University of Southampton

,ﬂ Southampton Statistical Sciences Research Institute
<

Transformed Variables in Survey Sampling
Raymond L. Chambers, Alan H. Dorfman

Abstract

It can happen, especially in economic surveys, that we are interested in estimating the
population mean or total of a variable Y, based on a sample, when a linear model
seems appropriate, not for Y itself, but for a strictly monotone transformation of Y. In
the present paper, we mainly focus on the important case where the transformation is
logarithmic, but some new ideas introduced are not limited to that case. Currently
available methods, based on the lognormal distribution, are reviewed, and two new
methods introduced, one based on the idea of “smearing” (Duan, 1983), which do not
require the lognormal assumption. Theoretical biases and variances are given, with
suggestions for sample design and variance estimation, and a practical measure for
reducing sensitivity to deviant points is suggested. We evaluate and compare the
different estimators we describe in an extensive empirical study based on four

economic populations taken from the UK Monthly Wages and Salaries Survey.

S°R1 Methodology Working Paper M03/21



Transformed Variables in Survey Sampling

Raymond L. Chambers"” & Alan H. Dorfman®

(1) Southampton Statistical Sciences Research Institute, University of Southampton

(2) U.S. Bureau of Labor Statistics, Washington DC

ABSTRACT
It can happen, especially in economic surveys, that we are interested in estimating the population
mean or total of a variable Y, based on a sample, when a linear model seems appropriate, not for
Y itself, but for a strictly monotone transformation of Y. In the present paper, we mainly focus on
the important case where the transformation is logarithmic, but some new ideas introduced are
not limited to that case. Currently available methods, based on the lognormal distribution, are
reviewed, and two new methods introduced, one based on the idea of “smearing” (Duan, 1983),
which do not require the lognormal assumption. Theoretical biases and variances are given, with
suggestions for sample design and variance estimation, and a practical measure for reducing
sensitivity to deviant points is suggested. We evaluate and compare the different estimators we
describe in an extensive empirical study based on four economic populations taken from the UK

Monthly Wages and Salaries Survey.

KEY WORDS: balanced sampling, jackknife variance estimator, lognormal linear model,
prediction, probability proportional to size sampling, residuals, simple random sampling,

stratified random sampling, smearing estimator, outlier robust estimator



1. Introduction

N
Given a population of N units, we wish to predict the finite population total 7" = E y, of a
i=1

variable of interest Y, based on a sample s of size n from that population. In addition to the
sampled values of Y, we have auxiliary information in the form of population values x;, i =1, .., N
of a covariate X. The standard approach to this task (see Royall, 1982) assumes a linear
relationship between Y and X. Often, however, there is good reason to think that the relationship
between Y and X themselves is not linear, but linear in another scale of measurement, so that we

have
h(Y)=[J’0+/J)1g(X)+8, (1)
where f3,, B, are unknown parameters, we allow for a transform of X (possibly X itself), and the

errors € have mean 0 and variance o”. The question then becomes: how do we make an inference
concerning 7, based on the available data, using this model? Allowing for transformation of X
does not of course by itself carry us beyond the standard linear model; the essential difficulty
posed by (1) is in handling the transform of the dependent variable Y. In the present paper we
focus mainly on the case where /4 is the (natural) logarithm log, and we also assume that g(x) =
log(x), so that the special case of interest is the log-log model
log)=Z'B +¢, (2)

where Z'=(1 log(X)) and B =(,0,)'.

The use of transformations in inference has a long history, and has been much studied
(e.g. Deming 1984 [original publication 1943], Carroll and Ruppert 1988), but not a great deal
has been done in the sampling context. Chen and Chen (1996) considered an approach based on
empirical likelihood, restricting its use to attainment of confidence intervals. Their results

improved on earlier coverage attained using robust variance estimators based on a linear model



(Royall and Cumberland, 1985). Karlberg (2000a, 2000b) assumed the errors ¢ were normal (so
that ¥ has a lognormal distribution) and developed predictors with negligible biases. We review
predictors that assume lognormality in Section 2. Section 3 introduces two new predictors of
total: a SMEARING predictor, based on ideas in Duan (1983), and a ratio-adjusted-for-sample-
total (RAST) predictor. Approximations to their biases and variances are given; the respective
jackknife variance estimators are approximately unbiased for these variances. Vulnerability to
data values that deviate from the model is noted, and modifications that improve the robustness
of the proposed methods are described. Section 4 describes an extensive empirical study,

evaluating several of the approaches proposed in this paper. Section 5 states conclusions.

2. Predictors based on the lognormal model
A too simple response to model (2) is to use optimal linear methods to get an (ordinary least

squares) estimate b,;; of B , back-transform to get predicted values of Y at non-sample values,
and use these to predict 7, = Er ¥, , the non-sample component of 7. Here r denotes the set of
non-sampled population units. This gives

To=3 i+l =Dy 3 h'@h,)=3 y+y e,

the naive back-transformation predictor of 7.

That this is not very satisfactory is readily seen. Suppose the errors are normally

distributed, & ~ N(0,0%). Then Y has a lognormal distribution, and we have E(Y|X) = e*” rot/2 ,

so that E(7)= Erezmwz/z. T, will be biased low, since E(YA",,A)=EeZLﬁ+Z; wlbw)n 2 and

¢
z,var(b,, )z, is of lower order than o °.

This suggests as remedy, what might be called the naive lognormal predictor,



fB - Es yi + Erez;bm‘*SZ/Z D)
where s = (n-2)"y (log(y,)-2b,, *. However, this is also biased for T

ez[ﬁmz/z

E(ez}bomsz 2 _y)= T(z;var(boh)lg + %var(sz))

z.B+0%/2 4
e’ _ o
= |o’Z(ZZ) 'z + .
2 1 N S 1

2(n-2)
4
Here Z, denotes the matrix of sample values of Z. If &, = 1+%(O‘2Z;(ZISZS)_1Zi + 2(0 2)) , then
n —
Z)b +s2 /2
E (T - »,) =0, and we can use the estimate of this factor

l

4 2 4
k, 14l SZ(Z L)'z, + o | =142 5
2 2n 2 4n

where a, =2,(Z.Z,)"'z,, to get the first order bias corrected lognormal predictor

1
< r—1 _zb,+s/2
TC—ESy[+Erk[ e .

Karlberg (2000a, 2000b) employs something very close to this:

2
~ zb, +%(l_aii)_
Te= 2.0+ 2.

4

N
AL )
4n _ =1 _zb,+5°/2
—Esyl.+grlie ,

2 4
S-a; N

where l: =e? Y= /:t,. . Under the lognormal assumption, this predictor has O(n*) bias, and can

be expected to perform well, provided the lognormal model holds, or nearly holds.



3. The RAST and SMEARING Predictors
The preceding transformation-based predictors use bias adjustments that assume a normal
distribution for the transformed variable. We introduce two new predictors that escape this

restriction and have other desirable properties.

3.1 Ratio Adjustment by Sample Totals (RAST)

A method of predicting the non-sample total 7). of Y should be able to exactly recover the
(known) sample total of this variable. If it does, then the method yields an unbiased predictor of
this sample total, and we can anticipate that it will also give a close to unbiased predictor of 7,

and hence of 7. Let y, denote the predicted value of y; under the method of interest. Then this
requirement translates into the condition Ev y, = ES V.

None of the lognormal predictors discussed in the previous section possess this property.

However, for an arbitrary estimator b = (b,5,)" of B, it is not difficult to modify the naive back-

transformation predictor so that it does. Put y(b)=log2syi—ln25e2;"’ and define

b = (b, +y(b)h) . It is easy to see that EseZ;b* = ES ¥, . The resulting predictor of T is

fRAST = Esyi + E,ebg+brln)Ci = Esyi +%le;2,xibl ’ (3)

which we term the Ratio Adjustment by Sample Total (RAST) predictor. More generally, we can
consider using weighted sample sums in the numerator and denominator of the second term.

Even more general, for the model (1), is

fRAST = Esyi +E)&i)2,h_l (Z;'b)' 4)

wh (z'b

We assume the weights w; when normalized to be of order nt



3.2 The SMEARING Predictor

For predicting a Y-value at Z, where Y obeys the model (2), Duan (1983) suggested estimating
EY|Z)= f e“P*dF (¢) by EY|Z)=n" ES e”* =+ where the R; are the sample residuals from
the ordinary least squares (ols) fit of In (3;) on z;. For an arbitrary estimator b = (b,b,)" of f this

leads naturally to the corresponding SMEARING predictor of the population total:

YA?SMEAR = Es_yi +E}_E(yi lz,)
=Sy > nt T erhen (5)

RN (D

Observe that for the log-log model, the RAST predictor in (3) is a ratio of means estimator, and
the SMEARING predictor in (5), a mean of ratios estimator, in the auxiliary x” . Again we can

easily extend this to a weighted version. The generalization for the model (1) is

’I,;SMEAR = Exy,' + E,ie:-zieswih_l<z,jb + Rl.) (6)

where the weights w; add to 1 and are of order n™"

3.3 Biases
3.3.1 Bias of the RAST Predictor

We consider first the log-log model (2). One readily sees that
E(T)=e"E(e') x! (7

Assume b=+ 0, (n""?). The non-sample part the RAST predictor (3) can then be written
P

-1/2
. E W eﬁo /31 5,' E ‘xlﬁ] xl l’( ) E wieﬁoxiﬁlegi E xiﬁl '
r,RAST = . 1/2 = s B, L (1 + Op(n_ ))
E w,x Eswixi




with expectation E(YA",,RAST) = eﬁ‘)E(eE )E xf (1 + O(n'”z)), so that the RAST predictor (3) for the
log transform is almost unbiased under (1). Using second order Taylor expansions of x", we find

that the multiplier (1 + Op(n'”z)) ~1+ A(b, - B,) + B(b, - B,)’, where 4 is a constant and

B__Esw log E xl log 1 E ﬁ‘ log 1 E log
) Eswi i Erx 2 Erxiﬁl 2 Eswi i

We note that, under “weighted balance” (see below) the last two terms of B will tend to cancel,

and the RAST predictor will have a negative O(Nn™") bias, provided enough of the x; exceed 1.

The bias of the generalized RAST predictor (4) is not in general necessarily of low order,
even under (1). However, under weighted balance, it is almost unbiased, even if the model (1)
does not hold, as the following development shows.

We suppose the values of X in the population can be characterized by a density dp(x), and
the sample values by a density d,(x). If the sample fraction is small, then the non-sample density
d,(x) approximates dp(x). Suppose also the weights w; derive from a function w(x). Then we say
the sample has approximate weighted balance if w(x)dy(x) o dp(x). We add the qualifier
“approximate” since these functions are smooth approximations to the granular reality. For
further discussion of weighted balance, and methods for achieving it, see Valliant et al. (2000,
Chapter 3).

Now suppose the working model is h(y,)=zB+¢, with ¢ ~ (0,02), with y/’s
independent, but the truth is

g(y:)= m(xi)""’(xi)l/zni’ (8)

with n, ~ (0,12), again with y;’s independent. Then



with Q(x,) = E{g—l(m(xi) . v(xi)l/an_)}, We can therefore write E(T) = (N - n)fQ(x)dr(x)dx.

R
Ewh

On the other hand, for the weighted RAST predictor given by T \ RAST 2 h!

we have, for n, N large,

E(f;,m)zz,E{h-%zzb)}EE T g

= \<

Hf_ll
N/
sy
B

2%

where we have set W(x,) = E(h"l(zﬁb)). We can write

A

E(Tr’RAST) (N - nf‘P x)dx

3.3.2 Bias of the SMEARING Predictor

For the log-log version (5) of the SMEARING predictor, we find that, to second order,
A . | 2
T, smear = eﬁo{zswie ' Erxiﬁ + C(bl _ﬁl) + D(bl _/31) },

where C is a constant and

D= Exﬁllog Ewlog ;2 # (log(x Ewe += 2 2 J(log(x

The following result is helpful in assessing D.

Lemma. For a; and u; non-negative,

J b2 I ’ J b 1
2> b. C.
E, 1al JE' U; +E] 1 JE, 1 i€i = E_,’=1a/ J i=1ulcl'



This inequality holds trivially for / =J = 1, and can be proved by induction: assuming it holds for
fixed 7, J, one shows it holds for / + 1 and J. The expression is symmetric in the i and j terms, so

that, likewise, its holding for any 7, J implies it holds for / and J + 1.

B

Letting a; = x', u, = we", and by = ¢, = log(xi) we see that in general D is positive, so

that f, azap Das a positive bias of order N

The general SMEARING predictor (6) will be first order unbiased under model (1). The

.th - .
/" non-sample term of 7, .., can be written

Eswi{h(/}o +Bx; + el.) + 6Uh’(ﬁ0 +fx; + sl.) + OP(6U2)},
where 6, = (b -B l)(x ;= xi). The expectation of the first term coincides with the expectation of

the j’h term of 7,. Duan (1983) has shown that, under mild conditions, the SMEARING predictor
at a point is weakly consistent, and this carries over to the predictor of total.

What if the working model is wrong? As above, let the working model be h(y,) =z, +¢,,
with ¢, ~ (0,02), and y’s independent, and suppose the truth is (8), so that, again,
E(T)=(N-n) f Q(x)d (x)dx as in the development after equation (8). As an alternative to the
SMEARING predictor, we consider its “twiced” version with prediction component of the form

T = E,Es(pﬁh_l(zlf'/;) + Rl.) + Exw,{Y, - Exqoi,h’l(z}ﬁ + Ri)}.,
where the ¢ -weights are positive, add to 1 for each j, and are of order 1/n.
Letting g(xi,xj) = E{h'l(z'j/;’ + Ri)}, we write its expectation as
E(Tr) = Erzsqo,.jg(xi,xj) + ESW,{Q(x,) - Estpﬁ,g(xi,x, )}

“(N‘”)”ff¢(u,V)g(u,V)ds(u)d,.(v)dudv

+nfw(v)§2(v) d(v)dv (N - n)ffw(v)qo(u,v)g(u,v)ds(u)ds(v)dudv.



This reduces to (N - n) f Q(x)d (x)dx = E(T,), if the w-weights are such that
nw(v)d,(v)=(N-n)d,(v). )
That is, weighted balance, with the appropriate size adjustment, yields approximate unbiasedness
of the twiced SMEARING estimator, despite mis-specification of the model.
In the simulations described below, we explored “histogram weights”, defined by letting w;

be the number of non-sample units j having ‘)7] —f}i‘sR/n, for i€s. This should yield an

approximate version of the weights (9); these weights are like kernel weights in non-parametric
regression estimation; furthermore, by basing them on (tentative) fitted values, the “curse of

dimensionality” would be avoided, were Y dependent on more than one X variable. For the ¢ -

weights, we tried both ¢, = 1/n, referred to as the “plain vanilla” version below, and also ¢, = w;.

1

3.4 Variances and Variance Estimation

In the simulation studies described in Section 4 below, we use a jackknife variance estimator to
form confidence intervals. Ignoring lower order terms, we here show the unbiasedness of this
estimator for the variances of the RAST and SMEARING predictors of total. We do this for the
general case, assuming in each case unbiasedness (to low order) of the corresponding predictors,
which holds for the SMEARING predictor under (1), and for the RAST predictor in the log-log

case and in general under favourable weighting structure (see above). We also assume the

sampling fraction is sufficiently small so that Var(f", - Z_) ~ Var(f"r).

Then in the case of the RAST predictor, we have

> W (By+ Bix,)
Y wh ™ (By+ Bx,)

T gasr = Exwiy

10



so that

A A

. . . . . n-1 2
The jackknife variance estimator is v, ;¢ = _Eja(Tr»R ast[j] ~ Do AST) , where we take

h :
T s E Wy, E“{f} (B, i) .
r.RAST[ j] s={j} ! ES_{ j}wih_l(ﬁo + ﬁlxi)

It follows that

A A > B (By+ B x;) w,h™ (By+ B %))

T viort 1 =T ooy = <22t ’ v A L —w.y, b
st Lo~ ) |2 S g

ies-{j}

Under the assumption that T sy 18 (nearly) unbiased, we have

E (f;,RAST[ i1~ f;,RAST )2 = Var(fr,msr[ a1~ f;,RAST)

_ ’ Erh_l(ﬁo"'ﬁlxi)
Sk (Bt Bix) 2 2

2

wh™ (By+ B x;)
Wih_l(ﬁ0+ ﬁl ‘xi)

+ w? var(y ;)
i€s-{ j}
Erh_l(ﬁo + [ 'xi)

7| E wh™(By+ By x;) > {w?var(yj)}

since the omitted sum is O(n™") times the order of wi Var(yj). The approximate unbiasedness of

Vv, rusy Tollows directly from this. For the SMEARING predictor, we take

-1
o _ Ek6r+{j} EiEs—{j} Wih (ﬁo * /31 xk * Rl)
r.SMEAR[ j] ~ E " .
ies-{j} '

The argument is then similar to that for the RAST predictor and is omitted.

11



3.5 Dealing with outliers

All the predictors developed thus far assume that the linear model (2) for log(Y) in terms of
log(X) fits well, or at least that Y is well behaved with respect to some underlying true model.
However, the reality is that the sample data typically include a substantial number of “special”
values (e.g. zero) and outliers. The logarithmic transformation effectively controls the influence
of raw-scale outliers, but is then susceptible to log-scale outliers (e.g. values near zero). These
values can have a large effect on back-transformed predictions.

In order to control the influence of such outliers, we use robust methods of parameter
estimation. In particular, the simulation study reported on in the next section was carried out
using R (Thaka and Gentleman, 1996), and we estimated B in (2) using the »/m function, which is
part of the MASS robust statistics library (Venables and Ripley, 1994). We used a biweight
influence function with tuning constant ¢ = 4.685 and calculated the standard deviation s of the
residuals using the MAD estimate output by r/m.

For the RAST and SMEARING predictors, we can go one step further, discounting
outlying terms that enter into the RAST or SMEARING adjustment terms by using the outlier

robust weights {w;}, output by r/m. This leads to robust versions of these predictors such as:

([
, 25
Fo
TRAST Ey,+2wyl Nk
Ewlx‘

/2]

= 3, +{3 )(

where b/ is the robust estimate of 3; output by r/m.

Thus those sample units that are effectively down-weighted as outliers in the log-scale in

the course of robust estimation of the regression parameters are also down-weighted in the RAST

12



and SMEARING adjustments. These weights are not of course the weights described in section
3.3 above to achieve weighted balance. Estimators that incorporate histogram weights will be
codified with an “H”, those that incorporate robust weights, with an “R”. The former (and
twicing, in the case of SMEAR) is meant to deal with global deviations from the working model,;
the latter is intended to handle local deviations from the model. It is possible to incorporate both
weights, for example the Twiced Robustified SMEARING estimator:

DViHRY ot X wilyi—R,To)

SM/RH(2):  J,, = exp(@, + B, log(x,))

R - Egyw/ Yo

where @, and [330 are outlier robust estimates and w; is a histogram weight based on the sample

Yo Vvalues.

4. Simulation Study

We carried out an extensive simulation study on four populations of businesses drawn from the
UK’s Monthly Wages and Salaries Survey (MWSS). These were the businesses making up two
sectors of the MWSS sample, labelled A with population size N = 768, and B with N = 1005. For
each sector, we considered two dependent variables Y, wages (WAGES) and number employed
(EMP) at the time of the survey. For each, the dependent variable X was employment as
measured on the UK Inter Departmental Business Register, the sampling frame for the MWSS, at
the time of selection of the MWSS sample. This is denoted Register EMP below. The populations
are represented graphically in Figures 1 and 2. For confidentiality reasons, the actual values have

been re-scaled and the plots do not show a scale. It is readily apparent that the log-log

13



transformation yields something close to a homoscedastic linear fit, but with various anomalies
peculiar to each population.

Each population was independently sampled 1000 times using (a) simple random
sampling without replacement (SRSWOR), (b) size stratified random sampling (SizeSTRS), with
size defined by X = Register EMP, (c) systematic probability proportional to size sampling
(SYSPPS), with X as size variable, and finally (d) restricted “overbalanced” PPSSYS sampling
that give samples that are nearly balanced with respect to inverse X weights (details in the
Appendix.) In all cases sample sizes were n = 50. In the stratified case, we employed 4 strata,
with strata boundaries cutting off approximately equal stratum X-totals. The “top” stratum was
completely enumerated, with SRSWOR for the remaining strata. The sector B allocation was 15,
15, 15, 5, and the sector A allocation, 13,13,12,12.

For all designs, we considered 10 predictors of 7. These were the expansion estimator
(EE), the ratio estimator (RE), the naive back-transform predictor (TA), the Karlberg lognormal
model-based predictor (TK), the RAST predictor (RA), the SMEARING predictor (SM), and
robust versions of the last four, signified by TA/R, TK/R, RA/R and SM/R respectively. In the
case of stratified sampling, we used both stratified versions of these predictors as well as versions
that ignored the strata (i.e. stratification was treated purely as a sampling device). In the latter
case we calculated the across-stratum ratio estimator (RE/stratum weighted) since this is a more
suitable comparator commensurate with “survey practice” for this case. Similarly, for the unequal
probability design SYSPPS, the baseline comparator was the Horvitz-Thompson ratio estimator
(RE/pi-weighted).

Additionally, for STRS we added unstratified versions of the histogram weighted
predictors, namely RA/H and RA/RH, SM/H, SM/RH, SM/H(2), SM/RH(2), SM/H(2v),

SM/RH(2v), where (2) refers to twicing, and “v” to the “plain vanilla” version of the choice of

14



@ - weights (see above.) These same additional 8 predictors were also calculated for PPSSYS

and overbalanced samples.

For variance estimation, we used the Jackknife for all transformation-based predictors.
The conventional design-based variance estimator was used for EE, while for RE and RE/Across
we used the robust variance estimator suggested by Royall and Cumberland (1981). Variances
were summed by stratum for the stratified versions of the estimators.

Our measures of simulation performance are given in Table 1. Tables 2 - 5 give the values
of these performance measures for the various predictors under the several sampling schemes for
the four populations. The best values of RMSE and Ratio Dominance (i.e. stochastic dominance
relative to the “usual” ratio estimator for the design, see Table 1) are boldfaced in these tables.
Here “best” means respectively “having RMSE within 10% of the smallest RMSE achieved for a
particular design”, and “Ratio Dominance greater than 50%”, again for the particular design.
Some observations on these results are:

1. Transformation-based predictors should be treated with care. The naive back-transformed
predictor (TA) was very biased on a number of occasions, while the “unbiased” lognormal
model-based predictor proposed by Karlberg (TK) appeared to be very outlier sensitive
(as indicated by improved performance when robustified.) This sensitivity was shared by
the SMEARING predictor (SM). As anticipated, the RAST predictor (RA) controlled
transformation bias, but was rather inefficient.

2. In contrast, outlier robust versions of transformation-based predictors generally worked
well. In particular the variability of RAST predictor was reduced without an increase in
bias. There were also substantial reductions in both bias and variability for the Karlberg

and SMEARING predictors. Overall, the robust SMEARING predictor worked very well.
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This effect of robustifying seems to hold as well for the “H”-weighted and twiced
predictors.

The heteroskedasticity robust standard error estimates used for the various ratio estimators
tended to be biased low, with corresponding undercoverage of associated confidence
intervals. This also applied to the standard errors for the expansion estimators (with or
without stratification). In contrast, jackknife standard errors seemed to be much better.
Their associated coverage was often very good. The exception was for ¥ = WAGES in the
A population (Table 3), where the robust unstratified transformation-based predictors
based on the SizeSTRS design appeared to have higher biases, leading to a reduction in
coverage. This was particularly the case for R/non-H predictors. Use of the histogram
weights and twicing (for the SMEARING predictor) improves coverage. In Table 3 we
included the effect on the robustified (R) predictors of using the corresponding non-
robustified variance estimates (these are the figures in parentheses in the 2-sigma
coverage column). This improves coverage, sometimes appreciably, at the cost of a
widening of intervals. This may be a good device in practice. It should be noted that there
is no undercoverage (in fact we have the contrary) when the SYSPPS design is restricted
to only choosing overbalanced samples.

Coverage of confidence intervals was uneven. Intervals were often too large, especially in
the case of the unstratified predictors under STRS, and for the overbalanced samples. In
the overbalanced samples particularly, it may be noted that the average size of intervals,
as measured by %Relative Av SE, is about the same as for the PPS samples, despite the
fact that by and large the point predictions have sharply lower RMSE.

Good RMSE performance often did not translate into stochastic dominance. However,

outlier robust versions of RAST, SMEARING and Karlberg predictors generally
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dominated the associated ratio estimator. This is brought out in Table 6, which
summarizes the number of times each estimator was best with respect to RMSE and Ratio

Dominance across the four populations.

We now focus on RMSE. Table 6 gives the “winners” for each design/population combination. It

is clear that no single predictor dominates.

6.

What is most notable is the impact of sample design. In all cases the RMSE for SRS-
based predictors exceeds that of the STRS/stratified predictors, which in turn exceeds that
of the STRS/unstratified predictors, which is about the same as the PPS-based predictors,
which, finally, exceeds the RMSE under overbalanced sampling.

The table also suggests that the use of the histogram weights and twicing is more effective
in the Y = WAGES populations than in the ¥ = EMP populations. This makes sense since
the latter provides a cleaner linear fit on the log scale. (In fact, the hypothesis of a zero
quadratic term in the log-log model is convincingly rejected for the A/Y=WAGES

population.)

Restricting attention to just the three better designs, we give all the “near winners” in Table 7,

that is, those predictors whose RMSE was within 1.1 of the smallest for the given

design/population. Again, robustified predictors dominate and twicing and use of histogram

weights lead to better results for the messier WAGES populations, and we also note:

8.

Robust SMEARING (SM/R) is best for the conventional sample designs, in the sense of
appearing most often (3 times for STRS/Unstratified and 3 times for SYPPS) but TK/R
and RA/RH are close behind (both 2 and 3 times, respectively.)

The conventional expansion and ratio estimators and the naive predictor TA are not

contenders, although RE/pi-weighted and TA/R each appear once.
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Some further insight is given by Table 8, which lists all predictors based on the overbalanced
sample design which have RMSE within 1.1 of the smallest RMSE achieved under the
conventional designs (SYSPPS or STRS/Unstratified) for each population. The percentage of the
minimal RMSE is also given in the table. We note:

10. There are serious gains available from narrowing the scope of the sampling design to
selection of overbalanced samples. Except for the “too nice” B/Y=EMP population, many
predictors are more efficient than the best that the conventional designs can offer. For
A/Y=WAGES only SM/H and SM/H(2v) are out of the running.

11. Except for the B/Y=EMP population, the estimators SM/RH(2), RA/RH and TK/R are most
consistently near best, in that order, in the overbalanced samples. Only the last is good for

all 4 populations, though.

5. Summary

Using models for transformed data to handle non-linearity can bring gains in the prediction of
finite population totals. However, outliers in the transformed scale can have a much more
dramatic effect on transformation-based predictors than raw-scale outliers have on linear
predictors. Our empirical results suggest that the robustified SMEARING, RAST, and Karlberg
predictors are the preferred predictors for the log-log model (2), with further modification using
twicing and histogram weights, where the log-log model possibly holds less strictly. In particular,
it seems that SM/R, and SM/RH(2) in the messier WAGES populations, are the most consistently
reliable, with TK/R and RA/RH not far behind. Efficiencies depend strongly on the sample
design. A jackknife variance estimator does a reasonable job of estimating the precision of
estimators, although further work on variance estimation is desirable to reduce instances of below

nominal coverage as well as too long interval length. The RAST and SMEARING estimators can
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also be applied to transform models other than the logarithmic transform, and the theoretical
analysis reported in this paper leads us to anticipate good results. Empirical testing of their

behaviour in this case, however, remains for further investigation.
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Appendix — Weighted Balance

On the original scale of X and Y it is clear that variances of Y given X increase sharply with X. If

we suppose that they increase proportionally to X, then, in standard non-transformed
modelling, weighted balance, with weights inversely proportional to X, gives protection against
misspecification of the model, and also lowest variances for estimates of totals (Valliant, et al.
2000). This particular form of balance has been referred to in the literature as overbalance, and is
defined by

-1_K K
R
s P

= b
"3
Pl

or, equivalently,

K
% % (3 47)-1)-0.
P! P!

for K =0, 2, 3,... etc. SYSPPS sampling with X size variable aims at overbalance, but does not
actually achieve it for most samples. Figure 3 indicates the extent to which samples selected via
this design deviated from overbalance for the A and B populations. In these plots, (deviation
from) K-order overbalance is measured by the term in square brackets above (that is, the relative
difference of the sample moment and the corresponding population ratio), with a value of zero

indicating that a sample is exactly overbalanced at that order. The 100 samples (out of the 1000

actually drawn) with smallest values of \/ Oth order overbalance” + 2nd order overbalance® were
taken as defining an overbalanced sampling strategy. Based on the results in Table 8, such a

sampling strategy seems to be a promising way to proceed.
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Table 1. Performance measures used in the simulation study.

Measure Description

% Relative Bias Average simulation error, expressed as a percentage of the target population total.

% Relative RMSE Square root of average squared simulation error, expressed as a percentage of the target population total.
% Relative Av SE Average simulation estimated standard error, expressed as a percentage of the target population total.

2-sigma Coverage
Ratio Dominance

Proportion of simulation "2-sigma" confidence intervals that include the target population total.

Proportion of times a predictor stochastically dominates (i.e. has smaller absolute simulation error than) the corresponding ratio estimator.
We compared with the simple ratio estimator (RE) for the SRSWOR design, the stratified ratio estimator (RE) for stratified predictors
based on the SizeSTRS design, the across-stratum ratio estimator (RE/stratum weighted) for the unstratified predictors based on the
SizeSTRS design and the inverse pi-weighted ratio estimator (RE/pi-weighted ) for the PPSSYS design.




Table 2. Simulation results for Sector A, Y= EMP.

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
SRSWOR design
EE 3.82 65.15 48.54 0.72 0.13
RE 0.72 12.38 9.21 0.86 .
TA 0.36 17.44 17.18 0.96 0.33
TA/R 5.58 12.30 11.95 0.97 0.48
TK 13.13 22.61 18.27 0.95 0.28
TK/R 8.95 14.54 12.52 0.95 0.41
RA 1.34 15.53 15.98 0.94 0.37
RA/R 3.96 12.90 13.21 0.93 0.52
RA/H 11.29 20.46 17.31 0.94 0.31
RA/RH 10.56 15.74 13.14 0.94 0.38
SM 14.04 26.30 21.00 0.95 0.29
SM/R 9.12 14.66 12.51 0.95 0.40
SM/H 15.25 27.75 21.67 0.94 0.27
SM/RH 9.62 14.95 12.58 0.94 0.40
SizeSTRS design / Stratified predictors
EE 0.15 9.23 8.66 0.89 0.25
RE 0.11 4.85 3.76 0.89 .
TA -2.52 5.58 5.29 0.94 0.38
TA/R -1.35 4.19 5.06 0.94 0.47
TK 0.73 5.19 5.47 0.98 0.52
TK/R -0.13 4.24 5.26 0.96 0.55
RA 0.24 5.21 5.49 0.97 0.46
RA/R 0.06 4.76 5.58 0.95 0.53
SM 0.82 6.84 6.01 0.97 0.48
SM/R -0.12 4.27 5.28 0.96 0.56




Table 2 (continued)

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
SizeSTRS design / Unstratified predictors

RE/stratum weighted 0.03 4.79 4.17 0.93

RE/unweighted -3.64 3.82 2.85 0.97 0.39
TA -4.54 5.17 4.99 0.98 0.27
TA/R -2.15 2.79 3.82 1.00 0.59
TK -0.53 2.59 4.47 1.00 0.68
TK/R -1.29 2.25 3.81 1.00 0.73
RA -1.89 3.47 4.93 1.00 0.59
RA/R -1.80 2.62 4.10 1.00 0.64
RA/H -0.07 3.40 4.81 1.00 0.69
RA/RH -0.59 248 4.17 1.00 0.70
SM -1.42 3.53 4.65 1.00 0.60
SM/R -1.29 2.25 3.82 1.00 0.73
SM/H 0.19 6.72 5.62 1.00 0.63
SM/RH -0.93 2.18 3.94 1.00 0.75
SM/H(2v) 0.76 4.43 5.57 1.00 0.54
SM/RH(2v) -1.36 3.22 4.95 1.00 0.59
SM/H(2) -0.03 4.46 5.51 1.00 0.56
SM/RH(2) -0.48 2.65 4.27 1.00 0.67

SYSPPS design

RE/pi-weighted -0.22 3.07 3.15 0.92

TA -4.39 5.45 5.44 0.97 0.21
TA/R -1.70 3.25 4.11 1.00 0.41
TK 0.03 2.87 4.58 1.00 0.59
TK/R -0.79 3.09 4.05 1.00 0.46
RA -1.14 4.03 5.49 1.00 0.47
RA/R -0.87 3.00 4.42 1.00 0.51
RA/H 0.48 3.52 5.18 1.00 0.48
RA/RH -0.06 3.05 4.46 1.00 0.49
SM -1.39 3.32 4.69 1.00 0.47
SM/R -0.81 3.09 4.07 1.00 0.45
SM/H 0.56 3.62 522 1.00 0.56
SM/RH -0.10 2.92 4.53 0.99 0.51
SM/H(2v) 2.94 5.87 6.96 0.98 0.35
SM/RH(2v) -2.82 4.58 6.38 1.00 0.28
SM/H(2) 0.39 4.26 5.97 1.00 0.29
SM/RH(2) -0.04 3.31 4.58 1.00 0.44




Table 2 (continued)

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
100 best “overbalanced PPSSYS samples

RE/pi-weighted 0.98 1.29 3.57 1.00

TA -2.44 2.69 4.53 1.00 20
TA/R -2.23 2.53 3.52 1.00 0.25
TK 0.15 1.09 4.24 1.00 0.65
TK/R -1.56 1.97 3.49 1.00 0.35
RA -0.03 1.66 4.42 1.00 0.51
RA/R -1.69 2.34 3.68 1.00 0.33
RA/H 2.86 3.02 6.43 1.00 0.03
RA/RH -1.37 1.54 3.53 1.00 0.37
SM -0.03 1.05 4.39 1.00 0.74
SM/R -1.57 1.98 3.50 1.00 0.35
SM/H 1.73 2.07 6.07 1.00 0.18
SM/RH -1.42 1.78 3.53 1.00 0.34
SM/H(2v) 6.45 6.78 10.14 1.00 0.00
SM/RH(2v) -2.33 241 4.46 1.00 0.17
SM/H(2) 4.27 4.40 7.17 1.00 0.00
SM/RH(2) -1.30 1.43 3.63 1.00 0.41




Table 3. Simulation results for Sector A, Y= WAGES. Values in brackets for 2-sigma coverage are obtained by combining robustified predictors with variance
estimates associated with corresponding non-robustified predictors.

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
SRSWOR design

EE 3.09 55.18 42.57 0.72 0.29
RE 6.87 31.14 22.57 0.86

TA 1.96 24.89 23.99 0.96 0.55
TA/R -0.17 20.09 20.71 0.93 0.60
TK 28.76 45.46 32.01 0.98 0.40
TK/R 12.20 26.98 25.30 0.98 0.59
RA 5.26 33.55 31.64 0.93 0.55
RA/R -0.20 25.38 25.89 0.90 0.64
SM 50.48 104.23 54.15 0.98 0.36
SM/R 12.24 27.03 24.73 0.98 0.58

SizeSTRS design / Stratified predictors

EE 0.51 14.05 12.74 0.87 0.36
RE 1.03 12.23 9.46 0.89

TA -6.32 11.38 11.03 0.85 0.32
TA/R -6.75 11.08 11.08 0.82 0.33
TK 2.47 12.71 12.87 0.96 0.50
TK/R -2.00 10.11 12.47 0.93 0.47
RA 1.68 12.25 13.98 0.94 0.47
RA/R -2.52 10.54 12.84 0.91 0.42
SM 7.75 32.90 19.21 0.96 0.48
SM/R -1.74 10.37 12.98 0.93 0.47




Table 3 (continued)

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio

Dominance

SizeSTRS design / Unstratified predictors
RE/stratum weighted 0.31 10.80 9.83 0.91 .
RE/unweighted -18.60 18.97 4.45 0.01 0.08
TA -12.75 13.65 7.37 0.63 0.18
TA/R -12.15 12.83 6.47 0.58  (0.68) 0.20
TK -3.74 8.17 9.18 0.88 0.58
TK/R -1.97 9.05 6.49 0.79  (0.85) 0.40
RA -7.94 10.15 8.28 0.81 0.41
RA/R -9.38 10.41 6.66 0.75  (0.81) 0.34
RA/H -0.84 9.37 10.65 0.95 0.58
RA/RH -5.26 7.81 8.04 091  (0.95) 0.52
SM -1.66 17.19 11.88 0.87 0.54
SM/R -8.47 9.54 6.54 0.77  (0.85) 0.36
SM/H 4.54 51.58 17.52 0.91 0.46
SM/RH -7.02 8.41 7.01 0.85  (0.91) 0.44
SM/H(2v) -0.28 10.13 11.43 0.96 0.57
SM/RH(2v) -5.32 7.87 8.12 091  (0.95) 0.52
SM/H(2) -0.15 12.82 13.05 0.96 0.57
SM/RH(2) -5.25 7.81 8.05 092  (0.96) 0.53
SYSPPS design

RE/pi-weighted -0.38 13.67 7.91 0.86 .
TA -10.90 11.97 7.64 0.73 0.16
TA/R -10.56 11.30 6.64 0.71  (0.79) 0.13
TK -2.75 7.26 8.67 0.86 0.48
TK/R -6.75 8.05 6.85 0.84  (0.86) 0.27
RA -4.11 8.07 8.74 0.90 0.44
RA/R -6.32 8.10 7.09 0.85  (0.88) 0.35
RA/H -2.59 8.20 9.39 0.89 0.38
RA/RH -5.08 7.70 7.98 0.89  (0.90) 0.40
SM -2.56 7.86 9.30 0.86 0.39
SM/R -6.69 8.06 6.99 0.84  (0.86) 0.27
SM/H -3.44 13.35 9.68 0.88 0.36
SM/RH -5.61 7.95 8.00 0.88  (0.89) 0.37
SM/H(2v) -2.61 10.21 12.31 0.90 0.33
SM/RH(2v) -4.68 8.79 9.92 090  (0.92) 0.36
SM/H(2) -1.65 10.09 10.60 0.91 0.38
SM/RH(2) -4.68 7.81 8.37 0.90  (0.91) 0.42




Table 3 (continued)

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
100 best “overbalanced PPSSYS samples
RE/pi-weighted 2.25 5.28 7.74 1.00 .
TA -7.14 7.51 6.90 0.98 0.25
TA/R -7.78 7.96 5.88 0.94 0.20
TK -0.43 317 7.59 1.00 0.55
TK/R -4.70 5.09 5.93 0.98 0.33
RA -1.62 3.82 7.83 1.00 0.47
RA/R -5.23 5.78 6.38 0.98 0.30
RA/H 1.54 5.56 9.51 1.00 0.40
RA/RH -2.76 3.71 7.17 1.00 0.46
SM -0.40 3.52 7.95 1.00 0.53
SM/R -4.74 5.13 5.96 0.98 0.33
SM/H 0.42 8.72 11.18 1.00 0.26
SM/RH -4.55 5.32 7.33 0.98 0.32
SM/H(2v) 3.15 8.27 12.77 1.00 0.10
SM/RH(2v) -2.34 3.85 8.86 1.00 0.56
SM/H(2) 2.57 4.24 9.31 1.00 0.40
SM/RH(2) -1.66 3.01 7.32 1.00 0.60




Table 4. Simulation results for Sector B, Y= EMP.

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
SRSWOR design

EE -0.07 38.01 31.73 0.81 0.23
RE 2.28 14.93 11.78 0.90

TA -11.33 17.63 13.46 0.85 0.43
TA/R -1.79 11.33 11.85 0.93 0.59
TK 2.74 15.14 14.84 0.95 0.47
TK/R 3.55 11.97 12.13 0.95 0.59
RA 1.30 15.38 15.37 0.93 0.45
RA/R 3.49 13.88 14.14 0.93 0.56
SM 2.60 15.85 15.56 0.95 0.45
SM/R 3.72 12.12 12.12 0.95 0.58

SizeSTRS design / Stratified predictors

EE -0.31 11.86 11.18 0.90 0.29
RE -0.16 7.41 6.43 0.93

TA -7.92 10.55 7.89 0.84 0.26
TA/R -3.46 7.13 8.27 0.95 0.46
TK 1.86 7.86 8.59 0.98 0.44
TK/R 0.29 6.33 8.44 0.98 0.56
RA -0.44 7.76 8.35 0.97 0.45
RA/R 0.24 6.62 8.54 0.98 0.58
SM 0.87 8.16 8.81 0.98 0.41
SM/R 0.24 6.43 8.41 0.98 0.57




Table 4 (continued)

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
SizeSTRS design / Unstratified predictors

RE/stratum weighted -0.26 7.30 6.57 0.94

RE/unweighted -9.34 9.99 7.38 0.89 0.17
TA -9.34 10.66 7.10 0.80 0.20
TA/R -3.12 5.28 6.83 0.99 0.56
TK 242 5.97 7.21 1.00 0.56
TK/R 0.88 4.25 6.58 1.00 0.64
RA -3.69 6.64 8.62 0.99 0.46
RA/R -2.50 4.83 8.23 1.00 0.60
RA/H 0.01 7.54 8.39 0.97 0.42
RA/RH 0.90 5.48 7.17 0.99 0.58
SM -0.32 5.63 7.17 0.99 0.57
SM/R 0.62 4.21 6.50 1.00 0.66
SM/H 0.17 8.89 9.71 0.99 0.44
SM/RH -0.08 4.54 7.50 1.00 0.66
SM/H(2v) -0.06 6.89 7.89 0.97 0.47
SM/RH(2v) 3.46 6.33 7.84 0.99 0.51
SM/H(2) 0.05 7.34 8.34 0.97 0.45
SM/RH(2) 0.56 4.95 7.05 0.99 0.62

SYSPPS design

RE/pi-weighted -0.03 6.06 5.98 0.95

TA -8.13 9.86 7.01 0.83 0.23
TA/R -2.08 4.23 6.34 1.00 0.62
TK 231 6.30 7.07 1.00 0.51
TK/R 1.27 4.00 6.11 0.99 0.61
RA -2.92 7.40 8.60 0.99 0.37
RA/R -0.97 4.36 7.51 1.00 0.59
RA/H -0.20 7.35 7.76 0.98 0.25
RA/RH 0.83 4.90 6.75 1.00 0.51
SM -0.12 5.82 6.98 1.00 0.52
SM/R 1.14 3.98 6.19 0.99 0.62
SM/H -0.33 8.57 9.11 0.99 0.46
SM/RH 0.29 4.59 7.42 1.00 0.55
SM/H(2v) -0.16 8.14 8.50 0.98 0.22
SM/RH(2v) 0.08 5.21 7.46 1.00 0.48
SM/H(2) -0.10 8.15 8.17 0.98 0.21
SM/RH(2) 0.91 5.00 6.77 1.00 0.50




Table 4 (continued)

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
100 best “overbalanced PPSSYS samples
RE/pi-weighted -2.10 6.75 5.96 0.96 .
TA -10.46 11.66 7.07 0.65 0.17
TA/R -3.98 4.94 6.34 1.00 0.73
TK -0.45 5.74 7.10 1.00 0.64
TK/R 0.50 3.67 6.24 1.00 0.64
RA -5.82 9.49 8.80 1.00 0.36
RA/R -2.09 4.07 7.30 1.00 0.81
RA/H -3.50 7.28 7.39 0.96 0.30
RA/RH -1.72 5.37 6.87 1.00 0.59
SM -2.36 6.67 7.18 1.00 0.58
SM/R 0.24 3.57 6.27 1.00 0.64
SM/H -1.26 8.55 9.07 1.00 0.46
SM/RH -2.01 4.73 7.13 1.00 0.75
SM/H(2v) -3.83 7.72 8.01 0.91 0.29
SM/RH(2v) -3.56 7.14 7.71 1.00 0.34
SM/H(2) -4.20 7.80 7.76 0.91 0.29
SM/RH(2) -1.69 5.52 6.93 1.00 0.56
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Table 5. Simulation results for Sector B, Y= WAGES.

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
SRSWOR design

EE 0.40 38.73 33.32 0.79 0.40
RE 5.63 30.91 23.48 0.87

TA -23.67 30.84 19.96 0.66 0.41
TA/R -16.40 28.27 23.42 0.77 0.47
TK 12.42 30.62 28.48 0.96 0.54
TK/R 11.56 30.30 30.66 0.95 0.55
RA 5.23 31.79 29.92 0.89 0.47
RA/R 5.34 32.06 30.91 0.89 0.50
SM 9.94 29.93 28.98 0.95 0.55
SM/R 7.66 28.53 27.90 0.94 0.58

SizeSTRS design / Stratified predictors

EE 0.14 16.26 16.35 0.91 0.38
RE 0.27 13.05 12.62 0.93

TA -21.77 24.37 12.90 0.57 0.18
TA/R -18.16 21.68 15.68 0.71 0.22
TK 2.15 15.02 16.97 0.96 0.45
TK/R 2.23 15.79 21.93 0.97 0.45
RA -0.53 13.67 16.13 0.95 0.46
RA/R -1.78 13.60 17.61 0.95 0.45
SM 0.97 15.39 17.51 0.96 0.41
SM/R -1.18 14.16 18.39 0.95 0.44
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Table 5 (continued)

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
SizeSTRS design / Unstratified predictors
RE/stratum weighted 0.14 12.96 13.01 0.94 .
RE/unweighted -25.63 26.78 13.02 0.51 0.09
TA -27.71 28.64 10.11 0.23 0.08
TA/R -24.87 26.08 11.00 0.39 0.11
TK 0.82 11.04 14.48 0.98 0.58
TK/R 0.69 13.55 20.69 0.96 0.48
RA -13.97 16.85 14.60 0.89 0.31
RA/R -13.69 16.46 14.13 0.88 0.32
RA/H -2.12 14.05 15.76 0.93 0.45
RA/RH -4.04 12.90 14.80 0.94 0.50
SM -3.98 10.95 13.41 0.96 0.56
SM/R -5.64 11.29 13.21 0.95 0.53
SM/H -8.27 16.50 16.89 0.89 0.34
SM/RH -10.41 14.94 15.23 0.90 0.35
SM/H(2v) -2.53 12.84 14.80 0.94 0.50
SM/RH(2v) -3.24 11.83 14.44 0.96 0.53
SM/H(2) -3.56 13.64 15.47 0.93 0.45
SM/RH(2) -6.00 12.83 14.44 0.92 0.46
SYSPPS design
RE/pi-weighted 0.15 11.32 11.50 0.97 .
TA -22.47 24.25 10.66 0.43 0.12
TA/R -19.13 21.31 11.45 0.64 0.16
TK 6.12 12.47 14.76 0.99 0.46
TK/R 291 10.33 14.35 0.99 0.56
RA -4.97 12.38 15.84 0.99 0.44
RA/R -4.41 11.14 15.46 0.99 0.48
RA/H -0.72 10.19 14.73 0.97 0.52
RA/RH -1.40 9.53 14.24 0.98 0.59
SM 1.26 10.78 13.74 0.99 0.56
SM/R 0.41 9.97 13.76 0.99 0.56
SM/H -4.48 15.53 17.72 0.97 0.29
SM/RH -5.31 12.45 16.62 0.97 0.35
SM/H(2v) -1.23 10.79 16.03 0.96 0.49
SM/RH(2v) -2.42 9.90 14.81 0.97 0.54
SM/H(2) 0.47 10.17 15.03 0.97 0.56
SM/RH(2) -0.60 9.47 14.32 0.98 0.59
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Table 5 (continued)

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
100 best “overbalanced PPSSYS samples
RE/pi-weighted 1.52 11.66 11.93 1.00 .
TA -23.36 24.02 11.10 0.42 0.11
TA/R -16.98 17.86 11.66 0.85 0.16
TK 10.62 14.03 16.11 1.00 0.28
TK/R 4.01 7.83 14.39 1.00 0.63
RA -10.59 14.99 14.74 1.00 0.18
RA/R -7.72 11.91 14.68 1.00 0.21
RA/H -4.00 8.04 13.16 1.00 0.43
RA/RH -2.39 5.51 13.86 1.00 0.63
SM -0.02 9.57 13.69 1.00 0.32
SM/R 0.73 6.83 13.94 1.00 0.52
SM/H -0.59 23.39 20.95 1.00 0.13
SM/RH -4.05 11.14 20.41 1.00 0.31
SM/H(2v) -5.06 8.65 14.09 1.00 0.36
SM/RH(2v) -4.61 6.74 14.69 1.00 0.40
SM/H(2) -4.72 6.60 13.39 1.00 0.48
SM/RH(2) -1.81 5.15 13.60 1.00 0.67
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Table 6. Predictors achieving minimum % Relative RMSE for each Design/Population

Population A/Y=EMP A/Y=WAGES B/Y=EMP B/Y=WAGES

Design Predictor minimum % Predictor minimum % Predictor minimum % Predictor minimum %
Rel RMSE Rel RMSE Rel RMSE Rel RMSE

SRSWOR TA/R 12.30 TA/R 20.09 TA/R 11.33 TA/R 28.27

SizeSTRS TA/R 4.19 TK/R 10.11 TK/R 6.33 RE 13.05

Stratified

SizeSTRS SM/RH 2.18 RA/RH 7.81 SM/R 4.21 SM 10.95

Unstratified SM/RH(2)

SYSPPS TK 2.87 TK 7.26 SM/R 3.98 SM/RH(2) 9.47

Over-balanced SM 1.05 SM/RH(2) 3.01 SM/R 3.57 SM/RH(2) 5.15
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Table 7. Predictors achieving Near Best values (< 1.1 minimum value) of % Rel RMSE for 3 Designs

Population A/Y=EMP A/Y=WAGES B/Y=EMP B/Y=WAGES
Design Predictor % Rel RMSE Predictor % Rel RMSE Predictor % Rel RMSE Predictor % Rel RMSE
STRS SM/RH 2.18 RA/RH 7.81 SM/R 4.21 SM 10.95
Unstratified TK/R 2.25 SM/RH(2) 7.81 TK/R 4.25 TK 11.04
SM/R 2.25 SM/RH(2v) 7.87 SM/RH 4.54 SM/R 11.29
RA/RH 2.48 SM/RH 8.41 SM/RH(2v) 11.83
SYSPPS TK 2.87 TK 7.26 SM/R 3.98 SM/RH(2) 9.47
SM/RH 2.92 RA/RH 7.70 TK/R 4.00 RA/RH 9.53
RA/R 3.00 SM/RH(2) 7.81 TA/R 4.23 SM/RH(2v) 9.90
RA/RH 3.05 SM 7.86 RA/R 4.36 SM/R 9.97
RE/pi- 3.07 SM/RH 7.95 SM/H 10.17
weighted RA/H 10.19
TK/R 3.09 TK/R 10.33

SM/R 3.09

Overbalanced SM 1.05 SM/RH(2) 3.01 SM/R 3.57 SM/RH(2) 5.15
TK 1.09 TK 3.17 TK/R 3.67 RA/RH 5.51
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Table 8. Overbalanced Samples. Predictors with % Rel RMSE < 1.1 of minimum % Rel RMSE of predictors based on both SYSPPS and STRS/unstratified
designs (percentages of minimum % Rel RMSE shown). Entries in square brackets lie outside the tolerance range, but represent the next best performers.

A/Y=EMP A/Y=WAGES B/Y=EMP B/Y=WAGES
Predictor % of min Predictor % of min Predictor % of min Predictor % of min
RMSE RMSE RMSE RMSE
SM 48 SM/RH(2) 41 SM/R 90 SM/RH(2) 54
TK 50 TK 44 TK/R 92 RA/RH 58
RE/pi-weighted 59 SM 48 RA/R 102 SM/H(2) 70
SM/RH(2) 66 RA/RH 51 [RA/RH] [135] SM/RH(2) 71
RA/RH 71 RA 53 [SM/RH(2)] [139] SM/R 72
RA 76 SM/RH(2v) 53 TK/R 83
SM/RH 82 SM/H(2) 58 RA/H 85
TK/R 90 TK/R 70 SM/H(2v) 91
SM/R 91 SM/R 71 SM 101
SM/H 95 RE/pi-weighted 73
RA/R 107 SM/RH 73
RA/H 77
RA/R 80
TA 103
TA/R 110
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Figure 1: The sector A populations from the Monthly Wages and Salaries Survey
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Figure 2: The sector B populations from the Monthly Wages and Salaries Survey
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Figure 3: Zero order overbalance (x axis) plotted against second order overbalance (y axis) for the 1000 samples selected via PPSSYS.
Overbalance calculations exclude certainty units. Note that in the A population, no sample achieved both zero and second order

overbalance. Points indicated in red correspond to the 100 best overbalanced PPSSY'S samples.
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