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1. Introduction and notation

The bootstrap approach to statistical inference is described in Efron (1982). The method

has wide applicability and has seen considerable development in recent years. However, use of

the bootstrap in sample survey inference has been somewhat limited. Rao and Wu (1988),

describe an application of the bootstrap under the design-based approach to sample survey

inference. Sitter (1992a, 1992b), has extended their results to more complex survey designs.

More recently, Booth, Butler and Hall (1991) and Booth and Murison (1992) describe a rather

different approach to constructing a design-based bootstrap. In this paper we describe how this

approach to the bootstrap can be applied under model-based sample survey inference, focussing

on an application where the popular ratio estimator is the estimator of choice.

Given a finite population of N elements, let Y denote a variable of interest, with population

values YI, I = 1, ..., N, and let X denote an auxiliary variable, with corresponding population values

XI, I = 1, ..., N,. The variables Y and X are intrinsically positive, with Y approximately proportional

to X. It will be assumed that the values of X are all known, but the values of Y are known only for

a sample s of n ≤  N of the population elements. Furthermore, given the values of X the process

that was used to decide which elements of the population to include in the sample s will be

assumed to be independent of the values of Y.

Once the sample has been selected, the values YJ ;J ∈ s{ }  are known. The problem is

how to use this information, together with the known population values of X to make an

inference about the unknown population mean Y  of Y.

2. Model-based inference

The model-based approach to the above problem is based on the assumption that the

values of Y  can be looked upon as realisations of random variables whose distribution,

conditional on the known values of X, may be specified via an appropriate probability model. It

follows that Y is also the realisation of a random variable. Estimating the value of Y  is therefore



equivalent to predicting a realisation of this random variable, and standard methods for optimal

prediction can be applied.

For this situation, a widely used model for Y  expresses the mean and variance of this

random variable as proportional to X. Denoting this model by ξ, it follows that

Eξ (YI XI ) = β XI (1)

and

varξ (YI XI ) = σ 2XI (2)

where β and σ2 are unknown positive constants. The subscript ξ in (1) and (2) signifies that

these expectation and variance expressions are defined with respect to the distribution of Y under

ξ. The best linear unbiased estimator of β is

ˆ β =
y s
x s

(3)

while the best linear unbiased predictor of Y  is the famous ratio estimator

Y R = ˆ β X . (4)

Here y s and x s are the means of the sample values of Y and X respectively, and X  denotes the

population mean of X.

In addition to computation of a point estimate using (4), good statistical practice requires

estimation of a confidence interval for the unknown value of the finite population parameter Y .

Under the model-based approach, such a confidence interval is usually constructed by first

calculating an ξ-unbiased point estimate v of the ξ-variance of the estimation error Y R −Y . A

100(1 − α) per cent confidence interval for Y  is then

Y R ± v1/ 2t(1−
α
2

,n −1) (5)

where t(1−
α
2

,n −1)  denotes the (1−
α
2

)-quantile of a tn−1 distribution.

A number of variance estimators for (4) have been proposed in the literature. In this

paper we focus on the heteroskedasticity robust estimator investigated by Royall and Eberhardt

(1975) and Royall and Cumberland (1981). This is

vD =
ˆ σ D

2

n
1−

n

N
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⎝ 
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⎠ 
⎟ 

X X r
x s

1−
Cs

2

n
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⎝ 
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⎠ 
⎟ 

−1
(6)

where

ˆ σ D
2 = (n −1)−1 (YJ − ˆ β XJ )2

J ∈s

∑

and



Cs
2 =

(n −1)−1 (XJ − x s)
2

J ∈s

∑
x s

2 .

3. Bootstrap confidence intervals

A problem with using (5) to compute a confidence interval for Y  is that it implicitly

assumes that the sample size n is sufficiently large for a central limit result to apply to the

distribution of the estimation error Y R −Y . In practice, this is hardly ever the case. Consequently,

even if the model ξ holds exactly, the coverage properties of this interval estimator can be

suspect. That is, confidence intervals determined via (5) are unlikely to possess the nominal

coverage properties implied by their central limit behaviour under ξ. An alternative approach to

constructing such confidence intervals is required.

Such an alternative approach is provided by bootstrap simulation. To motivate this

approach, we observe that the primary reason for constructing a confidence interval around a

point estimate of Y  is to provide a properly calibrated measure of the uncertainty associated with

this estimate. In particular, the aim is to exhibit an interval which includes the estimate value and

which ‘covers’ 100(1 − α) per cent of the estimated sampling distribution of the associated

point estimator. Under the model-based approach, this sampling distribution corresponds to the

distribution of possible alternative point estimates that could arise given selection of the same

sample s from populations ‘like’ those actually observed. Since the model ξ  specifies what

constitutes populations ‘like’ the actual population underlying the observed data, it follows that a

100(1 − α) per cent confidence interval for Y , based on the ratio estimator Y R , is the interval

ˆ Q (
α
2

), ˆ Q (
1−α

2
)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (7)

where ˆ Q ( p) denotes an estimate of the pth - quantile of the distribution of Y R  under ξ. Clearly,

(5) is a special case of (7), based on the assumption that the sampling distribution of Y R  under ξ

is normal, with mean Y  and with variance varξ (Y R −Y ).

An approach to constructing a confidence interval for Y  that reflects the actual finite

sample and finite population characteristics of the distribution of Y R  is to simulate such a

distribution from the sample data. That is, we use the sample data and our model ξ to generate a

sequence of alternative realisations for Y. Under the assumption that the same sample s of units

is selected in each realisation, we then generate a sequence of ‘potential’ values for Y R , and

estimate the quantiles in (7).



The key to carrying out such a bootstrap simulation of the distribution of Y R  is to

reformulate ξ so as to indicate clearly how the population values of Y can be simulated. In order

to do so, we replace (1) and (2) by the slightly stronger assumption that for each unit I in the

population, there exists a positive constant β such that the values

εI =
YI − βXI

XI

(8)

are independent and identically distributed realisations of a random variable ε with zero mean

and variance σ2. Note that each population value of Y then satisfies

YI = β XI + XI εI . (9)

We can use (8) and (9) to simulate a bootstrap replication of the population values of Y.

A little algebra shows that the set of studentized sample residuals

RJ
std =

YJ − ˆ β XJ

XJ 1−
XJ

nx s

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

(10)

have the same mean and variance as ε. If, in addition, one makes the assumption that these

studentized residuals also have the same distribution as ε, then (9) can be used to simulate the

population values of Y, with the unknown values εJ in this expression replaced by sample

residuals (10) that have been randomly selected, with replacement, from the complete set of these

values. Let YI
*, I = 1, ..., N denote this bootstrap realisation of the population values of Y, with

mean Y *. A bootstrap realisation of the value of the ratio estimator of this mean follows by

applying (3) and (4) to this bootstrap population. We denote the value of this estimate by Y R
*.

The difference Y R
* −Y  is the estimation error of the ratio estimator, based on the sample s, for

this bootstrap population.

Repeating the procedure outlined in the preceding paragraph corresponds to application

of a percentile bootstrap (Hall 1992), and can be used to obtain a bootstrap distribution for the

estimation error Y R −Y  of the ratio estimator (4) given the sample s. By subtracting this

distribution from the actual value of the ratio estimator for the observed sample data, we obtain

an estimate of the sampling distribution of Y R  under (9) that conditions on the sample s actually

selected and is located at the realised value of this estimator. The final bootstrap 100(1 − α) per

cent confidence interval for Y  is computed by evaluating (7) on this bootstrap sampling

distribution. That is, as

Q*(
α
2

), Q*(
1−α

2
)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (11)



where Q*( p)  denotes the pth quantile of the bootstrap distribution.

4. Calibrating the percentile bootstrap

Let E* and v* denote the expectation and variance respectively of the bootstrap sampling

distribution. It is straightforward to show that

E * = Y R + r std x s
(0.5) X (0.5)

x s
(0.5) −

X 

x s

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (12)

and

v* =
v(Rstd )

n

X 2

x s
1−

n

N

x s
X 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (13)

where X (m ) denotes the mean of the mth powers of the population X-values, with x s
(m )  denoting

the corresponding sample mean,

r std = n−1 RJ
std

J ∈s

∑

where the RJ
std  are the studentised residuals (10), and

v(Rstd ) = n−1 (RJ
std − r std )2

J ∈s

∑ .

Since the ratio estimator is the optimal predictor of Y  under ξ, it is reasonable to require

that the bootstrap confidence interval for Y  be centred around Y R , in the sense that the mean of

the corresponding bootstrap sampling distribution be equal to Y R . This can be accomplished by

using (12) to mean correct the distribution of the bootstrap errors Y R
* −Y *  before locating this

distribution at Y R .

The other desirable feature one could require of the bootstrap sampling distribution of

the ratio estimator under ξ is that its variance (13) be equal in expectation to the ξ-variance of the

estimation error Y R −Y . It can be shown that

Eξ (v*) ≤ varξ (Y R −Y ).

Consequently, the bootstrap errors need to be rescaled in order to remove this bias.

Combining the mean correction needed to ensure that the bootstrap mean equals Y R  with

the rescaling needed to ensure the bootstrap variance is unbiased for var
ξ
(Y R −Y ) leads to the ξ-

calibrated percentile bootstrap distribution for Y R :



Y R +

r std x s
(0.5) X 

x s
−

X (0.5)

x s
(0.5)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − Y R

* −Y *( )

1−
Cs

n

⎧ 
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⎪ 
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⎫ 

⎬ 
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⎭ 
⎪ 
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. (14)

5. Heteroskedasticity robustness

In practice (1) and (2) will only approximate the true relationship between Y and X in the

population. This raises the issue of how robust is inference based on (14) when this

approximation fails.

To provide some insight in this regard, suppose that (1) continues to hold, but (2) is

potentially incorrect. In particular, suppose that, instead of (2),

varξ (YI ) = σ 2ψ(XI ) (15)

where ψ(t) ≠ t  in general. Since (1) remains true, we still have Eξ (r std ) = 0 and so the mean of

the bootstrap sampling distribution remains an unbiased estimator of the population mean of Y.

However, now

varξ (RJ
std ) = σ 2 ψ(XJ )

XJ

1−

XJ

nx s
1−

XJψ s
ψ(XJ )x s

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

1−
XJ

nx s

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

so that

Eξ v(Rstd ) = σ 2 n−1 ψ(XJ )

XJJ ∈s

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +  lower order terms

and consequently the expected value of the bootstrap variance v* is

Eξ v* =
σ 2

n
n−1 ψ(XJ )

XJJ ∈s

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

X 2

x s

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 1−

n

N

x s
X 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

+  lower order terms . (16)

In contrast, the actual prediction variance of Y R  under the model defined by (1) and (15) is

varξ (Y R −Y ) =
σ 2

n

ψ s
x s

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

X 2

x s

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 1−

n

N

x s
X 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

+  lower order terms . (17)

Comparing (16) and (17) one can see that the variance of the bootstrap sampling

distribution (14) is no longer unbiased for the prediction variance of Y R . Using (14) when

heteroskedasticity is misspecified can be expected to result in confidence intervals with coverage

probabilities different from their nominal levels.



In order to robustify the percentile bootstrap against this type of misspecification, we

need to redefine the residuals that are used to generate the bootstrap distribution. In order to do

so, we note that the basic idea behind the percentile bootstrap (14) is that there exists an

invertible transformation (8) of the underlying random variables (dependent on known or

estimated effects) that results in pivotal values that are essentially independently and identically

distributed. Using the percentile bootstrap is equivalent to substituting the empirical distribution

function generated by the sample pivotal values for their unknown distribution function. When

(15) holds, ‘pivotal’ values generated via (8) are no longer identically distributed, and

furthermore, since ψ is unknown, we are no longer in a position to generate a ‘correct’ pivotal.

Since we do not know the true heteroskedasticity, it seems reasonable to finesse this problem by

resampling from the raw residuals

RJ = YJ − ˆ β XJ

where ˆ β  is still the ratio estimator (3). Clearly, these residuals still have zero mean, even if they

are no longer identically distributed. Liu (1988) has shown that a bootstrap based on

independent but not identically distributed data is still valid, provided the data all have essentially

the same location. Below we use this idea to motivate an alternative to (14).

The bootstrap population values are then

YI
* = ˆ β XI + RI

*

where RI
*  is selected via simple random sampling with replacement from the RJ. As before, we

denote the mean of this bootstrap population by Y * and the value of the ratio estimator defined

by the sample s for this population as Y R
*. The bootstrap sampling distribution for the original

sample ratio estimator Y R  is then defined by the values

Y R − (Y R
* −Y *)

It is straightforward to show that this distribution has mean E* equal to Y R  and variance

v* =
v(R)

n

X 2

x s
2 1−

n

N

x s
X 

2 −
x s
X 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (18)

where

v(R) = n−1 RJ
2

J ∈s

∑ .

Under the model defined by (1) and (15), it can be shown that

Eξ v* =
σ 2

n
n−1 ψ(XJ )

J ∈s

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

X 2

x s
2 +  lower order terms .



The leading term in this expectation is the same as the corresponding leading term of the actual

prediction variance (17) of the ratio estimator in this case. That is, in large samples at least, the

variance estimator defined by the bootstrap based on the raw residuals is heteroskedasticity

robust.

As with the scaled percentile bootstrap (14), this unscaled percentile bootstrap can be

calibrated so that it is unbiased for the prediction variance of the ratio estimator under (1) and

(2). Noting that under this default model

Eξ v* =
σ 2

n

X 2

x s
1−

x s
(2)

nx s

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 1−

n

N

x s
X 

2 −
x s
X 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

it follows that a ξ-calibrated percentile bootstrap for the ratio estimator based on raw residuals is

defined by the values

Y R −
1−

n

N

x s
X 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1−
x s

(2)

nx s
2
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⎝ 
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⎟ 1−

n

N

x s
X 

2 −
x s
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⎧ 
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⎫ 
⎬ 
⎭ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

(Y R
* −Y *). (19)

6. Bootstrapping a bias corrected estimator

What happens if one has both mean and variance misspecification in the assumed model?

In particular, suppose

Eξ (YJ ) = µ(XJ )

and

varξ (YJ ) = σ 2ψ(XJ )

with µ not proportional to the identity function. Since the average of the unscaled sample

residuals is still zero, it follows that the bias of the bootstrap distribution generated by (19) is

equal to the bias of the ratio estimator

Eξ (Y R −Y ) =
µ s
x s

−
µ 
X 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ X .

Since

E *(Y R − (Y R
* −Y *)) = Y R

in any case, the effect of mean misspecification is therefore to shift the bootstrap distribution by

an amount equal to the bias of the ratio estimator. Such a shift clearly affects the coverage

properties of this distribution. We therefore consider a modification to the ratio estimator which

reduces this bias.



To focus things, we assume that all that is known is about the underlying mean function

µ is that it is a smooth non-linear function which is approximately proportional to the identity

function over most of the range of X-values in the population. Two commonly occurring

scenarios which correspond to this situation are (i) the presence of outliers in the population, or

(ii) nonlinearity in µ.

Outliers in the population are often modelled by assuming that the population is in fact a

mixture of outliers and non-outliers. That is, under ξ

YJ = ∆ J βXJ + σ XJ εJ( ) + (1− ∆ J ) θ(XJ ) + σ γ(XJ )ηJ( ) (20)

where ∆ J  is a zero-one random variable denoting outlier/non-outlier status with pr(∆ J =1) = π J

and εJ ,ηJ  are independent ‘white noise’ random variables (i.e. they both have zero mean and

unit variance). Under (20) it is straightforward to show

µ(XJ ) = βXJ + (1− π J )(θ(XJ ) − βXJ )

and

ψ(XJ ) = π J XJ + (1− π J )γ(XJ ) + π J (1− π J )
βXJ −θ(XJ )

σ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

.

The expression for µ under (20) suggests the form of bias adjustment necessary for the

ratio estimator under this model. Suppose that an outlier robust estimate ˜ β  of β  can be

computed, so Eξ
˜ β ≈ β  under (20). Then one could replace the standard ratio estimator Y R  by an

estimator of the form

Y P = N−1 YJ

J ∈s

∑ + ˜ β XI

I ∉s

∑ + mJϕP (YJ − ˜ β XJ )
J ∈s

∑
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

(21)

where ϕP  is a bounded, skew-symmetric function which bounds the influence of sample outliers,

and hence ensures that the variability of (21) remains low, and the mJ are suitably chosen weights

which ensure that the bias of (21) also remains low.

Chambers (1986) recommends the mJ be chosen so that (21) reduces to the best linear

unbiased estimator (ie the ratio estimator) under the “working model” (1) and (2) when

ϕP (t) = t . That is

mJ =

XI

I ∉s

∑

XK

K ∈s

∑
=

N

n

X 

x s
−1.

In practice, ϕP  will not be chosen as the identity function, since this gives sample outliers

undue influence on (21), and boosts the variability of this estimator. Again, following Chambers



(1986), a sensible trade-off between increasing variance and increasing bias in this estimator is

obtained by choosing a ‘Huber-type’ ϕP , i.e.

ϕP (y − ˜ β x) = min y − ˜ β x ,h ˜ σ x{ }sgn(y − ˜ β x)

where ˜ σ  is a robust estimate of the scale parameter σ in (22), for example the MAD estimate (ie

1.4826 times the median of the absolute deviations of the scaled residuals (YJ − ˜ β XJ )XJ
−1/ 2  from

their median), and h is a ‘tuning constant’ which curtails the influence of extreme outliers on

(21), but allows an adjustment for the bias of the ratio estimator under moderate deviations from

(1) and (2). This argument implies h should be chosen quite large, say h = 6.

Computation of ˜ β  can be carried out using a wide variety of outlier robust methods.

Since outlier contaminated populations typically exhibit highly skewed marginal distributions for

both Y and X, it is advisable to use a method which not only ensures robustness against outliers

in Y, but is also not sensitive to high leverage points in the sample X-values. Since using the ratio

estimator ˆ β  of β is equivalent to estimating this parameter via ordinary least squares from the

transformed model

E(YJ XJ
−1/ 2 XJ ) = βXJ

−1/ 2

and

var(YJ XJ
−1/ 2 XJ ) = σ 2

the high leverage sample X-values are those corresponding to large values on the diagonal of the

"hat" matrix defined by this transformed model. Since the diagonal entries of this matrix are

easily seen to be proportional to the sample X-values, it follows that the leverage of a sample

point on the ratio estimator is proportional to its X-value. An estimating equation for ˜ β  which is

insensitive to sample outliers and high leverage sample points is therefore

1

XJ

ϕE (
YJ

XJ

− ˜ β XJ )
J ∈s

∑ = 0.

Note that the estimation influence function ϕE  in this estimating equation will typically not be

the same as the prediction influence function ϕP  in (21). Ideally ϕE  should be chosen so that all

sample outliers are excluded from estimation of β. Influence functions that vanish outside a

finite interval are appropriate choices in this regard. In the application reported in the next

section, ϕE  was chosen as the bisquare function, with tuning constant set to 4.685.

The bias adjustment implicit in (21) is motivated by the special situation where mean

misspecification occurs because of the presence of outliers relative to the working model defined

by (1) and (2). In general, however, mean misspecification can occur for a wide variety of

reasons, and an appropriate parametric specification for this misspecification is not apparent. All



that is known is that the underlying mean function µ is a smooth non-linear function which is

approximately proportional to the identity function over most of the range of X-values in the

population.

A method of nonparametrically adjusting the ratio estimator Y R  in this situation is

described in Chambers, Dorfman and Wehrly (1993; referred to as CDW from now on). Under

this approach, the bias of the ratio estimator is estimated nonparametrically by smoothing the raw

sample residuals RJ = YJ - ˆ β XJ against some suitably chosen function of the X-values. The

estimated bias is then added to the ratio estimator as an adjustment term. The resulting estimator

is of the form

Y NP = Y R + N−1 mJ RJ

J ∈s

∑

where the weights mJ are nonparametric prediction weights defined by the method of smoothing

used. For example, if the usual Nadaraya-Watson form of kernel regression smoothing is used

to fit this bias then these weights are of the form

mJ =
K b−1(ZJ − ZI )( )

K b−1(ZL − ZI )( )
L ∈s

∑

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ I ∉s

∑

where K is a kernel function, b is a bandwidth that needs to be chosen appropriately, and the Z-

values are functions of the population X-values that are suited to smoothing the sample residuals

RJ. In the context of estimating the finite population distribution function, CDW recommend

setting Z equal to the rank of the corresponding X-value in the population.

The emphasis in the CDW approach is controlling bias, not variance. Consequently, (20)

is likely to be sensitive to outliers in the sample data. An obvious modification to this estimator

when dealing with highly skewed data is to follow Chambers (1986) and to base the

nonparametric bias adjustment on ‘huberized’ (rather than raw) residuals. That is, the suggested

form of nonparametrically adjusted ratio estimator for use in such outlier prone situations is

Y NP = Y R + N−1 mJ min RJ ,h ˜ σ { }sgn(RJ )
J ∈s

∑ (22)

where ˜ σ  denotes a robust estimate (eg the MAD) of the scale of the residuals RJ. The arguments

advanced in Chambers (1986) then indicate that the tuning constant h should be chosen quite

large, say h = 6.

An alternative approach is to robustify the smoother applied to the RJ. For example,

rather than using the Nadaraya-Watson smoother, which corresponds to local mean smoothing,

we can carry out local M-smoothing. Thus, if a "huberized" M-smoother is used, then (22) is

replaced by



Y NP = Y R + N−1 ˆ B I
I ∉s

∑ (23)

where

K
ZJ − ZI

b

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ min RJ − ˆ B I ,h ˜ σ I( )sgn(RJ − ˆ B I )

K
ZL − ZI

b
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Here ˜ σ I  is a robust estimate of the scale of the raw ratio residuals RJ in a "neighbourhood" of ZI

and h is the tuning constant. Again, h = 6 seems appropriate.

A final option one could consider when adopting a nonparametric approach to bias

"robustifying" the ratio estimator follows from A. H. Welsh (1993, personal communication),

who suggested that, rather than adding on a nonparametric bias correction to the ratio estimate,

one could “nonparameterize” the approach of Chambers (1986) by first replacing the ratio

estimator by a corresponding outlier robust nonparametric predictor and then “bias-correct”

this predictor by adding on an adjustment term to allow for possible sample (and hence

population) outliers.

In general this estimator takes the form

Y W = N−1 YJ

J ∈s

∑ + ˆ f (ZI )
I ∉s

∑ + wJϕP (YJ − ˆ f (ZJ ))
J ∈s

∑
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

(24)

where ˆ f (ZI ) denotes the value at ZI of an outlier robust smooth of the sample Y-values against

the sample Z-values, and the weights wJ are those suggested by Chambers (1986) – i.e. such that

Y W  reduces to the best linear unbiased predictor of Y  under the “target” parametric model (1)

and (2), so that ˆ f (ZI ) in fact equals (or at least closely approximates) the expected value of YI

under this model. The function ϕP  is generally defined as a “mildly” bounded influence

function. In our case we take it to be the standard Huber influence function with tuning constant

h chosen quite large, say h = 6.

Application of the bootstrap idea to (21), (22), (23) and (24) is straightforward. Since the

scaled percentile bootstrap (14) is nonrobust under heteroskedasticity misspecification, only

unscaled percentile bootstraps for these estimators will be considered. Also, since all these

estimators are quite complex, variance calibration of their bootstrap sampling distributions will

not be considered. Indeed, the difficulty of getting explicit variance estimators in these cases may

be regarded as a strong motive for considering the bootstrap. We therefore focus on a simple

mean corrected percentile bootstrap for each estimator.



In the case of the parametrically-based estimator (21), bootstrap residuals can be formed

by sampling with replacement from the raw robust residuals ˜ R J = YJ − ˜ β XJ . Denoting the Ith

such selection by ˜ R I
* , the corresponding bootstrap population value of Y  is obtained as

YI
* = ˜ β XI + ˜ R I

* . Let Y P
* denote the value of (21) for this bootstrap population, with Y * the

corresponding mean of Y in this bootstrap population. The bootstrap sampling distribution for

(21) is then formed from the values

Y P − Y P
* −Y * − av(Y P

* −Y *)( ) (25)

where av(Y P
* −Y *) denotes the average (over the m bootstrap populations) of the prediction

errors Y P
* −Y * . Bootstrap confidence intervals for the population mean of Y follow from (11).

The bootstrap residuals RJ
*  appropriate for bootstrapping (22) and (23) are defined by

sampling with replacement from the raw ratio residuals RJ = YJ − ˆ β XJ , with the corresponding

bootstrap population values of Y given by YI
* = ˆ β XI + RI

* . The bootstrap sampling distribution

for these estimators is then defined by

Y NP − Y NP
* −Y * − av(Y NP

* −Y *)( ) (26)

where Y NP
*  denotes the value of either (22) or (23) for a particular bootstrap population, and

av(Y NP
* −Y *)  denotes the average bootstrap prediction error.

Finally, the bootstrap residuals RI
*  for the Welsh estimator (24) are obtained by sampling

with replacement from the nonparametric residuals RJ = YJ − ˆ f (ZJ ), with the bootstrap

population values of Y given by YI
* = ˆ f (ZI ) + RI

* . The bootstrap sampling distribution for (24) is

obtained using (26), but with Y W
*  replacing Y NP

* .

7. A numerical study

This section presents results from a numerical study of the parametric and bootstrap

confidence interval methods defined in earlier sections. The target population, denoted Beef in

what follows, consists of 430 beef cattle farms, with Y corresponding to Income from Sale of

Cattle, and X denoting the Number of Cattle on hand. Beef was used by CDW as a clear

example of model misspecification under (1) and (2), though they also point out that there is a

strong linear relationship between log(Y) and log(log(X)) for these farms. For our purpose, we

ignore this alternative specification, and proceed to analyse Beef as if (1) and (2) were valid.

A total of 500 independent simple random samples of size 60 were selected from Beef.

For each sample, the ratio estimator Y R , see (4), was calculated, together with the parametric



variance estimate vD, see (6). These estimates were then used to compute confidence intervals for

Y  based on the normal approximation (5). In addition, scaled (14) and unscaled (19) percentile

bootstrap distributions for Y R  were computed from each sample, based on 500 bootstrap

resamples in each case. Confidence intervals for Y  were obtained from these distributions via

(11). Finally, bias corrected versions Y P , Y NP  and Y W , see (21), (22), (23) and (24), of the ratio

estimator were calculated for each sample, and bootstrap distributions for their errors computed,

via (25) and (26).

All estimators used in the study are described in Table 1. All versions using

nonparametric smoothing are characterised by a variable bandwidth bI which depends on the

smoothing variable value ZI of the nonsample unit being predicted, and is calculated as

bI = min bI 5,
c × (sample range of Z)

4n1/ 5

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (27)

where the value of c is specified by the user and bI5 denotes the smallest bandwidth such that

there are at least 5 sample units with Z-values inside the smoothing “window” located at ZI. In

all cases the kernel smoother used an Epanechnikov kernel. Smoothing was local linear

smoothing, and, with some alternatives considered in the study, these smooths were robustified.

Details are set out in Table 1.

The average errors (AVE), root mean squared errors (RMSE) and median absolute

deviation errors (MADE) of the various estimators of Y  considered in the study are set out in

Table 2. It is clear that the ratio estimator (either calculated directly or averaged over a bootstrap

distribution) performs badly for Beef, and is substantially outperformed by the nonparametric

alternatives NP(1X-Hu/6) and W(1X-Hu/2-Hu/6) based on smoothing against the population

X-values. However, it is also clear that both the robust parametric estimator P/Hu6 and the

nonparametric estimator based on smoothing against the population X-ranks, NP(1R-Hu/6),

perform badly for this population, recording large values for AVE. This is not entirely surprising

as far as P/Hu6 is concerned, since this estimator is based on the assumption that the majority of

the survey population follow the simple linear target model (1) and (2), which is not the case for

the Beef population. In the case of NP(1R-Hu/6), however, this result indicates that the use of a

nonparametric approach to bias adjustment is not a simple “cure-all”, but something that needs

to be used with judgement. In particular, there appears to be a potential for a substantial bias

induced by smoothing against the “wrong” Z-value. Appropriate diagnostics for picking the

“right” Z-value for nonparametric bias adjustment are currently being researched by the

authors.

Confidence interval coverage performances are set out in Table 3. The conventional

method (5), as well as the unscaled percentile bootstrap, can be seen to perform weakly,



recording some undercoverage at every nominal coverage level examined in the study. The scaled

percentile bootstrap performs poorly, in large part due to its sensitivity to misspecification of the

underlying heteroskedasticity. The large biases associated with P/Hu6 and NP(1R-Hu/6) are

reflected in very poor coverage performance for their bootstrap CI’s. Surprisingly, the Welsh

estimator-based bootstrap CI’s also record very poor coverage. This is explained by the fact that

this estimator has little variability, so its bootstrap CI coverage is extremely sensitive to its bias,

which, though relatively small, is still appreciable (see the AVE value in Table 2). The only

method to record a reasonable coverage performance was the bootstrap CI’s based on the

nonparametric estimator NP(1X-Hu/6) defined by smoothing against the population X-values.

Further insight into the coverage performances of the various methods can be obtained

from Table 4 which sets out the average lengths of the nominal 90% and 95% CI’s recorded by

each method over the 500 samples. Here we see that the small variability inherent in Welsh

estimator leads to bootstrap CI’s that are much shorter than those generated by the other

methods. In terms of length, the CI’s generated by the unscaled bootstrap are much larger, and

seem to be basically the same length as the normal theory CI’s generated by vD, with the scaled

bootstrap generating much tighter confidence intervals. Overall, when one takes both coverage

performance and average length of confidence intervals into account, the best performing CI’s

are clearly those generated by bootstrapping the nonparametrically adjusted estimator NP(1X-

Hu/6).

8. Conclusion

The goal of our research has been sound confidence intervals for estimates of means

based on simple random sampling.  Standard normal theory intervals can fail to attain coverage

near the nominal; we are thus led to investigate bootstrap confidence intervals.  Our investigation

has focussed on a simple, model-based, unscaled, percentile bootstrap, and has proceeded from

the commonly accepted regression through the origin model with residual variances proportional

to the independent variable through modifications of this model allowing for indeterminate

heteroscedasticity and outliers, to a purely non-parametric regression model allowing for

outliers.

The evidence of an extended simulation study on the Beef population is that the

achievement of this research has been to an extent orthogonal to its goal.  We see greater

efficiency using the successive model refinements and estimators, but, with the exception of the

CDW estimator with adjustments based on population X-values (as opposed to ranks), the

corresponding bootstrap intervals have not yielded improved coverage;  for one of the more

efficient estimators, the Welsh estimator, coverage was among the worst.  



Thus the attainment of sound confidence intervals using the bootstrap requires more

work.  More sophisticated methods of bootstrapping seem to be in order, for example use of

alternative methods for generating the bootstrap errors (as suggested in Liu, 1988), and use of

the t-percentile bootstrap.  The barrier to the use of the latter, for many of the estimators

considered, has been the lack of corresponding variance estimators.  An important step will be

the development of such variance estimators.  Work on these possibilities is underway.
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Table 1: Estimation procedures investigated in the study



Notation Description

R Standard ratio estimator (4)

R/Scaled Empirical mean of calibrated percentile bootstrap distribution

(14) based on scaled residuals

R/Unscaled Empirical mean of calibrated percentile bootstrap distribution

(19) based on unscaled residuals

P(Hu/6) Parametrically adjusted alternative (21) to the ratio estimator

based on “Huberized” residuals, h = 6

NP(1R-Hu/6) Nonparametrically adjusted ratio estimator (22) based on local

linear smoothing (c = 3) of “Huberized” residuals (h = 6)

against population X-ranks

NP(1X-Hu/6) Nonparametrically adjusted ratio estimator (23) based on robust

(Huber influence function, h = 6, c = 3) local linear smoothing

of raw residuals against population X-values

W(1X-Hu/2-Hu/6) Welsh estimator (24) with prediction term defined by a robust

(Huber influence function, h = 2, c = 3) local linear smooth

against X, and adjustment term based on “Huberized” (h = 6)

residuals from this smooth



Table 2 Average error (AVE), root mean squared error (RMSE) and median absolute deviation

error (MADE) for estimators of Y  for Beef (N = 430, n�= 60, Y  = 130441)

Estimator AVE RMSE MADE

R 5768 30802 21269

R/Scaled 5830 30898 21085

R/Unscaled 5728 30802 21089

P(Hu/6) 15058 26647 16974

NP(1R-Hu/6) 12918 28026 17545

NP(1X-Hu/6) -2471 19813 12533

W(1X-Hu/2-Hu/6) 3597 22456 11622



Table 3 Unconditional coverage performances of confidence interval estimators for Beef. The

figures in the table show the actual coverage percentages achieved over the 500 samples at

different levels of nominal coverage

Nominal coverage (%)

80 90 95 98

Normal theory CI’s based on vD 74.8 84.4 90.8 95.0

R/Scaled bootstrap (14) 46.2 62.4 74.0 82.4

R/Unscaled bootstrap (19) 72.8 83.2 89.4 94.4

P(Hu6)/Mean corrected bootstrap (25) 62.6 73.2 80.8 87.8

NP(1R-Hu/6)/Mean corrected bootstrap

(26)

53.6 68.0 78.8 86.0

NP(1X-Hu/6)/Mean corrected bootstrap

(26)

76.4 88.2 94.0 96.8

W(1X-Hu/2-Hu/6)/Mean corrected

bootstrap (26)

55.2 64.8 71.8 79.8



Table 4 Average lengths of 90 and 95 per cent confidence intervals

90%CI 95%CI

Normal theory CI’s based on vD 89624 107308

R/Scaled bootstrap (14) 53330 65038

R/Unscaled bootstrap (19) 87244 104066

P(Hu6)/Mean corrected bootstrap (25) 63729 77029

NP(1R-Hu/6)/Mean corrected bootstrap

(26)

53802 66648

NP(1X-Hu/6)/Mean corrected bootstrap

(26)

67374 83833

W(1X-Hu/2-Hu/6)/Mean corrected

bootstrap (26)

37565 45680


