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focused on developing methods of estimating the parameters characterising the 
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Applying standard methods used to analyse individual level data, such as linear or 
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produce biased estimates of individual level relationships. Thus much of the effort in 

ecological analysis has concentrated on developing methods of analysing aggregate 

data that can produce unbiased, or less biased, parameter estimates. There has been 

less work done on inference procedures, such as constructing confidence intervals and 
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1.1 Introduction

Ecological analysis involves using aggregate data for a set of groups to make
inferences concerning individual level relationships. Typically the data available
for analysis consists of the means or totals of variables of interest for geograph-
ical areas, although the groups can be organisations such as schools or hospitals.
Attention has focused on developing methods of estimating the parameters char-
acterising the individual level relationships across the whole population, but also
in some cases the relationships for each of the groups.

Applying standard methods used to analyse individual level data, such as linear
or logistic regression or contingency table analysis, to aggregate data will usually
produce biased estimates of individual level relationships. Thus much of the effort
in ecological analysis has concentrated on developing methods of analysing ag-
gregate data that can produce unbiased, or less biased, parameter estimates. There
has been less work done on inference procedures, such as constructing confi-
dence intervals and hypothesis testing. Fundamental to these inferential issues is
the question of how much information is contained in aggregate data and what ev-
idence such data can provide concerning important assumptions and hypotheses.

In Section 2 we describe a general approach to determining the information in
aggregate data and how it compares with the information in individual level data
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for likelihood based inference, including hypothesis testing. In Section 3 we il-
lustrate how the approach applies in the case of data from several 2 � 2 tables. We
also consider the information contributed by aggregate and individual information
when both are available in Section 4. Section 5 gives empirical results based on
some real data, illustrating the loss of information due to aggregation and how
hypothesis testing and analysis of residuals can be done using aggregate data.
Section 6 provides a brief discussion.

1.2 Information Lost by Aggregation

Suppose that we have individual level data d
�
1 � , which has associated probability

function f
�
1 ��� d � 1 � ; ψ � . The vector ψ contains the parameters of the distribution

of the individual level data. Likelihood inference about the parameter vector ψ
would be based on the likelihood L

�
1 ��� ψ ; d

�
1 � ��� f

�
1 ��� d � 1 � ; ψ � or the associated

log-likelihood

l
�
1 � � ψ ; d

�
1 � �	� logL

�
1 � � ψ ; d

�
1 � �

The score function for ψ based on d
�
1 � is

sc
�
1 � � ψ ; d

�
1 � �	� ∂

∂ψ
l
�
1 � � ψ ; d

�
1 � � (1.1)

Maximum likelihood estimates (MLEs) would usually be obtained by solving

sc
�
1 � � ψ ; d

�
1 � � � 0 (1.2)

resulting in the MLE ψ̂ .

For inference based on the MLEs we would also be interested in the (observed)
information matrix

info
�
1 � � ψ ; d

�
1 � � � 
 ∂

∂ψ
sc
�
1 � � ψ ; d

�
1 � �� 
 ∂ 2

∂ψ∂ψT l
�
1 � � ψ ; d

�
1 � � (1.3)

The expected information is

Info
�
1 � � ψ ; d

�
1 � ��� E � info

�
1 � � ψ ; d

�
1 � ��
 (1.4)
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The expectation is over the distribution of d
�
1 � . Under several regularity condi-

tions the variance matrix of the asymptotic distribution of ψ̂ is � Info
�
1 � 
�� 1

(see
for example Cox and Hinkley, 1974, Chapter 9).

Suppose we are interested in testing the hypothesis H0. Let ψ̂0 be the MLE of ψ
under H0. There are three common approaches to testing H0.

1. Likelihood Ratio Test (LRT) is based on the likelihood ratio

R
�
1 � � L

�
1 ��� ψ̂0; d

�
1 � �

L
�
1 ��� ψ̂ ; d

�
1 ���

and 
 2logR
�
1 � � 2 � l � 1 � � ψ̂ ; d

�
1 � ��
 l

�
1 � � ψ̂0; d

�
1 � ��


is tested against the χ2
q distribution with q � dim � ψ ��
 dim � ψ0 � .

2. Wald Test is based on

W
�
1 � � � ψ̂ 
 ψ̂0

� T � Info
�
1 � � ψ̂ ; d

�
1 � ��
 � ψ̂ 
 ψ̂0

�
3. Score Test is based on

ST
�
1 � � sc

�
1 � � ψ̂0; d

�
1 � � T � Info

�
1 � � ψ̂0; d

�
1 � ��
 � 1

sc
�
1 � � ψ̂0; d

�
1 � �

The score test does not require the calculation of ψ̂ , only ψ̂0, which in some
situations will be an advantage over the Wald test. However, the Wald test does not
require inversion of the information matrix. All these tests may be used to produce
confidence regions for ψ . Efron and Hinkley (1978) argue that it is preferable to
use the observed rather than the expected information matrix for inference. We
will follow this approach.

Instead of individual level data we have available the aggregate data d
�
2 � . Let

f
�
2 � � d � 2 � ; ψ � denote the associated probability function. Likelihood based infer-

ence can then be undertaken using f
�
2 � . In general, deriving f

�
2 � from f

�
1 � may be

difficult. Since f
�
2 � is derived from f

�
1 � it will depend on the same parameters as

f
�
1 � . However, not all these parameters may be identifiable using aggregate data.

We assume that the individual level data set comprises n individuals divided into
m groups. In general, the n individuals are obtained from a sample of individuals,
S
�
1 � , and the sample of m groups is S

�
2 � . The sample of individuals in group g is Sg.

An important special case is when the samples are the entire finite population, i.e.
S
�
1 � � U

�
1 � , S

�
2 � � U

�
2 � and Sg � Ug. We will assume that any sampling involved

is ignorable, for example simple random sampling.

Breckling, Chambers, Dorfman, Tam and Welsh (1994) described an approach
for maximum likelihood inference using sample data. Sampling is a process by
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which data are unobserved or reduced and aggregation is also a process that leads
to the observed data being reduced. The basic results of Breckling et al. (1994)
can then be applied to examine the effect of using aggregate data.

Let sc
�
2 ��� ψ ; d

�
2 � � and info

�
2 � � ψ ; d

�
2 � � be the score function and observed in-

formation matrix based on d
�
2 � . The key results of Breckling et al. (1994) are

sc
�
2 � � ψ ; d

�
2 � � � E � sc

�
1 � � ψ ; d

�
1 � ��� d � 2 � 
 (1.5)

info
�
2 � � ψ ; d

�
2 � � � E � info

�
1 � � ψ ; d

�
1 � ��� d � 2 � 
 
 Var � sc

�
1 � � ψ ; d

�
1 � ��� d � 2 � 


(1.6)

The expectations in (1.5) and (1.6) are over the distribution of d
�
1 � conditional on

d
�
2 � , that is the individual level data given the aggregate data. Hypothesis testing

can also be done using this score function and information matrix as well as the
likelihood based on d

�
2 � .

In some cases using (1.5) to obtain the score function may be more convenient
than direct differentiation of l

�
2 � � log f

�
2 � . Result (1.6) is the key to determining

the information loss due to the use of aggregate data. The variance-covariance
matrix of the individual level score function conditional on d

�
2 � can be interpreted

as the loss of information due to aggregation. In Section 3 we will illustrate this
approach for the case of m 2 � 2 tables, but the result can be applied in general.

1.3 Several 2 � 2 Tables

1.3.1 Data Available

Suppose that the individual level data consists of m 2 � 2 tables giving the frequen-
cies associated with two dichotomous variables, Y and X . Table 1.1 illustrates the
data for group g.

X/Y Y � 1 Y � 0 Total

X � 1 n11g n12g n1 � g
X � 0 n21g n22g n2 � g
Total n � 1g n � 2g ng

Table 1.1 Individual Level Data for Group g
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It is assumed that the marginal frequencies for X are fixed, or conditioned upon,
and that the values of Y are independent given X . Hence, for group g

n11g � Bin � n1 � g � π1g � n21g � Bin � n2 � g � π2g �
where π1g � Prob  Y � 1 � X � 1 ! and π2g � Prob  Y � 1 � X � 0 ! for group g. The
associated odds ratio is

θg � π1g

1 
 π1g

1 
 π2g

π2g

Let d
�
1 �

g �#" n11g � n1 � g � n � 1g � ng $ be the individual level data for group g and

d
�
1 � � " d

�
1 �

g � g % S
�
2 � $ be the entire individual level data set. In ecological infer-

ence the individual level data are not available, so the n11g values are not available.
However, the marginal frequencies and ng are available giving the aggregate data

d
�
2 �

g �&" n1 � g � n � 1g � ng $ for group g and d
�
2 � �&" d

�
2 �

g � g % S
�
2 � $ for the m groups.

1.3.2 Analysis Using Individual Level Data

Let φg � � π1g � π2g � T
and ψ �#' φ T

1 �)(*(*(�� φ T
m + T . If no assumptions are made con-

cerning the parameters φg, each table could be analysed separately with individual

level data. The likelihood for φg based on d
�
1 �

g is denoted L
�
1 �

g
� φg; d

�
1 �

g � and the
log-likelihood is

l
�
1 �

g
� φg; d

�
1 �

g � � n11g logπ1g , n12g log � 1 
 π1g �, n21g logπ2g , n22g log � 1 
 π2g �
The individual level score function for φg is

sc
�
1 � � φg; d

�
1 �

g ��� -./ n11g � n1 0 gπ1g

π1g 1 1 � π1g 2
n 0 1g � n11g � n2 0 gπ2g

π2g 1 1 � π2g 2
3546 (1.7)

The resulting MLEs are φ̂g � � π̂1g � π̂2g � T � � n11g
n1 0 g � n 0 1g � n11g

n2 0 g � T
. The observed

information matrix is
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info
�
1 � � φg; d

�
1 �

g � � -..../ n11g 1 1 � 2π1g 287 n1 0 gπ2
1g

π2
1g 1 1 � π1g 2 2 0

0 1 n 0 1g � n11g 291 1 � 2π2g 287 n2 0 gπ2
2g

π2
2g 1 1 � π2g 2 2

3544446
(1.8)

and the expected information matrix is

Info
�
1 � � φg; d

�
1 �

g �	� -./ n1 0 g
π1g 1 1 � π1g 2 0

0
n2 0 g

π2g 1 1 � π2g 2
3546 (1.9)

It may be of interest to test whether there is evidence that the tables are homo-
geneous with respect to the conditional probabilities, i.e. π1g � π1, π2g � π2 for

g % S
�
2 � , which can be written as φg � φ � � π1 � π2

� T for all g % S
�
2 � . This hypoth-

esis may be of substantive interest or it may be convenient for further analysis and
interpretation. For example, if we have a sample of groups then assuming group
specific parameters means that no inferences can be made concerning groups that
are not in the sample. Even if all groups in the population of interest are included
in S

�
2 � , the large number of groups may make interpretation of the analysis dif-

ficult if each group is assumed to have different parameter values. One approach
to this issue is to allow for variation in φg by including random effects, but for
non-linear models, this introduces considerable complexities in the analysis.

If φg � φ , then the log-likelihood for φ based on d
�
1 � is

l
�
1 � � φ ; d

�
1 � � � ∑

g : S ; 2 < l � 1 �g
� φ ; d

�
1 �

g �� n11 � logπ1 , n12 � log � 1 
 π1
� , n21 � logπ2 , n22 � log � 1 
 π2

�
Hence the tables can be collapsed and the analysis can be based on the 2 � 2 table
for the entire sample, S

�
1 � . The MLEs, score and information functions are as

in (1.7), (1.8) and (1.9) with the g for the elements of d
�
1 � replaced with the

summation subscript = . That is

sc
�
1 � � φ ; d

�
1 � ��� -/ n11 0 � n1 0>0 π1

π1  1 � π1 !
n 0 1 0 � n11 0 � n2 0>0 π2

π2  1 � π2 ! 36 (1.10)
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info
�
1 �

11
� φ ; d

�
1 � � � n11 0  1 � 2π1 ! 7 n1 0>0 π2

1

π2
1  1 � π1 ! 2

info
�
1 �

21
� φ ; d

�
1 � � � 0

info
�
1 �

22
� φ ; d

�
1 � � �  n 0 1 0 � n11 0 !? 1 � 2π2 ! 7 n2 0>0 π2

2

π2
2  1 � π2 ! 2

@ AAAABAAAAC (1.11)

The resulting MLEs are φ̂ � � n11 0
n1 0>0 � n 0 1 0 � n11 0

n2 0>0 � T
.

The hypothesis φg � φ can be tested using the likelihood ratio, Wald or score test.
The latter two can be based on the observed or expected information matrix. Also
the likelihood can be directly examined to see what evidence it provides (see Roy-
all, 1997). For example, when the tables are homogeneous, ψ0 �D' φ T �E(F(*()� φ T + T

and the score test using the observed information matrix is

ST
�
1 � � ∑

g : S ; 2 < sc
�
1 � � φ̂ ; d

�
1 �

g � T � info
�
1 � � φ̂ ; d

�
1 �

g ��
 � 1
sc
�
1 � � φ̂ ; d

�
1 �

g �� ∑
g : S ; 2 < ST

�
1 �

g

The likelihood ratio is

R
�
1 � � ∏

g : S ; 2 < L
�
1 �

g
� φ̂ ; d

�
1 �

g �
L
�
1 �

g
� φ̂g; d

�
1 �

g � � ∏
g : S ; 2 < R � 1 �g

1.3.3 Analysis Using Aggregate Data

In ecological inference the data available from each table are d
�
2 �

g so that n11g
is not available. We could attempt an analysis without making any assumptions
concerning φg. This amounts to analysing each group separately. Applying (1.5)
to (1.7) immediately gives

sc
�
2 � � φg; d

�
2 �

g � � -.../ E 1 n11g G d ; 2 <g 2 � n1 0 gπ1g

π1g 1 1 � π1g 2
n 0 1g � E 1 n11g G d ; 2 <g 2 � n2 0 gπ2g

π2g 1 1 � π2g 2
354446

Conditional on d
�
2 �

g , n11g has a non-central hypergeometric distribution (see for
example McCullagh and Nelder, 1989, pg 257-259) and
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E � n11g � d � 2 �g �	� P1
� θg; d

�
2 �

g �
P0
� θg; d

�
2 �

g �
where

Pr  θg; d
�
2 �

g !H� bg

∑
j I ag

J
n1 � g

j K J n2 � g
n � 1g 
 j K jrθ j

g

The limits of the sum are the lower and upper bounds on n11g given d
�
2 �

g and are

ag � max � 0 � n � 1g 
 n2 � g � and bg � min � n1 � g � n � 1g � . Denote E � n11g � d � 2 �g � by

κ1
� θg; d

�
2 �

g � . Also

Var � n11g � d � 2 �g ��� P2
� θg; d

�
2 �

g �
P0
� θg; d

�
2 �

g � 
 κ1
� θg; d

�
2 �

g � 2

which will be denoted by κ2
� θg; d

�
2 �

g � .

From (1.7)

Var � sc
�
1 � � φg; d

�
1 �

g � � d � 2 �g ��� κ2
� θg; d

�
2 �

g � -./ 1

π2
1g 1 1 � π1g 2 2 � 1

π1gπ2g 1 1 � π1g 291 1 � π2g 2� 1
π1gπ2g 1 1 � π1g 2L1 1 � π2g 2 1

π2
2g 1 1 � π2g 2 2

3546
Applying (1.6) with (1.7) and (1.8) gives

info
�
2 �

11
� φg; d

�
2 �

g � � κ1
� θg; d

�
2 �

g � � 1 
 2π1g � , n1 � gπ2
1g 
 κ2

� θg; d
�
2 �

g �
π2

1g
� 1 
 π1g � 2

info
�
2 �

21
� φg; d

�
2 �

g � � κ2
� θg; d

�
2 �

g �
π1gπ2g

� 1 
 π1g � � 1 
 π2g �
info

�
2 �

22
� φg; d

�
2 �

g � � � n � 1g 
 κ1
� θg; d

�
2 �

g ��� � 1 
 2π2g � , n2 � gπ2
2g 
 κ2

� θg; d
�
2 �

g �
π2

2g
� 1 
 π2g � 2
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Setting sc
�
2 ��� φg; d

�
2 �

g ��� 0 yields the relationship

π1gn1 � g , π2gn2 � g � n � 1g

or
π2g � n � 1g

n2 � g 
 n1 � g
n2 � g π1g (1.12)

which corresponds to the tomography line for group g discussed in King (1997,
pg 80) .

The aggregation of the data has resulted in each element of the information ma-
trix being modified by a term proportional to κ2

� θg; d
�
2 �

g � arising from the con-
ditional variance of the individual level score function. Also n11g is replaced by
its expectation conditional on d

�
2 �

g .

For each group there is only one observed random variable, n � 1g and two pa-
rameters unless some further assumptions are made. For m groups there are m
observations, n � 1g, g % S

�
2 � , but 2m parameters. Hence standard asymptotic prop-

erties of likelihood based methods cannot be relied upon. Beh, Steel and Booth
(2002) consider the likelihood associated with aggregate data for a single group.
This is given by McCullagh and Nelder (1989, pg 353) :

L
�
2 �

g
� φg; d

�
2 �

g �	� � 1 
 π1g � n1 0 g πn 0 1g
2g

� 1 
 π2g � n2 0 g � n 0 1g
P0
� θg; d

�
2 �

g � (1.13)

Wakefield (2001) uses the same likelihood, but presents it in the form of a convo-
lution likelihood of two binomials.

Beh, Steel and Booth (2002) show that the likelihood surface has a ridge along the
tomography line (1.12). Along the tomography line the likelihood is minimised
when π1g � π2g, i.e. at independence, and the maximum occurs at one of the
ends of the tomography line. They also show that except for cases when n � 1g
is very close to n1 � g or n2 � g the likelihood surface is not able to provide useful
evidence concerning the values of π1g and π2g other than they should be on the
tomography line. Notice that the score and information function in this case can
also be obtained directly from the likelihood L

�
2 �

g given by (1.13).

Beh, Steel and Booth (2002) obtain the exact values of φ̂g � � π̂1g � π̂2g � T
that

maximise the likelihood. Wakefield (2001) also obtains these values using an ap-
proximation. The resulting maximum of the likelihood L

�
2 �

g
� φ̂g; d

�
2 �

g � can also be

obtained. Notice φ̂g is unique, except when n1 � g � n2 � g, in which case the likeli-
hood is maximised at  0 � 1 ! T and  1 � 0 ! T .

The inferential problem that arises from wishing to estimate 2m parameters from
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m observations can be tackled if we assume φg � φ for all g % S
�
2 � . Of course

this is a very strong assumption and it is more realistic to assume that φg varies
in some way across the m groups. The variation may be related to group level
covariates zg and random effects. However, analysis is relatively straight forward
if this homogeneity assumption holds. More importantly the question arises of
whether, in practice, it is possible from aggregate data alone to assess whether
the homogeneity assumption is reasonable before attempting to use methods that
allow for variation in φg.

When φg � φ , we can obtain the score and information functions based on the
aggregate data for the m groups in the sample by applying (1.5) and (1.6) to (1.10)
and (1.11) or summing the score and information functions arising from each
group with φg � φ . This gives

sc
�
2 � � φ ; d

�
2 � � � -./ ∑g κ1  θ ;d ; 2 <g ! � n1 0>0 π1

π1  1 � π1 !
n 0 1 0 � ∑g κ1  θ ;d ; 2 <g ! � n2 0>0 π2

π2  1 � π2 !
3 46

info
�
2 �

11
� φ ; d

�
2 � � � ∑g κ1

� θ ; d
�
2 �

g � � 1 
 2π1
� , n1 �M� π2

1 
 ∑g κ2
� θ ; d

�
2 �

g �
π2

1
� 1 
 π1

� 2

info
�
2 �

12
� φ ; d

�
2 � � � ∑g κ2

� θ ; d
�
2 �

g �
π1π2

� 1 
 π1
�N� 1 
 π2

�
info

�
2 �

22
� φ ; d

�
2 � � � � n � 1 � 
 ∑g κ1

� θ ; d
�
2 �

g ��� � 1 
 2π2
� , n2 �M� π2

2 
 ∑g κ2
� θ ; d

�
2 �

g �
π2

2
� 1 
 π2

� 2

Setting sc
�
2 ��� φ ; d

�
2 � � � 0 gives the overall sample level tomography line

π1n1 �M��, π2n2 �M� � n � 1 �
The correlation between the two elements of the individual level score function
conditional on d

�
2 � , obtained from Var � sc

�
1 ��� φ ; d

�
1 � � � d � 2 � 
 , is 
 1 and corre-

sponds to the constraint arising from the tomography line.

Comparing info
�
2 � with info

�
1 � we see that in addition to the reduction in the diag-

onal elements, a positive term appears in the off-diagonal elements. This suggests
that inferences concerning π1 
 π2 will be particularly badly affected.

The same score function can be obtained directly from the likelihood of the ag-
gregate data
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L
�
2 � � φ ; d

�
2 � � � ∏

g : S ; 2 < L � 2 �g
� φ ; d

�
2 �

g �
McCullagh and Nelder (1989, pg 353) obtain an equivalent score function for a
different parameterisation.

The equations sc
�
2 ��� φ ; d

�
2 � �O� 0 can be solved to obtain the estimates φ̂ �� π̂1 � π̂2

� T under the hypothesis of homogeneity. This can be done in several ways
as reviewed by Beh and Steel (2002). Here we obtain the estimate of φ using the
Newton-Raphson iterative procedure

φ
�
j 7 1 � � φ

�
j � 
 α A � 1

J
∂ l
∂φ KQPPPP φ I φ ; j <

with the secant approximation of hessian matrix A to accelerate convergence. Red-
dien (1986) comments that the use of this approximation is often preferred to the
standard Newton-Raphson procedure and that its rate of convergence is both sat-
isfactory and stable. The value of α is chosen such that 0 R α R 1 and dictates the
step length taken at iteration of the procedure (see McCulloch and Searle, 2001,
pg 269).

Once an estimate of the common probabilities, φ̂ , is obtained we can produce
estimates of the group specific proportions P1g � n11g S n1 � g and P2g � n21g S n2 � g by

evaluating the expectation E � n11g � d � 2 � 
 � κ1
� θ̂ ; d

�
2 �

g � where θ̂ is the odds ratio

calculated from φ̂ . This gives the estimates P̂1g � κ1
� θ̂ ; d

�
2 �

g � S n1 � g and P̂2g �� n � 1g 
 κ1
� θ̂ ; d

�
2 �

g �T� S n2 � g. For each group these estimates of the proportions

are obtained by projecting the estimates of the common probabilities, φ̂ , onto the
tomography line (1.12) for that group, using the expectation of the non-central
hypergeometric distribution κ1

� θ̂ ; d
�
2 �

g � .

The likelihood ratio for testing the hypothesis φg � φ is

R
�
2 � � ∏

g : S ; 2 < L
�
2 �

g
� φ̂ ;d

�
2 �

g �
L
�
2 �

g
� φ̂g;d

�
2 �

g � � ∏
g : S ; 2 < R � 2 �g

We will not use the Wald test as info
�
2 � is not defined at the φ̂g values. The score

test based on the observed information matrix is

ST
�
2 � � ∑

g : S ; 2 < sc
�
2 � � φ̂ ; d

�
2 �

g � T � info
�
2 � � φ̂ ;d

�
2 �

g ��
 � 1
sc
�
2 � � φ̂ ; d

�
2 �

g � � ∑
g : S ; 2 < ST

�
2 �

g
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1.4 Using Aggregate and Unit Level Data

In some situations it may be feasible to obtain both individual level and aggregate
data. For example, we may have a reasonably large number of groups and could
consider conducting a small sample of individuals to supplement the aggregate
data. Alternatively, we could have a reasonable sized sample of individuals and
consider supplementing it by some aggregate data. The latter case could be useful
in producing estimates of group specific quantities. This leads to the general issue
of what is the relative value of the two types of data. This can help us decide at
what sample size the information in the aggregate data has little additional value.

Suppose that we have a simple random sample, S
�
0 � of n0 individuals selected

from the population of interest. We assume that the sampling fraction is small so
that we can treat the data in S

�
0 � as independent of that in S

�
2 � . The sample S

�
0 �

produces the data d
�
0 � . The aggregate and individual level data can be combined,

giving d
�
c � �U" d

�
2 � � d � 0 � $ . Because of the independence of the data sets the score

function and information matrices can be added giving

sc
�
c � � ψ ; d

�
c � � � sc

�
2 � � ψ ; d

�
2 � � , sc

�
0 � � ψ ; d

�
0 � �

info
�
c � � ψ ; d

�
c � � � info

�
2 � � ψ ; d

�
2 � � , info

�
0 � � ψ ; d

�
0 � �

Consider the case of m 2 � 2 tables. Suppose that the group that each individual
comes from is not known. This could be for reasons of confidentiality or because
the sample was selected in a way that did not make recording the groups conve-
nient. Then d

�
0 � � " n

�
0 �

11 � n � 0 �1 � � n � 0 �� 1 � n � 0 � $ .

Assuming φg � φ the information associated with d
�
0 � is

info
�
0 �

11
� φ ; d

�
0 � � � n ; 0 <

11  1 � 2π1 ! 7 n ; 0 <
1 0 π2

1

π2
1  1 � π1 ! 2

info
�
0 �

21
� φ ; d

�
0 � � � 0

info
�
0 �

22
� φ ; d

�
0 � � � 1 n ; 0 <0 1 � n ; 0 <

11 2  1 � 2π2 ! 7 n ; 0 <
2 0 π2

2

π2
2  1 � π2 ! 2

@ AAAAABAAAAAC
The addition of the unit level data increases the diagonal elements of the infor-
mation matrix and leaves the off-diagonal elements unchanged. Besides reducing
the asymptotic variance of the estimates of π1 and π2 this will also dampen the
correlation of the estimates resulting in additional benefits for the estimation of
π1 
 π2 .
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1.5 Example

To illustrate the application of these results we will consider a simple example
using data from the 1996 Australian census. The data corresponds to the census
district (CD) level data for the city of Brisbane in Australia where the individual
level classifications are known. There are a total of 1541 CDs, but for simplicity
we will focus our discussion on a random sample of 50 CDs.

For comparison, King’s method is also applied to these data using the EzI package
(Benoit and King, 1998) with its default global parameters.

Consider the data with variables ”Income” and ”Age” so that for CD g the classi-
fication of individuals is

X � 1; if a person is aged between 15 and 24 years,

X � 0; if a person is aged at least 25 years,

Y � 1; if a person’s weekly income is between $AU0 and $AU159,

Y � 0; if a person’s weekly income is at least $AU160.

For the 50 CDs considered there are 22323 individuals classified, with 4238 in-
dividuals aged between 15 and 24 years and 5674 with a weekly income of be-
tween $AU0 and $AU159. These values correspond to the marginal frequencies
n � , n1 �M� and n � 1 � respectively. The proportion of people aged between 15 and
24 was 0.1898 and varied from 0.1053 to 0.2861 with a coefficient of variation
0.1970. A plot of the values of the group specific proportions P1g and P2g is given
in Figure 1.1 and shows a considerable amount of variation.

Based on the individual level data we obtain π̂
�
1 �

1
� 0 ( 5054 and π̂

�
1 �

2
� 0 ( 1953

which have estimated standard errors of 0.0077 and 0.0029 respectively.

Based only on the aggregate level data the maximum likelihood estimates as-
suming homogeneous parameters using the accelerated Newton-Raphson iterative
procedure gives π̂

�
2 �

1
� 0 ( 5184 and π̂

�
2 �

2
� 0 ( 1922 and estimated standard errors

of 0.0353 and 0.0085 respectively. The initial values of π1 and π2 were set at
0.6 and 0.1966 so that the overall tomography line is satisfied. Instability of the
convergence was experienced with α � 1 so smaller steps throughout the itera-
tive procedure were carried out with α � 0 ( 4. Using King’s (1997) method via
EzI produced estimates π̃

�
2 �

1
� 0 ( 4769 and π̃

�
2 �

2
� 0 ( 2020 with estimated standard

errors of 0.1606 and 0.0376 respectively. The point estimates obtained from the
two methods are quite similar although there is a large difference between the es-
timated standard errors. This may be due to the random effects incorporated into
the King method while our approach does not include any random variation in the
group specific parameters.

The estimates of the group specific proportions P1g and P2g using King’s approach
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Figure 1.1 Plot of P2g versus P1g

and assuming homogeneity of the associated probabilities are very similar. In
the latter approach, even though the probabilities π1g and π2g are assumed to
be constant across the groups, the associated proportions, P1g and P2g are not
assumed to be constant across the groups. Figure 1.2 compares the individual level
proportions P1g and P2g with the estimates P̂1g and P̂2g obtained by considering

the expectation E � n11g � d � 2 �g 
 using the parameter values π̂
�
2 �

1
and π̂

�
2 �

2
, that is

κ1
� θ̂ � 2 � ; d

�
2 �

g � . These values are very similar to those produced when estimating
P1g and P2g using King’s approach and these are produced in Figure 1.3. Chambers
and Steel (2001) considered using the relative root-mean-squared errors

V1 � 1
π̂
�
1 �

1 V m � 1 ∑
g

� P̂1g 
 P1g � 2
V2 � 1

π̂
�
1 �

2 V m � 1 ∑
g

� P̂2g 
 P2g � 2

to assess how well these estimates reproduce the true values. For the method as-
suming homogeneity between the groups V1 � 0 ( 1993 and V2 � 0 ( 1204, while
King’s method produces the similar values V1 � 0 ( 2066 and V2 � 0 ( 1317. This
indicates that for these CDs there is no advantage in allowing for group hetero-
geneity in the conditional probabilities.
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Figure 1.2 Plot of P̂1g versus P1g and P̂2g versus P2g using κ1 W θ̂ X 2 Y ; d X 2 Yg Z
Based on the individual level parameter estimates π̂

�
1 �

1
and π̂

�
1 �

2
the information

matrix and its inverse are

info
�
1 � � J

16953 ( 96 0
0 115075 ( 3 K� info

�
1 � 
 � 1 � J

0 ( 00005898323 0
0 0 ( 00000868996 K

This gives the estimated standard errors [SE
�
1 � � π̂ � 1 �

1
� d � 1 � � � 0 ( 0077 and [SE

�
1 � � π̂ � 1 �

2
� d � 1 � � �

0 ( 0029.

The conditional expectation of this information matrix can be evaluated by re-
placing n11g by its conditional expectation evaluated at θ̂

�
2 � . Doing so yields

E � info
�
1 � � d � 2 � 
 � J

16991 ( 07 0
0 117205 ( 8 K

which is very close to info
�
1 � .
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Figure 1.3 Plot of P̂1g versus P1g and P̂2g versus P2g using King’s Methodology

Using π̂
�
2 �

1
, π̂
�
2 �

2
and θ̂

�
2 � from the Newton-Raphson procedure

Var � sc
�
1 � � d � 2 � 
\� J

11927 ( 53 
 19179 ( 83
 19179 ( 83 30841 ( 74 K
which has an associated correlation of 
 1. Applying (1.6) the resulting informa-
tion matrix based only on the aggregate level data is

info
�
2 � � J

5063 ( 538 19179 ( 83
19179 ( 83 86364 ( 03 K

and � info
�
2 � 
]� 1 � J

0 ( 0012436897 
 0 ( 00027620009
 0 ( 00027620009 0 ( 00007291774 K
and so the estimated standard errors are [SE

�
2 � � π̂ � 2 �

1
� d � 2 � � � 0 ( 0353 and [SE

�
2 � � π̂ � 2 �

2
� d � 2 � � �

0 ( 0085.
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The difference in the probabilities, π1 
 π2 will often be of particular interest.
From info

�
1 � we obtain[Var

�
1 � � π̂ � 1 �1 
 π̂

�
1 �

2 � d � 1 � 
 � [Var
�
1 � � π̂ � 1 �1 � d � 1 � � , [Var

�
1 � � π̂ � 1 �2 � d � 1 � �
 2Ĉov

�
1 � � π̂ � 1 �1 � π̂ � 1 �2 � d � 1 � �� 0 ( 00005879863 , 0 ( 000008480757 
 2 � 0� 0 ( 00006727939

Hence [SE
�
1 � � π̂ � 1 �1 
 π̂

�
1 �

2 � d � 1 � 
 � 0 ( 008202401

From info
�
2 �

[Var
�
2 � � π̂ � 2 �1 
 π̂

�
2 �

2 � d � 2 � 
 � [Var
�
2 � � π̂ � 2 �1 � d � 2 � � , [Var

�
2 � � π̂ � 2 �2 � d � 2 � �
 2Ĉov

�
2 � � π̂ � 2 �1 � π̂ � 2 �2 � d � 2 � �� 0 ( 0012436897 , 0 ( 00007291774 , 2 � 0 ( 00027620009� 0 ( 001869008

giving [SE
�
2 � � π̂ � 2 �1 
 π̂

�
2 �

2 � d � 2 � 
_� 0 ( 04323203

The estimated correlation between π̂
�
2 �

1
and π̂

�
2 �

2
obtained from info

�
2 � is 
 0 ( 917.

Parameter [Var
�
2 � S [Var

�
1 �

Ind. Sample Ind. Sample
Equiv. to 50 CD’s Equiv. Per CD

π1 21.2 1053 21
π2 8.6 2596 52

π1 
 π2 27.8 803 16

Table 1.2 Effect of Aggregation on Variance Estimates: Income by Age

The effect of aggregation can be examined by looking at the ratio of the estimated
variances obtained from info

�
1 � and info

�
2 � . These are given in Table 1.2. Here
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the estimation of π1 is affected by aggregation more than π2, possibly because
π1 is larger and P1g varies more across the CDs. The increase in the asymptotic
variance of the parameters π1 and π2 is more than the increase in the diagonal
elements of the information matrix, i.e. more than 3.3 and 1.3 respectively. This
is due to the large covariance term introduced by the aggregation. The estimation
of π1 
 π2 is affected even more than that of π1 due to the affect of aggregation on
the correlation of the estimates. In looking at these ratios, it must be remembered
that the individual level data consists of 22323 people whereas the aggregate data
relates to 50 CD’s, a ratio of 446. There are 4238 people who are 15-24 years
old which contribute to the estimation of π1, an average of 84.8 people per CD.
While there is clearly a loss of information through the use of aggregate data, it
does not correspond to each CD being equivalent to an individual. In Table 1.2 we
show the individual level sample size required to obtain the same variance, and
therefore standard error, as using these aggregate data for 50 CD’s. For example,
the sample of 50 CD’s gives the same variance for the estimation of π1 
 π2 as
803 individuals. Dividing by 50 gives an indication of the information per CD
compared with the information per individual. For this example, on average, each
CD is as useful as 16 individuals in terms of estimating π1 
 π2. These results
depend on the variation in the proportion of 15-24 year olds across the CD’s.

Using the results in Section 1.3.4 we can also examine the likely impact of sup-
plementing aggregate data with individual level survey data. This is shown in
Table 1.3 which gives the variance Var

�
c � of the estimate of π1 
 π2 based on

aggregate data for 50 CD’s plus an independent sample of n0 individuals for
n0 � 0 � 1 � 10 � 50 � 100 � 500 � 1000. For comparison, we also give the variance for
these sample sizes when there is no aggregate data, Var

�
0 � .

n0 Var
�
c � � π1 
 π2

� Var
�
0 � � π1 
 π2

�
0 0.001869 –
1 0.001866 1.501876

10 0.001845 0.150188
50 0.001756 0.030037

100 0.001656 0.015019
500 0.001138 0.003004
1000 0.000818 0.001502
5000 0.000253 0.000300

Table 1.3 Comparison on Var ` π1 a π2 b for the analysis of aggregate data and a sample
of individual level data of various sizes

The results in Table 1.3 are consistent with the aggregate data being equivalent to
803 individuals.
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We can also compare the use of individual and aggregate data in testing for hom-
geneity, using the likelihood ratio and score test as described in Section 3, page
11. Both tests should be compared with χ2

98, for which the critical value for a 5%
test is 122.

For the likelihood ratio test the results are
 2logR
�
1 � � 502 ( 7287 
 2logR

�
2 � � 339 ( 2903

Both these values suggest that the null hypothesis of φg � φ be rejected. The test
statistic calculated from the individual level data is larger, which is consistent with
it having more power. Each of these test statistics can be decomposed into a term
for each group, i.e.
 2logR

�
1 � � ∑

g

� 
 2logR
�
1 �

g � 
 2logR
�
2 � � ∑

g

� 
 2logR
�
2 �

g �
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Figure 1.4 Plot of a 2log R X 2 Yg versus Xg, and a 2log R X 1 Yg

Figure 1.4(a) gives a plot of 
 2logR
�
2 �

g versus Xg � n1 � g S ng, the proportion of
people aged 15-24 years for each CD. This plot may be useful as a diagnostic in
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terms of identifying groups with large values which indicates that they are par-
ticularly affecting the statistical significance of the test. This will suggest those
groups having parameters π1g and π2g which are statistically significantly differ-
ent from the overall parameters values. It may also be useful in suggesting any
trends in departures from homogeniety that may be related to X g.

In examining these values we suggest comparing them with the 1% critical value
of χ2

2 , i.e. 9.210. The horizontal and vertical lines on the figures correspond to
this value.

Figure 1.4(b) gives a plot of 
 2logR
�
2 �

g versus 
 2logR
�
1 �

g . Of the 17 cases that
would be identified as statistically significant using individual level data, 9 are
also identified using the group level data. Also no cases that are statistically
non-significant using 
 2logR

�
1 �

g are identified as statistically significant using
 2logR
�
2 �

g . Hence, while there is, as expected, a loss of power in using the aggre-
gate data, it is still possible to undertake a useful analysis of residuals.

Both the analyses of 
 2logR
�
1 �

g and 
 2logR
�
2 �

g identify one particular CD as
having a large influence on the hypothesis test. This CD was investigated and
found to have more than twice the usual population size, low values of P1g and P2g,
and a reasonably high value of Xg. This is probably a CD in a newly developed
area of the city.

A similar approach can be used with the score test, giving

ST
�
1 � � 496 ( 8291 ST

�
2 � � 359 ( 9741

Figure 1.5 gives a plot of ST
�
2 �

g versus Xg and ST
�
1 �

g .

Again these results both lead to the rejection of the null hypothesis. However, we
encountered a problem with the score test. For 24 of the 50 CDs, info

�
2 � � φ̂ ; d

�
2 �

g �
was not positive-definite, leading to a negative ST

�
2 �

g value. In our analysis we set
such cases to zero. Numerically this situation arises because the subtraction of
the estimate of the conditional variance of the score function for the CD reduces
the diagonal elements and increases the off-diagonal elements too much. We are
investigating modifications to the score test to overcome this issue. Notwithstand-
ing this issue using ST

�
2 �

g identifies 10 of the 15 cases that ST
�
1 �

g would identify
as having parameters statistically significantly different from the overall values.
However, it also identified one case as statistically significant that was not so
identified using ST

�
1 �

g .

Signed residuals can also be determined and examined.
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1.6 Discussion

We have described a general approach to clearly identify the loss of information in
using aggregate rather than individual level data. Let Yi denote the value of the re-
sponse variable for individual i. In many situations determining the score function
and information loss through aggregation will involve determining E � Yi � d � 2 �g � ,

Var � Yi � d � 2 �g � and Cov � Yi � Yj � d � 2 �g � for i � j % g.

In the example of homogeneous 2 � 2 tables, this approach is not much simpler
than direct use of the likelihood based on the aggregate data d

�
2 � . However, equa-

tion (1.6) clearly shows the information loss. Much of the effect of aggregation in
this case arises from the change to the off-diagonal elements of the information
matrix.

The example considered in this chapter shows how we can test the hypothesis
of the parameters of interest being constant across groups from aggregate data
alone. Decomposing the resulting test statistics into contributions from each group
enables an analysis of the impact that each group has on the hypothesis test. This
can be useful in identifying groups with parameter values very different from the
overall parameters.
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The example suggests that residuals obtained from the Likelihood Ratio Test us-
ing aggregate data are preferable to those obtained from the Score Test.

We are currently considering how the general approach applies in the more com-
plex models, especially those including random effects to allow for the variation
in group specific parameters.
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