is a normal subgroup of C, of finite index at least three, then
Gk has the free product A ∗ C ′ as a quotient. This is a free product
of two non-trivial finite groups with one of order at least three, and
therefore has a finite index non-abelian free subgroup (for instance the
kernel of the natural map onto A× C ′). �

Proposition 13. Consider the short exact sequence of groups:

1→ A→ G→ B → 1

Assume that A does not contain F2, the non-abelian free group of rank
2. Then, G has Property (FA) if and only if B has Property (FA) and
G is a finitely generated group that does not map onto the integers or
the infinite dihedral group.

Proof of Proposition 13. If G is a group, define NF(G) as the largest
normal subgroup of G without free subgroups (this is always well-
defined).

Suppose that G fails to have Property (FA). Then either G maps
onto Z, or G splits as a non-trivial amalgam H ∗K L. In the latter case,
if the amalgam is degenerate (K has index two in both H and L), then
G maps onto the infinite dihedral group. Otherwise, we can apply [5,
Proposition 7], which says in particular that NF(G) is contained in K.
Since A is by definition contained in NF(G), this shows that G/A = B
splits as a non-trivial amalgam (H/A) ∗K/A L/A, and therefore fails to
have Property (FA). �

Proof of Theorem 6. The fact that the first condition implies the sec-
ond one is as straightforward as the analogous implication for Theorem
1, so we do not repeat the argument.

So assume that A has finite abelianisation and B has hereditary
Property (FA).

We first prove the implication when A has trivial abelianisation, as
the proof is then easier. In this case, by Gruenberg [11] every finite
index subgroup of G contains the normal subgroup A(B) and is therefore
of the form A(B) oC where C has finite index in B; since B is supposed
to be infinite, C is non-trivial. This group A(B) oC is a permutational
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wreath product (with a non-transitive free action), so a straightforward
extension of Theorem 1 applies (see Remark 10).

Before passing to the general case, we need to consider the special
case when A is abelian (and thus finite). Every finite index subgroup H
of G then lies in an extension where the kernel is torsion (and abelian)
and the quotient is a finite index subgroup of B. So we can apply
Proposition 13 and H has Property (FA).

Suppose now, in general, that the derived subgroup D of A has finite
index in A, and let H have finite index in G. Then [11] now says that
H contains D(B). Arguing as above with the subgroup D(B)oC (where
C = H ∩ B), we see that D(B) has a fixed point. Acting on the set of
points fixed by D(B), we are reduced to the case when A is finite and
abelian, which was considered before, so H has a fixed point. Thus H
has Property (FA). �
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