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1 Introduction

Efficient estimation of population characteristics for subnational domains is an important aim

for many statistical agencies. Such domains are defined as any subdivision of the population

for the variable of the interest. However, geographically-based domains, like regions, states,

counties, wards and metropolitan areas are typically of most interest. A traditional approach to

estimation for such domains is based on application of classical design-based survey sampling

methods. Estimates based on this approach are often called direct estimates in the literature.

However, sample sizes are typically small or even zero within the domains/areas of interest.

This results in the direct estimators having large variances. When there are no sample

observations in some of the small areas of interest, direct estimators cannot even be

calculated. Small area estimation theory is concerned with resolving these problems.

Often there is auxiliary information that can be used to define estimators for small

areas. In some cases these are values of the variable of interest in other, similar, areas, or past

values of this variable in the same area or values of other variables that are related to the

variable of interest. Estimation and inference approaches based on using this auxiliary

information are called indirect or model-based. Methods based on the use of auxiliary

information have been characterized in the statistical literature as ″borrowing strength” from

the relationship between the values of the response variables and the auxiliary information.

Model-based methods have long history, but have only received attention in the last few

decades as defining an approach to estimating small area characteristics. In this context, two

main ideas have been used in developing models for use in small area estimation. These either

assume that the interdomain variability in the response variable can be explained entirely in

terms of corresponding variability in the auxiliary information, leading to so-called fixed

effect models, or require the assumption that "unexplained" domain specific variability

remains even after accounting for the auxiliary information, leading to mixed models

incorporating domain specific random effects.

Fixed effect models explain inter-domain variation in the response variable of interest

entirely in terms of variation in known factors. Such models have been the mainstay of

statistical analysis since the pioneering work of Legendre (1806). Estimates of small area

characterics based on fixed effect models are referred to as synthetic estimators (Levy and
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French, 1977), composite estimators (Schaible et al, 1977), and prediction estimators (Holt et

al, 1979; Sarndal, 1984; and Marker, 1999).

Mixed models also have a long history, but have received special interest only in the

last few decades. This is partly due to the heavy computational burden of estimation methods

used with such models. Recent developments in computing hardware, software and estimation

methods have however led to increased attention being paid to the use of mixed models for

data analysis.

Linear mixed models have a wide range of applications. In particular, the ability to

predict linear combination of fixed and random effects is one the more attractive properties of

such models. In a series of papers, Henderson (1948, 1949, 1959, 1963, 1973, 1975)

developed the best linear unbiased prediction (BLUP) method for mixed models. In this case

"best" stands for minimum mean square error among all linear unbiased predictors, "linear"

means that the predictor is a linear combination of the response variable values and

"unbiased" means that expected value of the prediction error (predicted value of variable -

actual value of variable) is zero.

The BLUP method has become a powerful and widely used procedure for fitting

models for genetic trends in animal populations based on traits measured on both the

continuous and the categorical scale. However, the BLUP methods described in Henderson

(1949-75) assumed that the variances associated with random effects in the mixed model (the

variance components) are known. In practice of course such variance components are

unknown and have to be estimated from the data. There are several methods for estimating

variance components. Harville (1977) reviews these methods, including maximum likelihood

and residual maximum likelihood and three other methods suggested by Henderson. The

predictor obtained from the BLUP when unknown variance components are replaced by

associated estimators is called the empirical best linear unbiased predictor (EBLUP) and is

described in Harville (1990), Robinson (1990) and Harville (1991).

Over the last decade several important approaches have been developed for

estimating/predicting the value of a linear combination of fixed and random effects in discrete

response data. In virtually all of these random effects are assumed to be normally distributed.

Schall (1991), Breslow and Clayton (1993), McGilchrist and Aisbett (1991) and McGilchrist
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(1994) have extended the empirical best linear predictor (EBLUP) to generalized linear

models. Wolfinger (1993) and Wolfinger and O'Connell (1993) developed essentially the

same computational algorithm but via a different approach. Three likelihood expansion

techniques including the Solomon and Cox (1992) approach were compared in Breslow and

Lin (1995) and Lin and Breslow (1996). Zeger and Karim (1991) introduced a Gibbs

sampling approach for generalized linear mixed models. Monte Carlo EM (MCEM) and

Monte Carlo Newton-Raphson (MCNR) computation approaches are described in McCulloch

(1994) and McCulloch (1997) respectively.

Mixed models have been used to improve estimation of small area characteristics of

small area based on survey sampling or census data by Fay and Herriot (1979), Ghosh and

Rao (1994), Rao (1999) and Pfeffermann (1999). In these applications, the mixed model

derives from the concept that the vector of finite population values is a realisation of a

superpopulation. In this context, estimation of a small area mean is equivalent to prediction of

the realization of the unobservable random area effect in a linear mixed model for the

superpopulation distribution of the variable defining this mean. See Valliant et al (2000) for a

discussion of the distinction between the traditional interpretation of model-based prediction

and its application in survey sampling.

In addition to EBLUP, empirical Bayes (EB) and hierarchical Bayes (HB) estimation

and inference methods have been also applied to small area estimation. Under the EB

approach, Bayes estimation and inferential approaches are used in which posterior

distributions are estimated from data. Under the HB approach, unknown model parameters

(including variance components) are treated as random, with values drawn from specified

prior distributions. Posterior distributions for the small area characteristics of interest are then

obtained by integrating over these priors, with inferences based on these posterior

distributions. Ghosh and Rao (1994) review the application of these estimation methods in

small area estimation. Maiti (1998) has used non-informative priors for hyperparameters when

applying HB methods. You and Rao (2000) have used HB methods to estimate small area

means under random effect models.

Many surveys or censuses are repeated over time, and this means that auxiliary

information from past values of a variable of interest can be used to improve current estimates
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of this variable. This "borrowing of strength over time" has been used to improve estimators

for small areas. Starting with the work of Scott and Smith (1974), Pfeffermann and Burck

(1990), Tiller (1991) Rao and You (1992), Singh et al (1994), and Ghosh et al (1996) have

used time series models and associated estimation methods to improve estimators for small

areas. In particular, Datta et al (1999) have used times series models in estimating State-level

unemployment rates for the US.

Often the survey or census data from which small area estimates are needed are

discrete or categorical. A general approach for small area estimation based on generalized

linear models is described in Ghosh et al (1998). Malec et al (1999) have extended the models

described in Malec et al (1997) by including an oversampling component in the likelihood.

Farrell et al (1997) extend the mixed logistic model of MacGibbon and Tomberlin (1989).

Moura and Migon (2001) further extend this model, introducing a component to account for

spatially correlated structure in the binary response data.

The naïve mean square error estimator suggested by Henderson (1975) underestimates

the true mean square error of small area estimators based on mixed effect models. Kacker and

Harville (1984) introduced an estimator for the mean square error of an estimator of a small

area mean based on an approximation to its true mean squared error under such models.

Prasad and Rao (1990) developed an approximation to the Kacker and Harville estimator.

Harville and Jeske (1992) also developed approximations to the mean square error of

predictors. Rivest and Belmonte (2000) have developed the conditional mean square error of a

small area estimator.

The aim of this report is to review small area estimation and inference methods based

on the application of mixed models within a frequentist environment. Section 2 starts by

reviewing the mixed models that have been used in small area estimation. Section 3 then

describes the different estimation and inference methods that have been used with these

models. Details of the BLUP approach are set out in subsection 3.1, while subsection 3.2

reviews the application of empirical best linear unbiased prediction (EBLUP) methods to

small area estimation. Extensions to Generalized Linear Mixed Models (GLMMs) are

reviewed in subsection 3.3. Section 4 concludes the report with a review of modern methods

for estimating the mean square error of small area estimators based on mixed models.
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2 Models for Small Area Means

Let dtiy  represent the ith population value for a characteristic of interest within a "cell" t

within an area d (i = 1,2,…, dtN ; t = 1,2,…,T; d = 1,2,…,D ). In general the "cells" can be

defined quite freely, and in many cases will include a time component. Similarly, we define

vectors dtiX  which contain corresponding auxiliary population information (covariates). The

population and sample sizes for the area i are assumed known and are given by ∑
=

=
T

t
dtd NN

1

and ∑
=

=
T

t
dtd nn

1

 respectively. The objective is to predict the value of the small area mean

∑∑
= =

−=
T

t

N

i
dtidd

dt

yNy
1 1

1 .

Many different types of models have been put forward as a basis for this prediction. In

this review we focus on two basic classes of models, corresponding to fixed effect and

random effect specifications. The fixed effect specification assumes that all systematic

variability between individuals from different areas can be explained in terms of variability in

covariates. In contrast the random effects specification assumes that significant systematic

variation between small areas remains after covariates are accounted for in the model, and

models this via the addition of area specific random coefficients. Models that do not include

such random coefficients are referred to as fixed effect below, while those that contain

random coefficients (in addition to fixed effects) are referred to as mixed below.

2.1 Linear Fixed Effect Models

Let y = { dtiy }be the population vector of response variable values, with ys denoting the values

observed in the sample, and let X = { dtiX } be a corresponding matrix of covariate values

known for all units in the population, with Xs denoting the corresponding sample component

of this quantity. A large class of fixed effect models for a population can then be represented

by the linear form

(2.1.1) y = Xβ +e
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where β  is a vector of regression coefficients and e denotes a population vector of

independent random "noise" components. A fundamental assumption is then that the model

(2.1.1) also applies to the sample data. That is, one can write

y s = Xsβ + es

where the components of es are still independent random "noise" values. It is clear that the

sample data can therefore be used to calculate an efficient estimator of β . Denote this

estimator by ˆ β . An obvious predictor of ydti for a non-sample unit in area d is β̂dtiX′  and the

corresponding predictor of the overall population mean of y in area d is

(2.1.2) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
′+= ∑ ∑∑∑

= +== =

−
T

t

N

ni
dti

T

t

n

i
dtidd

dt

dt

dt

yNy
1 11 1

1 ˆˆ βX .

Note that (2.1.2) does not require that there be any sample units in area d. Its basic assumption

is that the relationship between y and X  specified in (2.1.1) above remains the same

irrespective of area.

This prediction-based approach to small area estimation is discussed further in Holt et

al (1979). Ghosh and Rao (1994) review this approach and Ericksen (1974 and 1975) apply

the prediction approach to obtain estimates of population change from 1960 to 1970 for 2586

counties in the US. Levy (1971) and Gonzalez and Hoza (1978) use a regression model-based

prediction approach to estimate unemployment in small areas.

Alternatively, classical design-based sampling techniques can be applied to obtain an

estimate for the small area mean. Such estimation methods are called direct in the literature.

This approach assumes that there are sample units in each small area of interest. The estimator

for the mean of y in small area i is then

(2.1.3) wd

T

t

n

i
dtidti

T

t

n

i
dtid yywwy

dd

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑∑∑∑

= =

−

= = 1 1

1

1 1

ˆ

where dtiw  is the "sample weight" associated with the sample unit indexed by dti. From a

modelling perspective, using (2.1.3) corresponds to replacing (2.1.1) by the more restrictive

ANOVA-type model

(2.1.4) dtiddti ey += β
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for each d =1,2,…,D and Var(edti) = 12 −
dtiwσ . This is a simple form of the fixed effect model

(2.1.1) with the matrix X defined by vectors that "pick out" the different small areas.

There are two basic problems with this approach. First, from a model-based

perspective it assumes that all units in a small area have the same expected value of y. This

ignores the variability in y "explained" by the different values in X. Second, it requires that

the sample size in any small area be large enough so that the sample weighted mean (2.1.3)

above can (i) be calculated, and (ii) be a reasonably efficient estimator of the small area

population mean. Neither of these conditions hold in practice. Consequently, direct estimators

are of little interest in small area estimation.

An extension of the direct estimation approach that "bridges the gap" between (2.1.2)

and (2.1.3) is based on the model-assisted approach to design-based sampling theory. This

estimates the regression parameter β in (2.1.1) using the sample weights wdti to obtain a

weighted estimate ˆ β w (which is not always efficient) and then estimates the small area mean

of interest by

(2.1.5)

wwddwd

T

t

n

i
wdtidti

T

t

n

i
dti

T

t

N

i
wdtid

T

t

n

i
dtidti

T

t

n

i
dti

T

t

n

i
wdtidtidti

T

t

n

i
dti

T

t

N

i
wdtidd

y

wwN

yww

ywwNy

dtdtdt

dtdt

dtdtdt

β

ββ

ββ

ˆ)(

ˆˆ

)ˆ(ˆˆ

1 1

1

1 11 1

1

1 1

1

1 1

1 1

1

1 11 1

1

′−+=

′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−′+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

′−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+′=

∑∑∑∑∑∑

∑∑∑∑

∑∑∑∑∑∑

= =

−

= == =

−

= =

−

= =

= =

−

= == =

−

XX

XX

XX

The estimator defined by (2.1.5) is often referred to as a generalised regression estimator or

GREG estimator. Technically it still requires that there is sample in every small area of

interest, but this requirement is often relaxed and a slightly modified version of (2.1.5) is

calculated, defined by wddy β̂ˆ X′=  in small areas where nd is zero (or very small). Clearly this

corresponds to using an inefficient version of the model-based estimator (2.1.2) in such areas

and the GREG estimator (2.1.5) where the sample size is "reasonable". See Sarndal (1984)

and Hidiroglou and Sarndal (1985).

Early developments in small area estimation were based on simple apportionment

methods. That is, reasonably accurate means for large subgroups in the population of interest



9

were calculated, and these were then apportioned within a small area of interest according to

the proportional representation of the different subgroups in the small area. (Such methods

were called synthetic when they were first introduced in NCHS (1968), but now this name is

used to describe any model-based small area estimate based on a fixed effects model.) In our

notation an apportionment-based estimator for the mean of y in small area d is

(2.1.6) ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

T

t
t

dd

dtdt
d y

xN

xN
y

1

ˆˆ

where ˆ y t  denotes the estimate of the population average of y in subgroup t and it is assumed

that the covariate x is scalar. When x is identically equal to one it is easy to see that use of

(2.1.6) essentially corresponds to the assumption of an ANOVA model for y within subgroups

(not areas) in the population. A popular choice however is where x is the value of y from a

previous census. In this case this estimator does not have a straightforward linear model

interpretation. For example, suppose it is reasonable to assume that E(ydti) = β xdti and ˆ y t  is

unbiased for y t  under this model. Then (2.1.6) is biased, since

∑
=

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−

T

t d

t
dtdtddd x

x
xNNyyE

1

1 1)ˆ( β

is not zero in general. Design-based properties of these estimators are developed in papers by

Gonzalez and Waksberg (1978) and Levy and French (1977). Assuming that a design-

unbiased direct estimator of dy  is available, Gonzalez and Waksberg (1973) developed a

design-unbiased estimator of the design mean square error (p-MSE) of the apportionment

estimator. The performance of this estimators is investigated further in Levy (1971), who uses

this approach to estimate death rates, in Namekata et al (1975), and in Schaible et al (1977)

who use it to estimate regional unemployment rates. Laake (1979) compares the prediction

approach with the apportionment approach. Marker (1999) derives the apportionment

estimator as form of GREG estimator.

A standard approach in small area estimation is to construct a linear combination of

estimators suggested by different approaches. Such estimators are referred to as composite

estimators. Schaible et al (1977) proposed a composite estimator based on a linear

combination of the unbiased direct estimator and the model-based prediction estimator. This

is an estimator of the form
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ddddd yyy 21
ˆ)1(ˆˆ γγ −+=

where dy1
ˆ  and dy2

ˆ  are the direct and model-based estimators of the small area mean dy . An

obvious issue is choice of the coefficient γd. Purcell and Kish (1980) also consider this

approach, but use a common value of γ  when defining the composite estimator.

2.2 Linear Mixed Models

The linear model (2.1.1) assumes that all the systematic variability in the population values

making up y is explained by the variation in the values in X . This validates the assumption

that the error vector e is "noise". However, in practice the observed sample residuals

rs = y s − Xs
ˆ β  do not look like noise, and often contain significant between area variation. This

implies that the model (2.1.1) is misspecified, and that there are "missing" covariates in the

model, whose values vary from one area to another. If there are relatively few small areas

making up the population, so that the sample size within any one is reasonable, then this

misspecification is easily handled. If X contains an intercept term, then this can be replaced

by an area factor. A little consideration shows that this leads to the estimator

β̂)(ˆ ′−+= sddsdd yy XX

where now X and β  exclude the intercept term. If X does not contain an intercept term (so the

regression is through the origin) then (2.1.1) can be replaced by

(2.2.1) dddd eXy ++′= )( γβ

 where the parameter dγ  represents the deviation from the overall model (2.1.1) in small area

d, and the dγ  sum to zero across all such areas. This type of constrained model forms the

basis of the small area modelling approach adopted for underenumeration estimation in the

2001 UK Census (Abbott et al, 2000). The model itself can be fitted to the sample data in the

small areas using standard regression software (e.g. SAS).

In many cases, however, there are many small areas, with any particular area

containing only a small number of sample units. In such cases introducing a fixed effect for

each small area in the model can lead to considerable loss of efficiency (the inefficient direct

estimator is, of course, the archetype such area effect-based estimator). In these cases

therefore the basic approach replaces fixed effects for the small areas by random effects,
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working on the assumption that the small areas can be considered an exchangeable set of

population subgroups once unit and area specific covariate information is taken into account.

In practice this means (2.1.1) is replaced by the linear mixed model

(2.2.2) y s = Xsβ + Z su + es

where Zs is a matrix of known covariates (often area specific rather than unit specific) and u is

a random vector with zero mean and unknown covariance matrix Ω. This vector of "random

effects" is assumed to be uncorrelated with the error vector es, which is still assumed to be

"white noise" with a zero mean vector and a covariance matrix proportional to a known

diagonal matrix Ws, with unknown constant of proportionality σ2. It immediately follows

from these assumptions that

(2.2.3)     E(ys | Xs) = Xsβ

(2.2.4) sssssVar WZZXy
2)|( σ+′= ΩΩ .

The components of the matrix Ω  and σ2 are called variance components and the model

defined by (2.2.3) and (2.2.4) is often referred to as a variance components model. Note that

the same variance components structure applies to the population as a whole (and, by

subtraction, to the non-sample units). All one needs to do is to delete the "s" index in (2.2.3)

and (2.2.4). Typically, specialist software is needed to fit models like (2.2.2)-(2.2.3).

Variance components models have a long history, dating back to Airy (1861).

However, their application to small area estimation is relatively recent, with interest focussing

on prediction of finite population quantities (e.g. small area means) under these models. In

this context Royall (1976) gives a very general result that allows one to write down the Best

Linear Unbiased Predictor (BLUP) of any linear function θ = ′ a y  of the population y-values

under the model (2.1.1) with arbitrary correlation of sample and non-sample units. Here a is a

known vector of constants of the same dimension as the vector y of population y-values.

Using Royall's result, the BLUP of θ is

(2.2.5) ˆ θ = ′ a sy s + ′ a r[Xr
ˆ β + VrsVss

−1(y s − Xs
ˆ β )]

where a subscript of s denotes restriction to the sample units, a subscript of r denotes

restriction to the non-sample units, and Vss = Var(y s | Xs) , Vrs = Cov(y r,y s | Xr,Xs) . The

vector ˆ β  in this formula is the Best Linear Unbiased Estimator (BLUE) of the parameter β in

(2.1.1), defined by the GLS estimator
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(2.2.6) ˆ β = ( ′ X sVss
−1Xs)

−1( ′ X sVss
−1y s) .

In the context of prediction of the mean of y in small area i the quantity θ is defined by

a-values that are zero for population units not in small area i and equal to 1/Nd for units in this

small area. Note that calculation of (2.2.5) requires specification of the correlation structure of

the residuals associated with (2.1.1), so this model needs to be extended appropriately. Also,

since in any practical situation the coefficients of V rs and Vss will be unknown (or at least

depend on unknown model parameters), the BLUP (2.2.5) cannot be used in practice. When

estimates of these quantities are substituted in (2.2.5) the resulting estimator is often referred

to as an Empirical BLUP, or EBLUP.

In order to motivate use of (2.2.5) in the context of a variance components model, we

focus on a very simple form of (2.2.2) that has been applied quite widely in small area

estimation. This is where there are no subgroup differences (so we can drop the "t" subscript)

X = 1n, u is a random vector of dimension equal to the number (m) of small areas with Ω =

ω2Im, Zs  = diag(1sd) is a matrix that "picks out" the component of u corresponding to any

particular small area and Ws = σ2In. Here Ia denotes the identity matrix of order a and 1a

denotes a vector of ones of length a. In this case (2.2.2) is equivalent to

(2.2.7) diddi ey ++= uβ .

This model corresponds to the assumption of a common overall mean β, but where area

specific sample means vary independently around this common mean, with variance equal to

212 σω −+ dn . Here ω2 is the variance of the random area effect ud. It is straightforward to see

that the BLUE of β is then a weighted average of these area-specific means, given by

ˆ β = (ω 2 + nd
−1σ 2)−1

d
∑( )

−1

(ω 2 + nd
−1σ 2)−1 y sdd

∑ .

In order to construct the BLUP for the mean of y in area d we apply Royall's formula (2.2.5),

noting that, under (2.2.7)

)( 2
sdrdrs diag 11V ′= ω

)( 22
sdsdsdss diag I11V σω +′= .

It follows

)][( 12221 −− +′′= sdsdsdsdrdssrs diag I1111VV σωω

where straightforward manipulations can be used to show
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][][
22

2
2122

sdsd
d

sdsdsdsd n
11II11 ′

+
−=+′ −−

ωσ
ω

σσω .

Substituting these results in (2.2.5) and taking the components of the vector a there as being

zero for populations units outside area i and 1−
dN  for units in the area, we see that the BLUP

of the area i mean of y is

(2.2.8) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
−+−+= − )ˆ()(ˆ)(ˆ

22

2
1 β

ωσ

ω
β sd

d

d
ddddsdddd y

n

n
nNnNynNy .

Note that when ω2 is zero (there is no area effect) ˆ β  reduces to the overall sample mean of y

and (2.2.8) reduces to the "standard" prediction estimator of dy  under a common mean and

variance model for the distribution of the population values of y. Note also that implicit in

(2.2.8) is the BLUP of the random area effect ui.

)ˆ(ˆ
22

2

β
ωσ

ω
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
= sd

d

d
d y

n

n
u .

This is sometimes referred to as the "shrunken" area i residual.

Extending the basic ideas set out in Ericksen (1973, 1974) and Madow and Hansen

(1975), Fay and Herriot (1979) used (2.2.2), with Z just containing an intercept term (so the

model only includes a random area effect), to estimate average incomes for small areas

(population less than 1000) using 1970 US Census data. In particular, their model assumed

that both the error term and the random effects followed independent normal distributions.

This model was also used by Ericksen and Kadane (1985) to produce small area population

produce estimates. Battese and Fuller (1981) and Battese et al. (1988) applied the same model

to estimate mean crop acreage for 12 counties (small areas) in Iowa. A similar model was

applied to estimation of population changes for local areas by Ericksen (1973), while Kott

(1989) used it to investigate robust small domain estimation. Prasad and Rao (1990) used

(2.2.2) with Xd = Zd to develop estimators of the mean square error of the BLUP. Datta and

Ghosh (1991) extended the models considered in Prasad and Rao (1990) and in Battese et al.

(1988) to cross-classified data and to two stage sampling. In the latter case this was

accomplished by the introduction of separate random effects for the different stages of

sampling. Hulting and Harville (1991) discuss all these models in their comparison of

Bayesian and frequentist approaches to the small area estimation.
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In the context of estimating farmland values in the United States, Pfeffermann and

Barnard (1991) use the model (2.2.2). Their response variable is the value reported the

Agricultural and Land Values Survey (ALVS) and they assume that land values reported by

farmers residing in the same county are distributed randomly around the county mean. The

county means themselves were modelled as functions of auxiliary variables, representing

known county characteristics and random state and county effects. Ghosh and Rao (1994)

give an excellent review of all these developments.

The general model (2.2.2) can be interpreted as a multilevel model (Goldstein, 1995)

and Moura (1994) and Moura and Holt (1999) use this framework to develop estimates for

small area means. Lahiri and Rao (1995) also consider the Fay-Herriot version of (2.2.2) and

show that an estimator of the mean square error of the BLUP, derived by Prasad and Rao

(1990) under an assumption of normality of small area means, is robust to this assumption.

Datta and Lahiri (1995) also study the Fay-Herriot version of (2.2.2) and propose a robust

hierarchical Bayes technique for estimating small area means when one or more outliers are

present. The performance of Bayes and frequentist methods for estimating the mean squared

error of small area estimators based on the model (2.2.2) is discussed in Singh et al (1998).

Prasad and Rao (1999) develop a model-assisted estimator of a small area mean under the

simple model (2.2.7) and Stukel and Rao (1999) have obtained estimators for small area

means under nested error regression models. Hierarchical Bayes estimation of small area

means under multilevel models is described in You and Rao (2000), while Rao (2001)

discusses small area estimation with applications to agriculture based on the use of linear

mixed models. The impact of outliers on small area estimation under linear mixed models has

been investigated by Li (2000), who derives robust methods for estimating small area means

under the version of (2.2.2) investigated by Battese et al. (1988).

Small area estimation methods that "borrow strength over time" have also been

investigated. Beginning with the seminal work of Scott and Smith (1974), times series models

have been fitted to aggregate survey data in the context of estimating corresponding

population means. Scott et al (1977), Smith (1978), Jones (1980), Binder and Dick (1986,

1989), Binder and Hidiroglou (1986), Tiller (1989), Bell and Hillmer (1990) and Pfeffermann

(1991) are relevant references.
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Tiller (1991) uses a time series modelling approach to estimate state level

unemployment rates from the Current Population Survey. This approach is based on a time

series model for the true unemployment rate that includes auxiliary variables and an ARMA

model for the sampling errors for the survey-based estimates of these rates. Pfeffermann and

Burck (1991) discuss a general class of models that combine time series and cross-sectional

data in order to estimate small area means. Their approach assumes a random walk model for

the model regression coefficients and uses the Kalman filter to obtain estimates of these

coefficients as well as the associated variance components. Singh at al (1994) extend the

model considered by Fay-Herriot (1979) to repeated survey data and use EBLUP methods to

obtain estimates of small area means. Their simulation results supported a combined cross-

sectional and time series approach to modelling for small area estimation. Rao and Yu (1994)

also extend the Fay-Herriot model to cross-sectional and time series data. Their proposed

model is of the form

dtdtdtddtdtdt u e1uZXy +++= 21β

where u1d is a cross-sectional random effect that does not vary with time, while u2dt is the

outcome of a AR(1) process. Pfeffermann and Burck (1990) and Singh et al (1991) consider

similar models, but assume specific models for the sampling error. Ghosh et al (1996) also

consider a time specific random effects model with the time effects following a random walk.

Datta et al (1999) use hierarchical Bayes methods to estimate State level unemployment rates

in the US using the Rao and Yu (1994) model and generalise the Fay-Herriot (1979) model to

time series data. Pfeffermann (1999), Rao (1999) and Marker (1999) are reviews of these

developments.

So far, the emphasis has been on estimating a single characteristic (e.g. a small area

mean). However, estimation of multiple characteristics is also of interest in small area

estimation. Datta et al (1999) consider corn and soybeans output as two related characteristics

and use nested regression models to develop estimates of multivariate small area means based

on EBLUP and EB methods. They also obtain a second order approximation (based on Prasad

and Rao, 1990) to the mean squared error of the EBLUP estimators. Their approach is based

on the model considered by Battese et al (1988) and their results demonstrate the superiority

of multivariate models over univariate models. Datta et al (1996) apply multivariate area level
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models to obtain estimates of median income for four-person families in the U.S. Univariate

shrinkage (composite) methods for estimating small area means and rates are extended to

multivariate shrinkage methods by Longford (1999), who also illustrates the advantages of

multivariate shrinkage over univariate shrinkage methods. Finally, Fuller and Harter (1987)

discuss methods for estimating multivariate small area means.

2.3 Non-Linear Mixed Models

Extension of small area estimation methods to nonlinear models has largely been carried out

via Bayesian methods. MacGibbon and Tomberlin (1989) use EB methods to estimate small

area proportions. Their analysis uses simulated data based on the binomial-logistic mixed

model corresponding to (2.2.2). This is defined by

(2.3.1) uZX ddd += ββ)(logit π

where πd is a vector of probabilities associated with the units in small area i and the individual

values in small area i are assumed to be independent Bernoulli outcomes based on these

probabilities.

In the absence of population microdata, Farrell et al (1997) use a second order

approximation to the EB method to develop estimates of small area proportions based on

MacGibbon and Tomberlin's model. They use bootstrap methods to account for uncertainty

caused by estimation of prior parameters. Malec et al (1997) apply HB and EB methods to the

model (2.3.1) to estimate the proportion of individuals who visit a doctor at least once within

12 months. Farrell (1997) extends the EB methods in Farrell et al (1997) to multinomial and

ordinal models.

A general HB approach to small area estimation based on the generalized linear model

is described in Ghosh et al (1998). Their approach also applies to models with spatial

correlation. Maiti (1998) uses non-informative priors for hyperparameters when applying HB

estimation methods to estimation of mortality rates for disease mapping. Malec et al (1999)

extend the hierarchical model of Malec et al (1997) by including an oversampling component

in the likelihood. They then use EB estimation methods to estimate overweight prevalence in

U.S. You and Rao (2000) have develop HB methods for estimating small area means under

multilevel models. Moura and Migon (2001) extend the mixed effects logistic model of
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MacGibbon and Tomberlin (1989) by introducing a further component to account for spatial

correlation in the binary response data. They then use the model selection methodology

proposed by Gelfand and Ghosh (1998) to select a best model.

3 Estimation Methods for Models with Random Effects

There are three standard approaches to small area estimation based on models with random

effects. These are Empirical Best Linear Unbiased Prediction (EBLUP), Empirical Bayes

(EB) and Hierarchical Bayes (HB). The EBLUP method usually requires maximum likelihood

(ML) or residual (restricted) maximum likelihood (REML) estimation of parameters

associated with random area effects, and is identical to the EB and HB approaches in some

situations. In this report we focus on the frequentist approach to small area estimation and so

we describe the ML and REML methods used in the EBLUP approach in more detail in the

following sections.

Althogh we do not treat Bayesian methods in any detail in this review, Empirical

Bayes (EB) and Hierarchical Bayes (HB) methods form an important and widely used class of

inferential techniques used in small area estimation. Consequently it is appropriate that we

briefly describe how they are typically applied. In the EB method, the joint prior and posterior

distributions of the small area quantities of interest are first estimated from the sample data.

Typically, these depend on unknown model parameters, which are then estimated via the

usual techniques eg. ML or REML. These estimates are "plugged into" the posterior

distribution of the small area quantities of interest, with inference about any particular small

area quantity based on the marginal posterior distribution of this quantity.

A basic problem with the EB method is the necessity to account for the uncertainty in

estimating the prior/posterior. Several approaches have been proposed to account for this

uncertainty, with the delta and bootstrap methods being the most popular. Deely and Lindley

(1981), Morris (1983a, b) and Kass and Steffey (1989) discuss the delta methods, while Laird

and Louis (1987) propose a bootstrap method. For more detail on the EB method see Morris

(1983).

In the HB method, the fixed effect parameter β and the variance components are

treated as random. The method assumes a joint prior distribution for these parameters, and



18

Bayes Theorem is used to define the joint posterior distribution of the small area quantities of

interest. This is usually done in several stages. For example Fay-Herriot (1979) first derive the

posterior distribution of β given the variance component σ u
2 and then the posterior distribution

of σ u
2. For specified variance components the HB estimate of a small area mean typically

coincides with the BLUP and  EB estimate of this quantity

The HB method has the advantage that because modelling is carried out in stages, each

stage can be relatively simple and easy to understand, even though the entire model fitting

process can be rather complicated. Furthermore, under some assumptions concerning the prior

distribution of the model parameters, the HB estimators have smaller MSE than

corresponding BLUP-based estimators (Ghosh and Rao, 1994).

However, the HB method also has two major disadvantages. The first is its lack of

robustness to specification of the prior distribution. The other is its computational complexity.

Typically, application of the HB method requires simulation-based methods such as Markov

Chain Monte Carlo (MCMC) to be used in order to approximate the posterior distribution and

hence the posterior means and variances of the small area quantities of interest.

3.1 Best Linear Unbiased Prediction (BLUP)

In section 2.2 we introduced the linear mixed model (2.2.2) as a way of characterising

between area variation in the values of the characteristic Y. In particular, the aim is to

predict/estimate a linear function   ′ a y  of the population y-values given this model. We assume

that the vector y can be partitioned as y = [ ′ y s,  ′ y r ′ ]  where subscripts of s and r corresponding

to sample and non-sample population units. These subscripts will be used below to denote

conformable partitions of other vectors and matrices. Thus, the vector a is partitioned

conformably as a = [ ′ a s,  ′ a r ′ ] . The linear function  ′ a y  can then be written

(3.1.1)   ′ a y  = ′ a sy s + ′ a ry r .

The first term in (3.1.1) depends only on the sample values and is known after the sample is

observed. The second term, which depends on the non-sample values, is unknown. The

problem of using the sample values ys to predict the linear function  ′ a y  therefore becomes the

problem of predicting the linear function ′ a ry r  under (2.2.2). In turn, this is a special case of
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the more general problem of predicting the linear function τ = ′ a r(Xrβ + Z ru)  given the linear

mixed model

(3.1.2) ys = Xsβ + Zsu + es

where the vector of random effects u are partitioned into m subvectors ],,,[ 21 ′′′′= muuuu K ,

with Zs partitioned conformably as Zs = [Zs1,..., Zsm], and Var(u) = σ2Ω = σ2blk-diag(ϕjΩj)

with ϕ j = σ j
2 /σ 2 . The random errors es are assumed to be independent of u with variance

σ2Ws. The variance-covariance matrix of ys is therefore Var(ys) = )(2
sss ZZW ′+ ΩΩσ  = σ 2Σ s.

Following Henderson (1963), we consider predictors of τ that are linear functions of

ys, i.e.,

(3.1.3) ˜ τ = ′ ∆ sy s +∇

where ∆ and ∇ are vector and scalar respectively. Unbiasedness of ˜ τ  under (3.1.2) implies

that

(3.1.4) E( ˜ τ ) = ′ ∆ sXsβ +∇ = E(τ ) = ′ a rXrβ .

For this to hold in general we must have ∇ = 0 and

(3.1.5) ′ ∆ sXs = ′ a rXr .

Put Cs = Cov( ys, u). The vector ∆s is then defined by solving the constrained optimisation

problem

(3.1.6) Minimise Var( ′ ∆ sy s − τ) = σ 2 ′ ∆ sΣ s∆ s + Var(τ ) − 2 ′ ∆ sCs ′ Z ra r

subject to:  ′ ∆ sXs = ′ a rXr .

The Lagrangian for this problem is

(3.1.7) L(∆ s,λ) = σ 2 ′ ∆ sΣ s∆ s − 2 ′ ∆ sCs ′ Z ra r − 2( ′ ∆ sXs − ′ a rXr )λ .

Differentiating (3.1.7) with respect to ∆s and λ and equating to zero yields the estimating

equations

(3.1.8) σ 2Σ s Xs

′ X s 0
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
∆ s

λ
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ =

Cs ′ Z ra r

′ X ra r

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ .

Using Searle (1982, pg 261-262), the inverse of the matrix of coefficients on the left hand side

of (3.1.8) is given by

(3.1.9) σ −2Σ s
−1 0

0 0
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ +
−σ −2Σ s

−1Xs

I
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ (−σ −2Xs
' Σ s

−1Xs)
−1 −σ −2Xs

' Σ s
−1 I[ ] .

Using (3.1.9), the optimum value of ∆s is therefore
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(3.1.10)

∆ s
opt = σ −2Σ s

−1Cs ′ Z ra r

+ ΣΣ s
−1Xs( ′ X sΣ s

−1Xs)
−1( ′ X ra r −σ −2 ′ X sΣ s

−1Cs ′ Z ra r)

= ΣΣ s
−1Xs( ′ X sΣ s

−1Xs)
−1 ′ X ra r

+ σ −2Σ s
−1[I − Xs( ′ X sΣ s

−1Xs)
−1 ′ X sΣ s

−1]Cs ′ Z ra r

and so the BLUP of τ is

(3.1.11) ˜ τ = ′ a r[Xr
ˆ β + σ −2Z r ′ C sΣ s

−1(y s − Xs
ˆ β )]

where ˆ β = ( ′ X sΣ s
−1Xs)

−1 ′ X sΣ s
−1y s  is Aitken's generalized least squares (GLS) estimator of β

under (3.1.2). It immediately follows that the BLUP of θ = ′ a y  is

(3.1.12) ˜ θ = ′ a sy s + ′ a r[Xr
ˆ β + σ −2Z r ′ C sΣ s

−1(y s − Xs
ˆ β )].

Substituting Crs = Cov(y r,y s) for Z r ′ C s in (3.1.12) leads to the BLUP for θ derived by Royall

(1976), while setting Xr and as to zero, ar to one and Zr to the identity matrix in (3.1.11) leads

to the BLUP ˆ u = σ −2 ′ C sΣ s
−1(y s − Xs

ˆ β )  obtained by Henderson (1963). The BLUP of linear

combination of fixed and mixed effects set out in Hoderson (1975) is also a special case of

(3.1.11).

3.2 Empirical Best Linear Unbiased Prediction (EBLUP)

The BLUP development set out in the preceding section assumes variance components are

known. In practice of course, this is hardly ever the case. We therefore need to estimate these

variance components from the sample data. The empirical best linear unbiased prediction

(EBLUP) method replaces the unknown variance components in BLUP by these estimates.

Henderson (1963) introduced three methods (I, II and III) of estimating variance

components. These were in common use up to the 1970s, when advances in computing power

led to the introduction of maximum likelihood (ML) and residual maximum likelihood

(REML) estimators. In this section we describe these estimation methods.

Henderson (1975) showed that substituting estimated values of variance components

in the BLUP led to biased predictions. However, Kackar and Harville (1981) showed that a

two-stage approach (first estimate variance components, then use these to estimate and predict

fixed parameters and random components) leads to unbiased predictors provided the

distribution of the data vector is symmetric about its expected value and provided the variance
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component estimators are translation invariant and are even functions of the data vector. They

showed that the ML and REML variance component estimators have these properties.

3.2.1 Maximum Likelihood Estimation of Variance Components (ML)

The ML approach requires parametric specification of the distribution of the random

component in a mixed model. A standard assumption is that this component is normally

distributed. With this extra assumption, we can write down the log-likelihood function

generated by the observation vector ys under the linear mixed model (3.1.2) as

l = −(1/2)[n ln(2πσ 2) + ln | Σ s | +σ −2(y s − Xsβ ′ ) Σ s
−1(y s − Xsβ)]

Differentiation of this log-likelihood function with respect to the parameters β,σ 2 and ϕ j

leads to the ML score functions

(3.2.1.1)

∂l /∂β = σ −2 ′ X sΣ s
−1(y s − Xsβ)

∂l /∂σ 2 = −(1/2)[nσ −2 −σ −4 (y s − Xsβ ′ ) Σ s
−1(y s − Xsβ)

∂l /∂ϕ j = −(1/2)[tr(Σ s
−1Z sjΩ j ′ Z sj )

− σ −2(y s − Xsβ ′ ) Σ s
−1Z sjΩ j ′ Z sjΣ s

−1(y s − Xsβ)]

Equating these score functions to zero yields the ML estimating equations for β,σ 2 and ϕ j.

Given the MLEs for σ2 and ϕj, and hence the MLE ˆ Σ s for Σs, it is clear that the MLE

for β is just the GLS estimator of this parameter defined by ˆ Σ s. That is,

ˆ β ML = ( ′ X s ˆ Σ s
−1Xs)

−1 ′ X s ˆ Σ s
−1y s .

However, the estimating equations for the variance components have no analytic solution and

so have to be solved numerically.

3.2.2   Residual Maximum Likelihood of Variance Components (REML)

For the linear mixed model (3.1.2), the expectations of the component score functions for σ2

and ϕj defined by (3.2.1.1) are zero. However, if ˆ β ML  is substituted for β in these functions,

then these expectations are no longer zero. For example, the expected value of the score

function for σ2 when β  is replaced by ˆ β ML  is -(p/2)σ2 and so the ML estimator for this

parameter is biased. On the other hand, an unbiased estimator for σ2 is defined by

(3.2.2.1) (n − p)σ −2 −σ −4 (y s − Xs
ˆ β ML ′ ) Σ s

−1(y s − XsβML ) = 0
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where n is sample size and p is the rank of the matrix Xs. Similarly, we can show that when β

is replaced by ˆ β ML  the expectation of the score function for ϕj in (3.2.1.1) is not zero but

−(1/2)∂(ln | ′ X sΣ s
−1Xs | /∂ϕ j . Consequently, an unbiased estimator for ϕj is defined by

(3.2.2.2)
∂ ln | ′ X sΣ s

−1Xs |

∂ϕ j

+
∂ ln | Σ |

∂ϕ j

+
1

σ 2 (y s − Xs
ˆ β ML ′ ) 

∂Σ s
−1

∂ϕ j

(y s − Xs
ˆ β ML ) = 0 .

The Residual Maximum Likelihood (REML) approach uses the above idea to reduce

bias when estimating variance components. In particular, this approach starts by first

transforming ys into two independent vectors ys1 = K1ys and ys2 = K2ys. The ys1 vector has a

distribution that does not depend on the fixed effect β and hence satisfies E(K1ys) = 0, i.e.

K1Xs = 0, while the ys2 vector is independent of ys1 and satisfies K1Σ s ′ K 2  = 0. The matrix K1 is

chosen to have maximum rank, i.e. n−p, and so the rank of K2 is p. The likelihood function of

ys  is then the product of the likelihoods of ys 1 and ys2.  REML estimators of variance

components are maximum likelihood estimators based on ys1. That is, the REML method

estimates variance components by maximising the log-likelihood function defined by ys1 =

K1ys,

lREML = −(1/2)[(n − p)ln2πσ 2 + K1Σ sK1 + σ −2 ′ y sK1(K1Σ sK1)
−1K1y s]

where the matrix K1 = Ws
−1 − Ws

−1Xs( ′ X sWs
−1Xs)

−1 ′ X sWs
−1. Note that if K1Σ sK1 is not of full

rank, then | K1Σ sK1 | must be interpreted as the determinant of its linearly independent rows

and columns. Given this definition of K1, the matrix K2 is defined as K 2 = ′ X sΣ s
−1. The log-

likelihood function defined by ys2 = K2ys is

lL = −(1/2)[pln2πσ 2 + lnK 2Σ s ′ K 2

+ σ −2(y s2 − E(y s2) ′ ) (K 2Σ s ′ K 2)−1(y s2 − E(y s2))]

= −(1/2)[pln2πσ 2 + ln ′ X sΣ s
−1Xs

+ σ −2(y s − Xsβ ′ ) Σ s
−1Xs( ′ X sΣ s

−1Xs)
−1XsΣ s

−1(y s − Xsβ)]

For given values of the variance components, β  is estimated by maximizing lL, leading to

ˆ β = ( ′ X sΣ s
−1Xs)

−1 ′ X sΣ s
−1y s .

To gain insight into the REML method consider the simple standard linear

regression/ANOVA model, i.e. ys = X sβ + e. Assuming that the random error vector e is a

multivariate normal with zero mean and variance of σ2I, the log-likelihood functions l L and

lREML simplify to
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lL = −(1/2)[pln2πσ 2 + ln ′ X sXs + σ −2(y s − Xsβ ′ ) Xs( ′ X sXs)
−1Xs(y s − Xsβ)]

lREML = −(1/2)[(n − p)ln2πσ 2 + lnK1 + σ −2 ′ y sK1y s]

where K1 = I − Xs( ′ X sXs)
−1 ′ X s. In this special case, the REML estimator of σ2 is the unbiased

ˆ σ REML
2 = ′ y sK1y s /(n − p) = ( ′ y s[I − Xs( ′ X sXs)

−1Xs]y s) /(n − p).

Following Patterson and Thompson (1971), the residual maximum likelihood

estimates of the variance components σ2 and ϕj are the values of these parameters that

maximise lREML . Differentiation of lREML  with respect to these variance components yields the

REML estimating equations

∂lREML /∂σ 2 = −(1/2)[(n − p)σ −2 −σ −4 ′ y sK1(K1Σ sK1)
−1K1y s]

∂lREML /∂ϕ j = −(1/2)[{tr(Kϕ j
) −σ −2 ′ y sKϕ j

K1(K1Σ sK1)
−1K1y s]

where Kϕ j
= K1(K1Σ sK1)

−1K1∂Σ s /∂ϕ j . The estimating equations for the variance components

have no analytic solution and so have to be solved numerically.

In order to motivate use of the REML method in the context of small area estimation,

we use the simple model (2.2.7) to illustrate the steps in the iterative calculation of the

variance components. In this case ϕ j = ϕ = ω 2 /σ 2 and the steps in the iterations for this

special case are as follows:

1. Set k = 0 and assign an initial value ϕ0 to the variance component ϕ.

2. Set k = k + 1

3. Put γ d
(k ) = nd

ˆ ϕ k−1(1+ nd
ˆ ϕ k−1)

−1.

4. Calculate ˆ β k = γ d
(k )

d
∑[ ]

−1

γ d
(k )y sdd

∑  and )ˆ))((diag(ˆ )(
kDs

k
dk βγ 1yu −= . Here y s is the

vector of sample means for the m small areas.

5. Calculate ˆ σ k
2 = (n −1)−1 ′ y s(y s − 1n

ˆ β k − Z s
ˆ u k ) , where Zs is a n  ×  D  matrix that "picks

out" the small areas.

6. Calculate  ˆ ϕ k = (D − rk )−1 ˆ σ k
−2 ˆ ′ u k ˆ u k

where rk = ϕk−1
−1 tr[Gk + Gk ′ Z s1n ( ′ 1 n Σk

−11n )−1 ′ 1 n Z sGk ]

)/( )(
d

k
dk ndiagG γ=  and Σk = blk − diag(Ind

− γ d
(k ) /nd 1nd

′ 1 nd
) .

7. Return to step 2 and repeat the procedure until the estimates converge.

8. The Empirical BLUP (EBLUP) of the area i mean of Y is then
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ˆ y d = Ni
-1[nd y sd + (Nd − nd ) ˆ β + (Nd − nd ) ˆ γ d (y sd − ˆ β )]

where ˆ γ d = nd
ˆ ϕ (1+ nd

ˆ ϕ )−1.

3.3 Generalized Linear Mixed Models (GLMM)

The data underpinning small area estimates are often categorical and generalized linear

models (GLMs), see Nelder and Wedderburn (1972), are a standard technique for analysing

such data. In the case of small area estimation we use the Generalized Linear Mixed Model

(GLMM) extension of the GLM to allow for correlation within the small areas of interest. In

the GLMM E(y s | u) = h(ηs) for a specified function h. Here u denotes the vector of random

area effects and ηs = Xsβ + Z su. As usual, we assume u is normally distributed with zero

mean vector and variance-covariance matrix Var(u) = Ω = blk-diag(ϕj Ω j). Let f(ys;β|u) be

the probability density function of ys conditional on u.  The log-likelihood of ys conditional on

u is then l1 = ln f (y s;β | u) , while the logarithm of the probability density function of u is

l2 = −(1/2) [ν j lnπϕ j + lnΩ j + ϕ j
−1u jΩ j

−1u j ]j=1

J

∑ .

where vj is the rank of matrix Zsj.  The function l2 can be thought of as a penalty function, and

the parameter values that maximise l1+l2 are sometimes referred to as penalised likelihood

(PL) estimates.

Key references for development GLMM theory are Schall (1991), Solomon and Cox

(1992), Wolfinger (1993), Wolfinger and O’Connell (1993), Breslow and Clayton (1993),

McGilchrist (1994) and Engel and Keen (1994). Breslow and Lin (1995) and Lin and Breslow

(1996) review the different estimation approaches introduced by these authors.

A typical example of discrete data is a binomial response. In this case the vector of

small area counts y s = [y s1, y s2,...,y sD ′ ]  is assumed to follow a binomial distribution with log-

likelihood conditional on the random components u given by

∑ ++=
d dsdddsd ynyl )]-1(ln)-(ln[constant 1 θθ

where ysd is distributed as binomial with parameters nd and θd. The probabilities θd are

assumed to satisfy )]exp(1/[)exp( ddd ηηθ +=  where uZX ddd ′+′= ββη . This is usually called

a mixed logistic regression model. The X d and Z d are vectors of area level auxiliary

covariates.
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For response data satisfying the mixed logistic model ηsd = (β + ud)1sd, an estimate of

the proportion of successes in area d is then given by

ˆ θ d = Nd
−1[nd psd + (Nd − nd )( ˆ β + ˆ u d )]

where psd is the proportion of successes in the sample in small area d. Here ˆ β  and ˆ u d

correspond to the estimate of β  and the predicted value of ud obtained from fitting the mixed

logistic model to the sample data in the small areas of interest.

4 Estimation of Mean Square Error (MSE)

An important measure of the "quality" of a statistical estimator is its mean square error

(MSE), and so it is important that any small area estimate be accompanied by an estimate of

its MSE. In this section therefore we review methodology for estimating the MSE of

predictors of τ = ′ a r(Xrβ + Z ru) . All of these predictors can be expressed in the form

ˆ τ = ′ a r(Xr
ˆ β + Z r

ˆ u )  for suitably chosen ˆ β  and ˆ u .

To start, assume β and the variance components σ2, ϕ  = (ϕ j) are specified, and so

ˆ τ = ′ a r(Xrβ + Z r
ˆ u )  where ˆ u  is the BLUP of u based on these specified values of the variance

components. Then

(4.1) )()ˆ( 1
*2 ϕgMSE rrrr =′′= aZTZaστ

where 111* )( −−− ′+= sss ZWZT Ω . For the simple model (2.2.7), this MSE becomes

MSE( ˆ τ ) = (1− fd )2σ 2nd
−1γ d  where γ d = σ u

2(σ 2nd
−1 + σ u

2)−1, fd = nd Nd
−1  and (1 − fd) is the finite

population correction factor.

Now suppose β is replaced by its WLS estimator ˆ β , but the variance components σ2, ϕ

= (ϕj) are still assumed known. In this case ˆ τ = ′ a r(Xr
ˆ β + Z r

ˆ u )  is the BLUP of τ, with  ̂ u 

defined as before, and its MSE is

(4.2)

MSE( ˆ τ ) = ′ a rXr  ′ a rZ r( ) E ( ˆ β −ββ)
( ˆ u − u)

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
( ˆ β −ββ)
( ˆ u − u)

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

′⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

′ X ra r

′ Z ra r

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

= σ 2[ ′ a rXr − ′ a rZ rT
* ′ Z sWs

−1Xs](XsΣ s
−1Xs)

−1[ ′ X ra r − ′ X sWs
−1Z sT

* ′ Z ra r ]

+ σ 2 ′ a rZ rT
* ′ Z ra r

= g2(ϕ) + g1(ϕ)

where g1(ϕ) was defined in (4.1). Note that under the simple model (2.2.7)
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g2(ϕ) = σ 2n−1(1− fd )2(1− γ d )2 1− n−1 ndγ dd =1

D

∑⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

−1

.

Finally, we consider the EBLUP situation, i.e. where both β and the variance components are

replaced by estimators. For estimated variance components the MSE of the EBLUP is

(4.3)

MSE( ˆ τ EBLUP ) = E( ˆ τ EBLUP − ˆ τ BLUP + ˆ τ BLUP − τ)2

= MSE( ˆ τ BLUP ) + E( ˆ τ EBLUP − ˆ τ BLUP )2

+ 2E( ˆ τ BLUP − τ)( ˆ τ EBLUP − ˆ τ BLUP ) .

The first term on the right hand side of (4.3) is given by equation (4.2). A naive estimator of

the MSE of the EBLUP is therefore defined by disregarding last two terms on the right hand

side of (4.3) and replacing the unknown variance components in (4.2) by suitable estimators.

However, Kackar and Harville (1984) show that although the third component on the right

hand side of (4.3) is neglible, the second is not. They develop an approximation to the second

term on the right hand side of (4.3), allowing them to write

(4.4) MSE( ˆ τ EBLUP ) ≅ MSE( ˆ τ BLUP ) + tr Var ∂ ˆ τ BLUP /∂ϕ( )B(ϕ)[ ]

where B(ϕ) is the MSE matrix E[( ˆ ϕ − ϕϕ)( ˆ ϕ − ϕϕ ′ ) ]. Since

∂ ˆ τ BLUP /∂ϕ = ′ a r∆(∂A /∂ϕ) p(ϕ)y s

where

p(ϕ) = ΣΣ s
−1 − ΣΣ s

−1Xs( ′ X sΣ s
−1Xs)

−1 ′ X sΣ s
−1

and

∆ = (Z rT
* ′ Z s − Xr )( ′ X sΣ s

−1Xs)
−1 ′ X sZ sT

*Ω−1 + Z rT
*Ω−1

it follows

Var ∂ ˆ τ BLUP /∂ϕ( ) = ′ a r∆(∂ΩΩ /∂ϕϕ) ′ Z s p(ϕ)Z s(∂ΩΩ /∂ϕϕ ′ ) ′ ∆ a r .

The matrix B(ϕ) on the other hand can be approximated by the asymptotic variance-

covariance matrix of the ML/REML estimators of the variance components.

Prasad and Rao (1990) investigated the application of (4.4) to small area estimation.

Their study showed that the MSE estimator based on a "plug-in" approximation of (4.4)

underestimates the true MSE. They therefore introduced a second order approximation to the

left hand side of (4.3) of the form

(4.5)
MSE( ˆ τ EBLUP ) ≅ MSE( ˆ τ BLUP ) + σ 2tr (∂b /∂ϕ)Σ s(∂b /∂ϕ ′ ) B(ϕ)[ ]

= g1(ϕ) + g2(ϕ) + g3(ϕ)
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where b = ′ a rZ rΩ ′ Z sΣ s
−1. Their paper also contains simplifications of this estimator for the

special cases of nested error regression, random coefficient regression and Fay-Herriot type

small area models. Alternative approximations to (4.3) are given in Harville and Jeske (1992),

while Hulting and Harville (1991) use (4.5) to obtain interval predictors.

For the simple model (2.2.7), the first two components of the MSE of the EBLUP have

been derived above. If the variance components are estimated via ML then

g3(ϕ) = 2nσ 2nd
−2(1− fd )2(nd

−1 + ϕ)−3[n (nd
−1 + ϕ)2

d
∑ − ( nd

−1

d
∑ + ϕ)2]−1.

On the other hand, if the variance components are estimated via REML, then

g3(ϕ) = 2nσ 2nd
−2(nd

−1 + ϕ)−3[na22 − a12]−1

where

a12 = (nd
−1 + ϕ)−1

d
∑ + ∆ dd

∑

a22 = (nd
−1 + ϕ)−1

d
∑ + ϕ−1 − ∆ dd

∑( )
2

+ ϕ−1 − 2 ∆ d (1+ ndϕ)−1

d
∑

and

∆ d = (nd
−1 + ϕ)−2 / (n j

−1 + ϕ)−1

j
∑ .

Pfeffermann and Barnard (1991) use (4.5) to compare the performance of different

small area models. Rao and Yu (1994) develop (4.5) for the situation where the small area

estimators are based on a model that includes both time series and cross-sectional effects.

Lahiri and Rao (1995) show that (4.5) is robust to nonormality of small area effects for the

Fay-Herriot (1979) model. The performance of (4.5) under the nested regression model is

studied in Singh et al (1998). Moura and Holt (1999) develop (4.5) for small area estimators

based on multilevel models, while Rao (1999) and Pfeffermann (1999) review the application

of MSE estimators based on (4.5). Other papers that are based on (4.5) are Prasad and Rao

(1999) and Stukel and Rao (1999).

Finally, we note that Booth and Hobert (1998) propose conditional mean square error

(CMSEP) as a general measure of prediction variance for linear combinations of the fixed and

random effects in generalized linear mixed models, where the conditioning is with respect to

the random effects in the model. Rivest and Belmonte (2000) adapt this approach to

estimation of mean square error for small area estimators.
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