
 
 
 

Outlier Robust Imputation of Survey Data via Reverse 
Calibration 

 
R. Ren, R. Chambers 

 
 

Abstract 
 

Outlier robust methods of survey estimation, e.g. trimming, winsorization, are well 

known (Chambers and Kokic, 1993). However, such methods do not address the 

important practical problem of creating an “outlier free” data set for general and 

public use. In particular, what is required in this situation is a data set from which the 

outlier robust survey estimate can be recovered by the application of standard 

methods of survey estimation. In this paper we describe an imputation procedure for 

outlying survey values, called reverse calibration, that achieves this aim. This method 

can also be used to correct gross errors in survey data, as well as to impute missing 

values. The paper concludes with an evaluation of the method based on a realistic 

survey data set. 

S3RI Methodology Working Paper M03/19 



Outlier Robust Imputation of Survey Data via Reverse
Calibration

R. Ren
Survey Statistics Laboratory

CREST/ENSAI, Campus de Ker Lann
Rue Blaise Pascal. 35170 Bruz. France

R. L. Chambers
Department of Social Statistics

University of Southampton, Highfield
Southampton, SO17 1BJ. United Kingdom

August 2002

Abstract: Outlier robust methods of survey estimation, e.g. trimming, winsorization, are well
known (Chambers and Kokic, 1993). However, such methods do not address the important
practical problem of creating an “outlier free” data set for general and public use. In
particular, what is required in this situation is a data set from which the outlier robust survey
estimate can be recovered by the application of standard methods of survey estimation. In this
paper we describe an imputation procedure for outlying survey values, called reverse
calibration, that achieves this aim. This method can also be used to correct gross errors in
survey data, as well as to impute missing values. The paper concludes with an evaluation of
the method based on a realistic survey data set.
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1. Introduction

Outlying data values are frequently encountered in sample surveys, particularly surveys
measuring economic and financial phenomena. Chambers (1986) classifies these values into
two groups. The first are representative outlier values. These are correctly measured sample
values that are outlying relative to the rest of the sample data and for which there is no reason
to believe that similar values do not exist in the non-sampled part of the survey population.
The second group consists of non-representative outlier values. These are gross errors in the
sample data, caused by deficiencies in survey processing (e.g. miscoding). Such errors have
nothing to do with the values in the non-sampled part of the survey population. Either type of
outlier can have a substantial impact on the eventual survey estimate if ignored. Typically,
non-representative outliers are detected and corrected during the survey editing process, while
representative outliers are handled in the survey estimation process, generally by the use of
outlier robust or resistant estimation procedures.

Design-based approaches to dealing with outliers in survey estimation are described by Kish
(1965), Searl (1966) and Hidiroglou and Srinath (1981). Chambers (1982, 1986) developed
model-based outlier robust estimation techniques for sample surveys. Recent work in this area
is described in Chambers and Kokic (1993), Lee (1991, 1995), Hulliger (1995), Welsh and
Ronchetti (1998) and Duchesne (1999). The research described in this paper has been carried
out within the Euredit Project (2000), which is aimed at the development and evaluation of
new methods for editing and imputation, and in particular the development of imputation
methods that can be used with outliers in survey data.

After carrying out survey estimation, the statistician often has to deliver a data set for general
and public use. It is hard to imagine that a non-expert user of this data set will employ the
same sophisticated robust techniques that the statistician has applied to those parts of the data
set containing outliers. Consequently the survey statistician must deliver a “clean” data set,
with outlier values appropriately modified, such that the data set is suitable for general use
with standard statistical software. Ideally, this is where one can recover the results obtained
from the robust estimation method using this standard software. This can be achieved by
using an outlier imputation procedure that we call reverse calibration. In this paper we
describe this method and compare it with more standard imputation methods that are typically
used for imputation of missing data.

The structure of this paper is as follows: in the next section we describe the reverse calibration
approach to outlier imputation. Since this procedure depends on the actual method used for
outlier robust estimation used in the survey, we then describe some outlier robust estimation
methods in section 3. In section 4 these methods are then used to determine outlier
imputations, via reverse calibration, which are applied to a realistic survey data set. This data
set has been created within the Euredit project and is based on the Annual Business Inquiry
(hereafter abbreviated as the ABI) survey carried out by the UK Office for National Statistics
(hereafter abbreviated as the ONS). We discuss the results of this evaluation in section five.

2. Outlier imputation by reverse calibration

Imputation methods have traditionally been used for missing data. The basic idea in this case
is that, by “filling in” the missing values in a data set, standard methods of inference, which
typically assume “complete” data, are applicable. In this section we take this idea and apply it
to another common survey data problem. This is the presence of outliers in these data. As
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noted in the previous section, such outliers can be representative or non-representative. Once
the outliers in the survey data have been identified and classified in this way, we can treat
them appropriately. Non-representative outliers are very similar in concept to missing data.
By definition these values are, for one reason or another, wrong. Consequently, they need to
be changed back to their correct values. This can be done by re-interview of the survey
respondents that provided these values, in the same way that one can carry out follow-up
interviews of survey non-respondents. Alternatively these values can be replaced by imputed
values derived from the non-outliers or “inliers” in the survey data set, similar to the way
imputed values based on respondent data are used to replace missing data. Note that this
approach makes the assumption that, conditional on known (and correct) values for
covariates, the error creation process leading to non-representative outliers is independent of
the process underpinning generation of the true values for these outliers.

Representative outliers, on the other hand, are more difficult to handle. By definition, there is
nothing to be gained by re-interview of the respondents that provided them (beyond the
knowledge that these values are in fact correct). Imputation of these values based on
relationships in the inlier data values is also inappropriate, since these outlier values clearly do
not have the same relationships. Modern outlier resistant methods of estimation allow for this
difference, but control the impact of the corresponding outlier contribution to the overall
survey estimate. What is required in this case is a method of outlier imputation that mimics
this behaviour.

2.1 Reverse calibration imputation

A basic assumption is that all representative sample outliers are identifiable. To minimise
notation, we initially assume that application of survey editing and follow-up procedures
implies that there are no missing values or non-representative outliers in the sample data. That
is, all outliers in these data are representative. Let s denote the sample of n units and let

  {wi ;i ∈ s}  denote a target set of estimation weights that we wish to apply to all the sample
values, outliers as well as inliers, in order to estimate the population total of interest. Often
these weights will be the inverses of inclusion probabilities or regression (e.g. GREG or
BLUP) weights. Their main characteristic is that they are known for each sample unit and are
fixed. Our problem is then one of imputing sample data values such that when these imputed
values are multiplied by the   {wi ;i ∈ s}  and summed over the sample, they then lead to an
“acceptable” estimate of the population total.

By “acceptable” we mean here that this estimate equals one that we obtain when we apply an
appropriate outlier resistant technique to the sample data. For example, suppose that

  
ˆ t y = wi

*Yii ∈s∑
is such an estimate, where the   {wi

* ;i ∈s}  are outlier resistant weights. Then this condition is
satisfied when

  
ˆ t y = wi

*Yii ∈s∑ = wiYi
*

i∈s∑
where the   {Yi

* ;i ∈ s} denote the imputed sample values. Let 2s  be the sub-sample of size 2n

consisting of the representative sample outliers and let 1s  be the sub-sample of size

21 nnn −=  that consists of the sample inliers. A natural restriction is     Yi
* = Yi ;i ∈s1 and

    wi
* = wi ;i ∈s1 in which case the problem can be re-expressed as one of defining a set of

imputed values {Yi
* ;i ∈ s2}  that satisfies
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ˆ t y − ˆ t 1 y = ˆ t y − wiYii∈s1

∑ = wiYi
*

i∈s2
∑ = ˆ t 2 y . (1)

A natural way of choosing the     Yi
*, i ∈ s2  is so that they remain as close as possible to the true

values Yi, i ∈ s2  subject to the constraint (1). In turn, this requires that we specify a distance

measure d(Y *, Y )  between the imputed values and the true values that must be then
minimised subject to this constraint. It is easy to see that this is equivalent to a calibration
problem where the survey variable Y plays the role of sample weight and the sample weight
variable w plays the role of the survey variable. It is well known (Deville and Särndal, 1992)
that

  Yi
* = YiFi(wiλ) (2)

where Fi(⋅)  is a calibration function that satisfies Fi(0) =1, ′ F i(0) = qi  and λ  is a constant
determined by 

    
wiYiFi(wiλ )

i∈s2
∑ = ˆ t 2 y.

Suppose that     Y > 0. A simple distance measure is

d Y *,Y( ) = Yi
* − Yi( )2

/ 2qiYii∈s2
∑ (3)

where     qi > 0, i ∈s2  are constants that can be chosen by the statistician. Using this distance
measure, we have Fi(t) = 1+ qit  (Deville and Särndal, 1992). From (2) it follows

Yi
* = Yi 1+ qiwi

ˆ t 2y − w jYjj ∈s2
∑

q jw j
2Yjj ∈s2

∑

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
. (4)

The second term on the right-hand-side of (4) is negative if the outliers are mainly ‘big’
outliers, i.e. take values much larger than the values associated with the inliers in the sample.
Consequently the observed true value iY  associated with a representative outlier is decreased.

In contrast this term is positive if the outliers are mainly ‘small’ outliers, i.e. take values much
smaller than the values associated with the inliers in the sample. In this case the true value iY

associated with a representative sample outlier is increased. This is consistent with the general
idea of outlier modification or winsorization.

A potential advantage of reverse calibration imputation is that a calibration program CALMAR
(Sautory, 1993) is available, containing several different distance functions d Y *,Y( ) .

Standard choices of   qi  are     qi =1 or     qi = di
−1 . In the latter case (4) simplifies to a ratio-type

imputation

Yi
* = Yi

ˆ t 
2 y

wjY jj∈s2
∑

. (5)

Note that neither (4) nor (5) guarantee that the imputed values satisfy editing rules (e.g. are
positive). To prevent negative values, we can use one of the alternative distance measure
proposed in Deville and Särndal (1992) or use the distance measure (4) with     qi = di

−1 , which
leads to ratio-type imputation (5). Alternatively, we can integrate the editing rules into the
calibration procedure.

2.2 The general case

The reverse calibration method described above treats all outliers similarly. In particular they
are all either decreased or increased in value. This is sensible if these values are all of one
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type, i.e. all big or all small. However, in practice outliers relative to a regression model for Y
tend to be a mix of these two types, and these two different types of outliers need to be treated
differently in imputation (the small outliers need to be increased and the big outliers need to
be decreased). Furthermore, there are typically also missing values for Y in the sample data,
and these need to be imputed at the same time as these outliers are imputed.

Suppose that a sample s  is subject to both outlier and missing values. Let     s1  be the sub-
sample of inliers and respondents, and let     s2  be the sub-sample consisting of outliers and

missing values. Suppose also that a reliable population total estimate   
ˆ t y is obtained by some

outlier resistant procedure that takes non-response into account. Let     
ˆ t 1y  be an estimate of the

population total of the inliers and respondents. Then an estimate of the population of the
outliers and non-respondents can be obtained as ˆ t 2 y = ˆ t y − ˆ t 1y .

What we mean by a population here is open to interpretation. In fact, we have four
populations (or, to be more precise, domains). These are the respondent inlier population, the
nonrespondent population, the respondent “small outlier” population and the respondent “big
outlier” population. We assume that our overall target population estimate can be broken
down into four components that effectively represent our best estimates for the totals of each
of these domains. Similarly we assume that the sample units can be divided among these four
domains. The reverse calibration process is then straightforward. We adjust the observed
sample values in each domain (including the respondent inlier domain if necessary) so that
when multiplied by their target weights wi they recover the respondent inlier + outlier
components of the overall estimate. Finally, we impute sample values for the missing cases in
order to recover the last component of the estimate.

To be more precise, let   s2
(+)  denote the responding sample units corresponding to large

outliers,     s2
(−)  the responding sample units corresponding to small outliers, and     s2

(m)  the
nonresponding sample units. The corresponding decomposition of the estimated population
total is     

ˆ t y = ˆ t 1 y + ˆ t 2 y
(−) + ˆ t 2y

(+ ) + ˆ t 2 y
(m ). The reverse calibrated imputed values are then given by

Yi
* =

Yi 1+ qiwi q jw j
2Yjj ∈s1

∑⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

−1
ˆ t 1y − w jYjj ∈s1

∑⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,i ∈ s1

Yi 1+ qiwi q jw j
2Yjj ∈s2

( − )∑⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

−1

ˆ t 2y
(−) − w jYjj ∈s2

( − )∑⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,i ∈ s2

(−)

Yi 1+ qiwi q jw j
2Yjj ∈s2

( + )∑⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

−1

ˆ t 2y
(+) − w jYjj ∈s2

( + )∑⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,i ∈ s2

(+)

˜ Y i 1+ qiwi q jw j
2 ˜ Y jj ∈s2

( m)∑⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

−1

ˆ t 2y
(m ) − w j

˜ Y jj ∈s2
( m)∑⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,i ∈ s2

(m )

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 
⎪ 
⎪ 

(11)

where the values   
˜ Y i  represent initial (uncalibrated) imputed values for the missing data cases.

An obvious choice for   
˜ Y i  is the fitted value for this case generated by the observed sample

inliers, which corresponds to assuming that all nonrespondents are inliers.  Observe that these
imputed values lead to ratio type imputations when   qi = wi

−1, while if wi  equals the inverse of
the sample inclusion probability then we generally need to change the values of all the
observed sample units (inliers as well as outliers) in order to achieve calibration.
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A sufficient condition for the imputed values for the inliers to be the same as their observed
values is when 

    
ˆ t 1y = wjY jj ∈s1

∑ . Consequently, if it is a requirement that inlier values remain

unchanged, then we can define our estimate of the observed inlier contribution to the overall
population total using this identity. This immediately leads to the restriction

    
ˆ t y − wjYjj∈s1

∑ = ˆ t 2 y
(− ) + ˆ t 2 y

(+ ) + ˆ t 2 y
(m) .

Since it is unlikely that the domain estimates for the two outlier contributions and the missing
inlier contribution will satisfy this restriction a priori, we need to modify these estimates so
that they do. The easiest way to do this is by apportioning out the difference 

    
ˆ t y − wjYjj∈s1

∑
among these estimates. This leads to modified domain estimates that need to be substituted
for ˆ t 2 y

(−) , ˆ t 2 y
(+)  and ˆ t 2 y

(m)  in the reverse calibration formula above, given by

ˆ ˆ t 2y
(− ) = ˆ t 2y

(−)
ˆ t y − w jYjj ∈s1

∑
ˆ t 2y

(−) + ˆ t 2y
(+) + ˆ t 2y

(m )

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

ˆ ˆ t 2y
(+) = ˆ t 2y

(+)
ˆ t y − w jYjj ∈s1

∑
ˆ t 2y

(−) + ˆ t 2y
(+) + ˆ t 2y

(m )

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

ˆ ˆ t 2y
(m ) = ˆ t 2y

(m )
ˆ t y − w jYjj ∈s1

∑
ˆ t 2y

(−) + ˆ t 2y
(+) + ˆ t 2y

(m )

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

respectively.

3. Outlier resistant estimation of population totals

In this section we briefly describe some outlier resistant estimators of population totals that
can be used with the reverse calibration imputation method introduced in section 2. All the
methods we consider assume that the sample outliers are representative. In addition, we
assume that these sample outliers have been identified, so that the sample can be decomposed
into inliers and outliers (i.e.     s = s1 ∪ s2  as in the previous section). We also assume non-
response is ignorable given auxiliary information, and so estimation can be based on the
responding sample data.

3.1 The Hidiroglou-Srinath estimator

Hidiroglou and Srinath (1981) assumed prior identification of sample outliers and introduced
a class of robust estimators of a finite population total based on the idea of down-weighting
these sample outliers relative to the sample inliers. For the simple random sampling situation,
these authors proposed an estimator of the form

    

ˆ t HS = λ Yi
i∈s2

∑ + q(λ) Yi
i∈s1

∑ (12)

where     s1  is the inlier sub-sample, of size     n1,     s2  is the outlier sub-sample, of size     n2 , with

n1 + n2 = n ; λ < N / n  is a strictly positive down-weighting factor and   q(λ ) = n1
−1 N − n2λ( ) .

Following the approach of Chambers (1982), we can obtain an optimal value for λ  by
minimising the mean squared error of (12) under the assumption that the population Y-values
are randomly drawn from a mixture of inlier and outlier values. This optimal value is

λopt =
N − n1( )σ1

2 + n1σ2
2 + n1N2 µ2 − µ1( )2

n2σ1
2 + n1σ2

2 + n1n2 µ2 − µ1( )2



6

where     µi ,σ i
2  denote the mean and variance of the inliers (i = 1) and outliers (i = 2) in the

population. These parameters can be estimated from the sample inlier/outlier values of Y.
Assuming that the sampling fraction for outliers is the same as the overall sampling fraction f
leads to the approximations

λopt ≈ f −1γ opt

and

    
q(λopt ) ≈ f −1n1

−1 n − n2γ opt( )
where

γ opt =
n − n1 f( )σ1

2 + n1 fσ2
2 + n1n2 µ2 − µ1( )2

n2σ1
2 + n1σ2

2 + n1n2 µ2 − µ1( )2 . (13)

The Hidiroglou-Srinath (HS) estimator (12) can be generalised to the case of non-uniform
weights   {di ; i ∈ s} by writing it in the form

    

ˆ t HS, d = γ opt d iYi
i∈s2

∑ + q(γ opt ) diYi
i ∈s1

∑ . (14)

where γ opt  can be calculated using (13), with all parameter estimates replaced by

appropriately weighted alternatives.

Chambers (1982) observed that this estimator can be extended to incorporate auxiliary
information in a straightforward way. To start, observe that (12) can equivalently be written

ˆ t HS = Yi
i∈s
∑ + (N − n) y 1 + n2(λ −1)( y 2 − y 1)

where   y i  denotes the mean of the Y-values in   si , i =1, 2. Assuming that the outlier and inlier
sub-populations follow different regression models defined in terms of an auxiliary variable X
and specified by

    

Eξ (Yi | i ∈ sj ) = β j X i

Vξ (Yi | i ∈s j) = σ j
2 Xi

j = 1, 2,

one can then define a generalised HS estimator of the form

    

ˆ t GHS = Yi
i∈s
∑ + (1 −γ )

y 1
x 1

+ γ
y 2
x 2

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ X j

j∉s
∑ (15)

where   x i  denotes the mean of the X-values in 2,1, =isi , and   γ ≥ 0  is a down-weighting

parameter to be determined by minimising the model-based mean squared error of (15) under
this model. This optimum value of γ  is

    
γ opt =

n2(β2 − β1)
2 x 2 / X j

j ∉s
∑ + σ1

2 / n1x 1

(β2 − β1)
2 +σ1

2 / n1x 1 +σ 2
2 / n2x 2

. (16)

Provided there are sufficient outliers in the sample data the parameters in this expression can
be estimated from the     s1  and     s2  sub-samples as appropriate using standard least squares
formulae.

Again, we note that the extension of (15) to the case of variable sample weights is
straightforward. Basically all that is necessary is that the sample means   y i , x i , i = 1, 2 in (15)
and (16) be replaced by corresponding weighted means. Similarly, the parameter estimates in
(16) are replaced by weighted least squares estimates.
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3.2 Winsorized estimation

The d-weighted winsorized estimator of the population total of a positive-valued survey
variable Y is

  
ˆ t WR = diYi

*

i∈s
∑ (17)

where

Yi
* =

Yi, if Yi ≤ K
Yi + (di −1)K

di

, otherwise.

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

Here K is a predefined cut-off that needs to be chosen. Kokic and Bell (1993) describe a
procedure for doing this in the case of stratified random sampling that is also valid for simple
random sampling.

Chambers and Kokic (1993) proposed an extension of winsorization to the linear regression
context. For the situation where the regression is through the origin (i.e. a ratio model), their
extension leads a ratio type predictor of the form

ˆ t CK = Yi

i∈s

∑ +
y 1
x 1

X j

j ∉s

∑ +
NX 

nx 
−1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Xi

Yi − (y 1 / x 1)Xi

Xi

if 
Yi − (y 1 / x 1)Xi

Xi

≤ K(Xi)

K(Xi) otherwise

⎧ 

⎨ 
⎪ 

⎩ ⎪ i∈s

∑

where X  and x  are the population and sample means of X-values respectively, y 1  and x 1 are

the means of Y and X values in 1s  respectively and   K(x) = c ˆ σ s x + xy 1 / x 1. Here   ̂  σ s  is a scale

estimate based on the regression residuals in 1s  and c is a tuning constant. In the application
described in section 4 we took c = 4. This estimator can be written as

  

ˆ t CK =
Yi

*

i∈s
∑

Xi
i∈s
∑

X i
i∈U
∑ (18)

where

    
Yi

* =
Yi if Yi ≤ K( X i)

αYi + (1− α)K( Xi) otherwise.
⎧ 
⎨ 
⎩ 

Here α = nx / NX . The estimator (18) can be adapted to unequal weights, leading to

  

ˆ t CK ,d =
diYi

**

i∈s∑
diX ii∈s∑

X ii ∈U∑ (19)

where

    
Yi

** =
Yi if Yi ≤ K( X i)

α iYi + (1− αi)K( Xi ) otherwise.
⎧ 
⎨ 
⎩ 

In this case   αi = x d / di X , with 
  
x d = di Xii∈s∑ / dii∈s∑ .

3.3 A model-based robust regression estimator

Suppose that the finite population values {Yi , i ∈U}  satisfy Yi = βX i + ε i , where the ε i  are iid
with mean zero and variance   σ

2v2( X i) , with   ν (x) > 0 a known function. Then the Best Linear
Unbiased Predictor of the finite population total of Y is (Royall, 1970)

ˆ t LS = Yi
i∈s
∑ + ˆ β LS X j

j∉s
∑ (20)
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where   
ˆ β LS  is the generalised least squares estimator of β

ˆ β LS = Xi
2 /ν 2(Xi)

i∈s

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1

YiXi /ν 2(Xi)
i∈s

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .

It is well known that   
ˆ t LS  is sensitive to outliers. Chambers (1986) noted that this estimator can

be decomposed as

ˆ t LS = Yi

i∈s

∑ + β X j

j ∉s

∑ + σwi

Yi − βXi

σν(Xi)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i∈s

∑ .

Here β  is the true regression coefficient and the wi  satisfy

wi = Xiν
−1(Xi) X j

j ∉s

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ Xi

2 /ν 2(Xi)
i∈s

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1

.

Based on this decomposition, Chambers (1986) proposed a class of robust alternatives to (20)

ˆ t rob = Yi

i∈s

∑ + ˆ β s X j

j ∉s

∑ + ˆ σ swiψ
Yi − ˆ β sXi

ˆ σ sν(Xi)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i∈s

∑

where ˆ β s  and ˆ σ s  are outlier-robust slope and scale estimators respectively and ψ  is a real
valued influence function that controls the contribution of the outliers to the estimate. In the
case described in section 4, where an outlier identification exercise is first carried out, these
estimators are based on the values in     s1 . If we denote these estimators by a subscript of “1”,
then the analogue of the Chambers (1986) estimator for this case is

ˆ t LSC = Yi

i∈s

∑ + ˆ β 1 X j

j ∉s

∑ + ˆ σ 1wiψ
Yi − ˆ β 1Xi

ˆ σ 1ν (Xi)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i∈s2

∑ . (21)

A common situation is where the outliers are mainly big outliers, in which case the
distribution of the residuals is skewed. Chambers and Kokic (1993) suggest that in this case
(21) could be based on the asymmetric influence function

    
ψ (t ) =

t if  t ≤ c

c otherwise
⎧ 
⎨ 
⎩ 

where c is a tuning constant. Typically this is taken to be rather large, in order to allow the
(representative) sample outliers to contribute to the total population estimate. Again, in the
application reported in section 4 we used this asymmetric influence function, with c = 4.

3.4 An outlier resistant and approximately unbiased estimator

All the outlier resistant estimators discussed so far are biased, sometimes substantially, when
the outlier distribution is skewed. This is necessary since they achieve efficiency by trading
increased bias for decreased variance. However, Ren and Chambers (2002) propose an outlier
resistant estimator that is less prone to bias in this situation. This works by rescaling both the
population inliers and the outliers in order to reduce the variability caused by outliers, while at
the same time maintaining the population total. This allows approximately unbiased
estimation of this total based on these rescaled values.

Let     U1 and     U2  denote the sub-populations containing inliers and outliers, respectively. The
aim is to find an optimum rescaling constant λ ,   λ ≥ 0, such that when the Y-values are
rescaled to

    
Yi

* =
f (λ )Yi i ∈U1

λYi i ∈U2

⎧ 
⎨ 
⎩ 
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the population total remains unchanged:

    
t y = Yi

i∈U
∑ = Yi

*

i ∈U
∑ = f (λ) Yi

i∈U 1

∑ + λ Yi
i∈U 2

∑ . (22)

The optimum value of λ  is the value that minimises the rescaled population variance

    
Sy

*2 =
1

N −1
Yi

* − Y ( )
i∈U
∑

2
=

1

N −1
f (λ )Yi −Y ( )

i ∈U 1

∑ 2
+ λYi −Y ( )

i∈U 2

∑ 2⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

(23)

subject to (22). It is easy to see that (22) holds provided
)1(1)( λ−δ+=λf (24)

where 
    
δ = Yi

i∈U 2

∑ / Yi
i∈U1

∑ . Minimisation of (23) subject to (24) leads to

    

λopt =

δ δ +1( ) Yi
2

i∈U 1

∑
δ 2 Yi

2

i∈U1

∑ + Yi
2

i∈U 2

∑
. (25)

Estimation of the population total of the rescaled values (and therefore, by definition, an
estimator of the original population total) then proceeds in the usual way, using the sample d-
weights provided.

In practice, both δ  and λopt  are unknown, so sample estimates must be substituted. Let ˆ δ  and

  
ˆ λ opt  be these estimators. The resulting outlier resistant estimator is

ˆ t Rob = f ( ˆ λ opt) diYi
i∈s1

∑ + ˆ λ opt d iYi
i∈s2

∑ . (26)

The main problem in (26) is estimation of δ . If we denote this estimate by ˆ δ , then optλ  can be

estimated by the simple sample-weighted expression

ˆ λ opt =

ˆ δ ˆ δ +1( ) diYi
2

i∈s1

∑
ˆ δ 2 diYi

2

i∈s1

∑ + diYi
2

i ∈s2

∑
.

Ren and Chambers (2002) suggest that in the absence of any prior or external information
about the proportion of outliers in the population, δ  be estimated by

ˆ δ =

ˆ M 2 di

i∈s2

∑ diYi

i∈s2

∑
ˆ M 1 di

i∈s1

∑ diYi

i∈s1

∑

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

1/ 2

where ˆ M 1 and ˆ M 2  are sample medians of the Y-values in s1  and s2 , respectively.

4. Numerical evaluation of robust estimation and imputation

We evaluate the reverse calibration imputation method using the 1997 sector one ABI data, as
prepared for the Euredit (2000) project. In particular we focus on one auxiliary (X) variable
turnreg corresponding to the register value of estimated turnover for a business and four
analysis variables (Y). These are total turnover (turnover), total tax paid (taxtot), total
purchases (purtot) and total employment costs (emptotc). Since turnreg is a register variable
we know its overall total as well as its stratum totals. The strata themselves correspond to size
strata defined in terms of the register measure of the number of employees of a business and
the turnreg value for the business. Sample weights (d-weights) are also available.
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The ABI dataset has 6099 cases and comes in two versions. The first, which we call the true
data, has no errors and no missing data, but still has many representative outliers. The second,
which we refer to as the perturbed data contains a mix of representative (i.e. true) outliers,
introduced errors (many leading to non-representative outliers) and introduced missing values.
Since we have access to the true data we can construct two approaches to imputation based
on these data. The first, which leads to the unverified data, treats all detected outliers in the
perturbed data as representative, estimates the underlying population total on this basis and
then imputes values for all detected outliers and missing values. The second approach, which
leads to the verified data, is more realistic, in the sense that all identified outliers in the
perturbed data are first checked to see whether they are errors or not. Any detected errors are
then set to their true values and estimation/imputation proceeds as before.

Table 1 gives the d-weighted estimates of the population total based on the true data and the
perturbed data, respectively. Note the huge impact that untreated errors in the data have on
these estimates.

Table 1. Weighted estimates of population totals
turnover taxtot purtot emptotc

true data 269088777 4631853 189689033 29419325
perturbed data 24116695453 436375032 20739928268 2357859187

4.1 Outlier detection for the ABI data

For estimators using auxiliary information, outliers were detected using an across-stratum
forward search procedure (Chambers, Hentges and Zhao, 2002) based on a linear model in the
log scale of the data. For estimators that do not use auxiliary information, outliers were
detected within strata using the MAD (Median Absolute Deviation) procedure. This declares a
sample value in a stratum to be an outlier when it lies outside the interval [Med − 4MAD, Med
+ 4MAD] where Med is the median of the stratum sample data and MAD is the median of the
absolute deviations from this median. In what follows we refer to true outliers as outliers
detected in the true data, and perturbed outliers as those detected in the perturbed data. The
latter can be split further, into detected outliers and detected errors. Tables 2 and 3 give the
total number of missing values, errors, true outliers (detected in the true data), detected
outliers and detected errors, and therefore the number of undetected outliers and undetected
errors in the verified data. Finally, we note that since the data do not follow a linear model for
taxtot and emptotc in the log scale, the forward search procedure failed to detect most of the
errors for these variables. Consequently, we carried out outlier detection for these variables by
combining the soft edit rules used in the ABI data with the forward search method.

Table 2. Outlier and error detection performance: forward search method
Variable Missing

values
Actual
errors

True
outliers

Detected
outliers

Detected
errors

Undetected
outliers

Undetected
errors

turnover 42 241 106 71 224 35 17
taxtot 45 482 23 23 247 0 235
purtot 28 629 111 64 275 47 354
emptotc 41 332 39 26 237 13 95
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Table 3. Outlier and error detection performance: MAD method
Variable Missing

values
Actual
errors

True
outliers

Detected
outliers

Detected
errors

Undetected
outliers

Undetected
errors

turnover 42 241 165 136 205 29 36
taxtot 45 482 258 145 339 113 143
purtot 28 629 265 183 257 82 372
emptotc 41 332 194 128 252 66 80

4.2 Outlier resistant estimation of population totals

We consider four estimators that assume an across-stratum linear relationship between the
survey variable and the auxiliary variable turnreg (and hence ignore the size stratification),
and four estimators that do not. The estimators in the former class are the generalised HS
estimator (15), coded as Estghsrc; the generalised Kokic and Bell estimator (19), coded as
Estgkbrc; the robust regression estimator (21), coded as Estrerc; and the classical model-
based predictor LSt̂ , see (20), coded as Clprdreg, which serves as the reference estimator for

this class. The estimators in the latter class are all stratified by size. They are the weighted HS
estimator (14), coded as EstimHS; the weighted scale transform estimator (26), coded as
EstimRob; the weighted winsorized estimator (17), coded as EstWins; and the Horvitz-
Thompson estimator (in this case the stratified expansion estimator), coded as EstimHT,
which serves as the reference estimator for this class.

For each data configuration and each study variable, estimated population totals and their
estimated coefficients of variation (based on Jackknife estimates of standard errors) were
calculated for all the estimators listed above. These are shown in Tables 4 and 5 for the
estimators that use auxiliary information, and in Tables 6 and 7 for the estimators that do not.
The coefficient of variation is the ratio of the estimated standard error to the corresponding
estimate of total, and is only useful for comparing estimators that are unbiased. For example,
a positively biased estimator with the same standard error as an unbiased estimator will have a
lower coefficient of variation. Consequently, in Tables 5 and 7 we also show the relative
difference between an estimator and its reference estimator. Note that outliers tend to right
skew most economic populations. Consequently we expect negative relative changes for the
resistant estimators.

Inspection of the results for the linear model-based estimators set out in Tables 4 and 5 shows
that the three resistant estimators are superior to the non-resistant reference estimator for the
true data, with smaller coefficients of variation and moderate negative relative differences
between these estimators and the reference estimator. For the verified data, all four estimators
overestimate by a small amount. This is probably due to the presence of undetected errors in
the sample data. In contrast, the results for the unverified data, where the detected errors are
treated as representative outliers, are clearly unacceptable. In this case all four methods of
estimation severely overestimate the population totals of interest. Focussing on the true data
and the verified data, we see that Estgkbrc and Estregrc are slightly superior to Estghsrc.

Similar results can be seen in Tables 6 and 7 for the stratified estimators. Here again the three
resistant estimators are generally superior to the non-resistant reference Horvitz-Thompson
estimator. The weighted winsorized estimator EstWins appears to be biased lower than the
weighted HS estimator EstimHS and the weighted scale transform estimator EstimRob. Other
numerical results not reported here show that EstimHS generally performs well when there are
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few outliers in the sample data, while EstimRob performs well when there are many outliers
in the sample data.

Comparing the results for the linear model-based estimators in Tables 4 and 5 with those for
the stratified estimators in Tables 6 and 7 we see that the former group of estimators generally
have smaller coefficients of variation, but slightly larger negative relative changes. Overall, it
is clear that using the auxiliary information in turnreg in estimation is beneficial for the ABI
data. It is also very clear that, irrespective of the particular resistant method of estimation
used, verification of identified outliers before estimation is crucial. Allowing errors in the
survey data to be treated as representative outliers in estimation is a recipe for disaster.

Table 4. Estimation of totals: linear model-based estimators
Variable Estimator

Clprdreg Estghsrc Estgkbrc Estregrc
true data

turnover 269545407 253270677 247464410 249342600
taxtot 4655782 4258105 4091774 4238522
purtot 192575028 180852297 174049744 177459170
emptotc 27526483 26895756 26398197 26724563

verified data
turnover 280461470 269675223 260157507 264729267
taxtot 5211889 4911781 4621905 4782497
purtot 199913301 188594856 181051536 184992156
emptotc 27636629 27105079 26606150 26864103

unverified data
turnover 27140509644 29581299196 11820399165 14924616179
taxtot 459377641 308095114 216914827 163573025
purtot 22686419578 25637777042 10167753954 12910204562
emptotc 2517666251 2764776476 1174848045 1397232943

Table 5. Coefficients of variation and relative changes in total estimation: linear model-based estimators
Variable Estimator

Clprdreg Estghsrc Estgkbrc Estregrc Estghsrc Estgkbrc Estregrc
Coefficient of variation (%) Relative change (%)

true data
turnover 4.5 3.8 2.8 2.9 -6.0 -8.2 -7.5
taxtot 10.4 8.1 7.6 7.9 -8.5 -12.1 -8.9
purtot 4.9 4.4 3.2 3.3 -6.1 -9.6 -7.8
emptotc 5.3 4.7 6.0 4.6 -2.3 -4.1 -2.9

verified data
turnover 5.3 5.0 4.3 4.4 -3.8 -7.2 -5.6
taxtot 11.6 9.6 8.1 8.6 -5.8 -11.3 -8.2
purtot 5.7 5.3 4.7 4.5 -5.7 -9.4 -7.5
emptotc 5.3 4.7 6.0 4.6 -1.9 -3.7 -2.8

unverified data
turnover 81 87 80 85 9 -56 -45
taxtot 44 61 40 58 -34 -52 -64
purtot 67 71 68 71 13 -55 -43
emptotc 74 79 70 78 10 -53 -44
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Table 6. Estimation of totals: stratified estimators
Variable Estimator

EstimHT EstimHS EstimRob EstWins
true data

turnover 269088777 262919117 266872511 253448998
taxtot 4631853 4462770 4478555 4279186
purtot 189689033 186878783 183314050 181321657
emptotc 29419325 27961081 28147126 26417602

verified data
turnover 268880011 263806971 264411474 253222992
taxtot 4857658 4693038 5144381 4506820
purtot 188855602 186090830 189547911 180483346
emptotc 29431502 27984426 28200362 26424474

unverified data
turnover 23954027905 20373805300 9536712579 19464659853
taxtot 434439983 336263777 193135103 274003138
purtot 20628515242 18297388571 8267416072 17618818717
emptotc 2342642556 2012001740 1013491684 1891822323

Table 7. Coefficients of variation and relative changes in total estimation: stratified estimators
Variable Estimator

EstimHT EstimHS EstimRob EstWins EstimHS EstimRob EstWins
Coefficient of variation (%) Relative change (%)

true data
turnover 13.8 14.0 13.6 13.8 -2.3 -0.8 -5.8
taxtot 12.0 11.3 9.6 10.5 -3.7 -3.3 -7.6
purtot 13.9 14.0 13.3 13.7 -1.5 -3.4 -4.4
emptotc 15.8 14.4 11.5 12.9 -5.0 -4.3 -10.2

verified data
turnover 14.8 14.8 13.7 14.2 -1.9 -1.7 -5.8
taxtot 10.8 10.4 9.1 9.9 -3.4 5.9 -7.2
purtot 13.6 13.7 12.7 13.5 -1.5 0.4 -4.4
emptotc 14.3 13.1 10.8 12.2 -4.9 -4.2 -10.2

unverified data
turnover 80.6 78.9 18.3 80.0 -14.9 -60.2 -18.7
taxtot 37.7 37.9 11.0 42.7 -22.6 -55.5 -36.9
purtot 65.6 65.0 21.0 63.6 -11.3 -59.9 -14.6
emptotc 70.3 68.3 17.9 70.4 -14.1 -56.7 -19.2

4.3 Outlier imputation

To illustrate the performance of outlier imputation based on the reverse calibration method we
calibrated to the robust population total estimate Estrerc calculated using (21). The reverse
calibration imputations themselves were computed using (11). They were then compared with
values obtained using standard imputation methods for these type of data: regression
imputation under a linear model in turnreg (in both the raw and log scale of the data) and
nearest neighbour imputation, based on distances between sample values of turnreg. Since the
observed differences in imputations between these standard three methods were small, only
the results of regression imputation under a linear model in turnreg are reported below.
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Imputations were carried out using three different types of data. To start, all detected outliers
were imputed in the true data. Since it is clear that calibrating to estimates based on the
unverified data is a waste of time, we explored calibration to two versions of the verified data.
The first, which we call the 100% verified data does not depend on an outlier identification
process for error detection. All sample records in the perturbed data are verified and all errors
corrected by replacement of their true values. Thus the 100% verified data contains only true
outliers and missing values, with some of the true outliers detected via the outlier detection
process. The second version of the verified data we refer to as the outlier verified data. This
data set is defined by only verifying the error status of detected outliers in the perturbed data,
with all errors within this group then being set to missing.

Note that zeros in the survey data (either Y or X) define another type of outlier. In this paper,
however, we do not consider this special kind of outlier, assuming that cases with zero values
are error-free. This leads to outlying observations parallel to the x-axis and y-axis in the
scatter plots presented in Figure 2.

In order to assess the quality of the imputations, we present results for four evaluation criteria
in Table 8. The first three are evaluation criteria recommended by the Euredit Project
(Chambers, 2001), while the fourth is a measure of the proportion of imputed values in the
population that pass the ABI soft editing rules. The evaluation criteria are:

i. The weighted mean absolute difference between the true values Yi  and the imputed values

  Yi
* :

  
MADI = di Yi −Yi

*

i∈imp∑ / dii∈imp∑
where   imp  is the imputed sub-sample.

ii. The weighted mean absolute relative difference between the true values Yi  and the imputed
values Yi

* :

  
MARD = di

Yi −Yi
*

Yi
i∈imp+∑ / dii∈imp+∑

where imp+  is the same as in i , but restricted to Yi > 0, i ∈imp .

iii. The weighted Pearson moment correlation coefficient between the true values   Yi  and the
imputed values Yi

* :

    
PECC = di Yi −Y s2( )

i∈imp∑ Yi
* − Y imp

*( ) / di Yi − Y imp( )2
di Yi

* −Y imp
*( )2

i∈imp∑i∈imp∑
where 

  
Y imp = diYii∈imp∑ / dii∈imp∑  and 

 
Y imp

* = diYi
*

i∈imp∑ / dii∈imp∑ .

iv. The weighted proportion of valid imputations:

  
MSVI = diδ ii ∈imp∑ / dii∈imp∑

where     δ i = 1 if   Yi
*  is a valid value (i.e.   Yi

*  passes the soft edit rules of the ABI);     δ i = 0
otherwise.
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Table 8. Evaluation statistics for imputed values
Weighted mean of

imputed values
MADI MARD PECC MSVI

(a) (b) (c) (b) (c) (b) (c) (b) (c) (b) (c)
true data

turnover 1456 405 214 1681 1544 8.8 7.8 0.42 0.07 0.57 1.00
taxtot 910 382 16 528 922 0.6 14.9 1.00 -0.15 0.65 1.00
purtot 763 245 172 938 877 10.3 13.7 0.08 0.04 0.96 1.00
emptotc 135 494 28 590 158 268 16 0.16 0.09 0.62 1.00

100% verified data
turnover 1166 331 273 1182 1144 4.6 5.7 0.30 0.15 0.77 1.00
taxtot 159 17 7 168 160 13.4 3.5 0.05 0.01 1.00 1.00
purtot 659 189 183 723 717 6.0 10.9 0.08 0.04 0.97 1.00
emptotc 75 120 31 162 79 63 8.6 0.21 0.16 1.00 1.00

outlier verified data
turnover 2493 2201 2153 593 538 2.4 2.5 0.999 0.999 0.92 1.00
taxtot 56 46 45 55 56 1.2 1.2 0.940 0.940 0.96 0.96
purtot 1833 1714 1654 415 374 5.9 4.3 0.999 0.999 0.96 1.00
emptotc 238 282 276 90 98 1.7 1.8 0.999 0.999 0.96 1.00
Note: (a) true value, (b) reverse calibration, (c) regression imputation.

When considering the results set out in Table 8, it is important to remember that there are
relatively few imputations in the true data and the 100% verified data (essentially only
missing values and true outliers) while there are relatively many imputations in the outlier
verified data (since these include all the detected errors, which are treated as missing).
Consequently, comparisons between these different data sets should be avoided. This is
particularly true for PECC where we see low values for the true data and the 100% verified
data (due to the fact that the imputations for the true outliers are not designed to recover their
values, and these dominate the measure) while in the case of the outlier verified data the
robust regression model underpinning the imputations for the detected errors actually fits their
true values rather well, and these “swamp” the imputations for the true outliers.

The results in Table 8 show that reverse calibration imputation and standard regression
imputation seem to be not too different in terms of pure imputation performance, with perhaps
the reverse calibration approach scoring better in terms of the correlation between true and
imputed values. To an extent this similarity is driven by the fact that the true outliers in the
ABI data tend to have small weights and hence are discounted by the above criteria.

The performance of reverse calibration imputation can be better appreciated from an
inspection of Figures 1 and 2. In Figure 1 we plot the imputed values of turnover against the
true values of this variable, while in Figure 2 we show the values of turnover plotted against
those of the covariate turnreg both before and after imputation. All plots are on the log scale
of the data. Here it can clearly be seen that there is a strong linear relationship between the
imputed values and the true values for true outliers. There is also no significant difference
between the imputed values for missing data and perturbed errors generated by the two
methods.

Finally, in Table 9 we show the stratified expansion estimates and the regression estimates of
the population totals before imputation (in brackets) and after imputation (first value is based
on reverse calibration imputation, second value is based on robust regression imputation). For
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the regression estimation results, pre-imputation estimation is robust regression estimation,
while after imputation it is simple regression estimation. For the expansion estimation results,
both of pre-imputation estimation and post-imputation estimation are stratified expansion
estimation. Since there are actually relatively few true outliers in the ABI data (compared to
the number of errors), there is little difference between the overall estimates based on reverse
calibration imputation and those based on regression imputation. However, it is also clear that
the estimates based on the reverse calibration imputations are systematically slightly larger
than those based on regression imputation, indicating that the former imputation method tends
to allow outliers to have more “say” in estimation.

Table 9. Estimates of population total before and after imputation
Variable

turnover taxtot purtot emptotc
Stratified expansion estimation

true data (269088777)
 265054049
 264320456

(4631853)
 4455522
 4333276

(189689083)
 187334925
 187003002

(29419325)
 29824257
 29298019

100% verified
data

(270468949)
 264665106
 264361038

(4654708)
 4349873
 4329947

(190425133)
 187007851
 186970993

(29576816)
 29536876
 29308487

outlier verified
data

(264654385)
 277552404
 276756021

(5219167)
 5107820
 5168510

(184932869)
 195346631
 194553015

(28650608)
 30146782
 30070948

Regression estimation
true data (249342600)

 253085063
 252225059

(4238522)
 4445173
 4204309

(177459170)
 180939121
 180483772

(26724563)
 27146206
 26745912

100% verified
data

(249011055)
 249402861
 249099514

(4226175)
 4133132
 4121348

(177325785)
 176197519
 176158917

(26689600)
 26981405
 26841312

outlier verified
data

(243517947)
 251443928
 250679084

(4431328)
 4906132
 4898020

(170611125)
 176725974
 175963690

(25222498)
 27671226
 27570233

As conclusion, the reverse calibration imputation can be a competitive alternative to the
conventional imputation methods, especially for imputation of outlier values.
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Figure 1. Plots of true values (y) against imputed values (x) for turnover, log scale. Blue
indicates true outliers, red indicates missing and grey indicates errors.

(a) true data

(b) 100% verified data

(c) outlier verified data

Small and big outliers imputed
together

Small and big outliers imputed
separately

Linear regression imputation
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Figure 2. Plots of turnover (y) against turnreg (x) for turnover, log scale. Blue indicates
true outliers, red indicates missing and grey indicates errors.

 (a) true data

(b) 100% verified data

(c) outlier verified data

Before imputation After reverse calibration
imputation

After regression imputation
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