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1. Introduction

Given a population of N units, we wish to predict the finite population total ∑
=

=
N

i
iyT

1

 of a

variable of interest Y, based on a sample s of size n from that population. In addition to the

sampled values of Y, we have auxiliary information in the form of population values xi, i = 1, .., N

of a covariate X. The standard approach to this task (see Royall, 1982) assumes a linear

relationship between Y and X. Often, however, there is good reason to think that the relationship

between Y and X themselves is not linear, but linear in another scale of measurement, so that we

have

εββ ++= )()( 10 XgYh , (1)

where β0,  β1 are unknown parameters, we allow for a transform of X (possibly X itself), and the

errors ε have mean 0 and variance 2σ . The question then becomes: how do we make an inference

concerning T, based on the available data, using this model? Allowing for transformation of X

does not of course by itself carry us beyond the standard linear model; the essential difficulty

posed by (1) is in handling the transform of the dependent variable Y. In the present paper we

focus mainly on the case where h is the (natural) logarithm log, and we also assume that g(x) =

log(x), so that the special case of interest is the log-log model

εβ +′= �Z)log(Y , (2)

where ))log(1( X=′Z  and )'( 10 βββ = .

The use of transformations in inference has a long history, and has been much studied

(e.g. Deming 1984 [original publication 1943], Carroll and Ruppert 1988), but not a great deal

has been done in the sampling context. Chen and Chen (1996) considered an approach based on

empirical likelihood, restricting its use to attainment of confidence intervals. Their results

improved on earlier coverage attained using robust variance estimators based on a linear model
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(Royall and Cumberland, 1985). Karlberg (2000a, 2000b) assumed the errors ε  were normal (so

that Y has a lognormal distribution) and developed predictors with negligible biases. We review

predictors that assume lognormality in Section 2. Section 3 introduces two new predictors of

total: a SMEARING predictor, based on ideas in Duan (1983), and a ratio-adjusted-for-sample-

total (RAST) predictor. Approximations to their biases and variances are given; the respective

jackknife variance estimators are approximately unbiased for these variances. Vulnerability to

data values that deviate from the model is noted, and modifications that improve the robustness

of the proposed methods are described. Section 4 describes an extensive empirical study,

evaluating several of the approaches proposed in this paper. Section 5 states conclusions.

2. Predictors based on the lognormal model

A too simple response to model (2) is to use optimal linear methods to get an (ordinary least

squares) estimate bols of β , back-transform to get predicted values of Y at non-sample values,

and use these to predict ∑=
r ir yT , the non-sample component of T. Here r denotes the set of

non-sampled population units. This gives

∑∑∑∑∑ ′− +=′+=+=
rs ir olsis iArs iA

olsieyhyTyT bzbz )(ˆˆ 1
, ,

the naïve back-transformation predictor of T.

That this is not very satisfactory is readily seen. Suppose the errors are normally

distributed, ε ~ N(0,σ2). Then Y has a lognormal distribution, and we have 2/2

)|( σβ +′= ZeXYE ,

so that ( ) ∑ +′=
rr

ieTE 2/2σβz . AT̂  will be biased low, since E ˆ T r,A( ) = e ′ z i β + ′ z i var b ols( )z i / 2

r
∑ , and

′ z i var bols( )z i is of lower order than 2σ .

This suggests as remedy, what might be called the naïve lognormal predictor,
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∑∑ +′+=
r

s

s iB
olsieyT 2/2ˆ bz ,

where ( )∑ ′−−= −

s olsiiyns 212 )(log)2( bz . However, this is also biased for T:
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Here Zs denotes the matrix of sample values of Z. If ⎟⎟
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where issiiia zZZz 1)( −′′= , to get the first order bias corrected lognormal predictor

∑∑ +′−+=
r

s
is iC

olsiekyT 2/1 2ˆˆ bz .

Karlberg (2000a, 2000b) employs something very close to this:

∑∑∑∑ +′−
−−+′

+=+=
r

s
is ir

n
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+

. Under the lognormal assumption, this predictor has O(n-2) bias, and can

be expected to perform well, provided the lognormal model holds, or nearly holds.
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3. The RAST and SMEARING Predictors

The preceding transformation-based predictors use bias adjustments that assume a normal

distribution for the transformed variable. We introduce two new predictors that escape this

restriction and have other desirable properties.

3.1 Ratio Adjustment by Sample Totals (RAST)

A method of predicting the non-sample total Tr of Y  should be able to exactly recover the

(known) sample total of this variable. If it does, then the method yields an unbiased predictor of

this sample total, and we can anticipate that it will also give a close to unbiased predictor of Tr,

and hence of T. Let iŷ  denote the predicted value of yi under the method of interest. Then this

requirement translates into the condition ∑∑ =
s is i yy ˆ .

None of the lognormal predictors discussed in the previous section possess this property.

However, for an arbitrary estimator )( 10 ′= bbb  of β, it is not difficult to modify the naïve back-

transformation predictor so that it does. Put ∑∑ ′−=
ss i

iey bzb lnlog)(γ  and def ine

))(( 10
* ′+= bb bb γ . It is easy to see that ∑∑ =′

s is
ye i *bz . The resulting predictor of T is

∑∑
∑∑∑∑ +=+= +

r

b
i

s

b
i

s i

s ir

xbb

s iRAST x
x

y
yeyT i 1

1

*
1

*
0 lnˆ , (3)

which we term the Ratio Adjustment by Sample Total (RAST) predictor. More generally, we can

consider using weighted sample sums in the numerator and denominator of the second term.

Even more general, for the model (1), is

( )
( )∑∑

∑∑ ′
′

+= −
− r i

s ii

s ii

s iRAST h
hw

yw
yT bz

bz
1

1
ˆ . (4)

We assume the weights wi when normalized to be of order n-1
.
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3.2 The SMEARING Predictor

For predicting a Y-value at Z, where Y obeys the model (2), Duan (1983) suggested estimating

∫ +′= )()|( εεβ dFeYE ZZ  by ∑ +′−=
s

RiolsenYE bZZ 1)|(ˆ , where the Ri are the sample residuals from

the ordinary least squares (ols) fit of ln (yi) on zi. For an arbitrary estimator )( 10 ′= bbb  of β this

leads naturally to the corresponding SMEARING predictor of the population total:

ˆ T SMEAR = yi +
s

∑ ˆ E (yi | z i)r
∑

= yi +
s

∑ n−1 e ′ z i b +Ri

s
∑

r
∑

= yi +
s

∑ xi
b1

r
∑( ) n−1 yi

xi
b1s

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .

(5)

Observe that for the log-log model, the RAST predictor in (3) is a ratio of means estimator, and

the SMEARING predictor in (5), a mean of ratios estimator, in the auxiliary 1bx . Again we can

easily extend this to a weighted version. The generalization for the model (1) is

ˆ T SMEAR = yis
∑ + wih

−1 ′ z jb + Ri( )
i∈s

∑
j ∈r

∑ (6)

where the weights wi add to 1 and are of order n-1
.

3.3 Biases

3.3.1 Bias of the RAST Predictor

We consider first the log-log model (2). One readily sees that

E Tr( ) = eβ 0 E eε( ) xi
β1

r
∑ . (7)

Assume b = β + Op n−1/ 2( ) . The non-sample part the RAST predictor (3) can then be written

ˆ T r,RAST  = 
wie

β 0 xi
β1eε i xi

β1 xi

Op n −1/2( )
r

∑
s

∑
wixi

β1 xi

Op n −1/2( )
s

∑
 = 

wie
β 0 xi

β1eε i xi
β1

r
∑

s
∑

wixi
β1

s
∑

1+ Op n−1/ 2( )( )
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with expectation E ˆ T r,RAST( ) = eβ 0 E eε( ) xi
β1

r
∑ 1+ O n−1/ 2( )( ) , so that the RAST predictor (3) for the

log transform is almost unbiased under (1). Using second order Taylor expansions of 1b
ix , we find

that the multiplier 1+ Op n−1/ 2( )( ) ≈1+ A b1 − β1( ) + B b1 − β 1( )2
, where A is a constant and

B = −
wixi

β1 log xi( )
s

∑
wixi

β1

s
∑

xi
β1 log xi( )

r
∑

xi
β1

r
∑

+
1

2

xi
β1 log xi( )( )2

r
∑

xi
β1

r
∑

−
1

2

wixi
β1 log xi( )( )2

s
∑

wixi
β1

s
∑

.

We note that, under “weighted balance” (see below) the last two terms of B will tend to cancel,

and the RAST predictor will have a negative O(Nn-1) bias, provided enough of the xi exceed 1.

The bias of the generalized RAST predictor (4) is not in general necessarily of low order,

even under (1). However, under weighted balance, it is almost unbiased, even if the model (1)

does not hold, as the following development shows.

We suppose the values of X in the population can be characterized by a density dP(x), and

the sample values by a density ds(x). If the sample fraction is small, then the non-sample density

dr(x) approximates dP(x). Suppose also the weights wi derive from a function w(x). Then we say

the sample has approximate weighted balance if w(x)ds(x) ∝ dP(x). We add the qualifier

“approximate” since these functions are smooth approximations to the granular reality. For

further discussion of weighted balance, and methods for achieving it, see Valliant et al. (2000,

Chapter 3).

Now suppose the working model is h yi( ) = ′ z iβ+ εi , with εi ~ 0,σ 2( ) , with y i’s

independent, but the truth is

g yi( ) = m xi( ) + v xi( )1/ 2
ηi, (8)

 with ηi ~ 0,τ 2( ), again with yi’s independent. Then

E Tr( ) = E g−1 m xi( ) + v xi( )1/ 2
ηi( ){ }r

∑ = Ω xi( )
r

∑ ,
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with Ω xi( ) ≡ E g−1 m xi( ) + v xi( )1/ 2
ηi( ){ }. We can therefore write E Tr( ) ≈ N − n( ) Ω x( )∫ dr x( )dx .

On the other hand, for the weighted RAST predictor given by ˆ T r,RAST = h−1 ′ z ib( )
r

∑
wiyis

∑
wih

−1 ′ z ib( )
s

∑
,

we have, for n, N large,

E ˆ T r,RAST( ) ≈ E h−1 ′ z ib( ){ }
r

∑
wiE yi( )

s
∑
wiE h−1 ′ z ib( ){ }

s
∑

= Ψ xi( )
r

∑
wiE yi( )

s
∑

wiΨ xi( )
s

∑
,

where we have set Ψ(xi) = E h−1 ′ z ib( )( ). We can write

E ˆ T r,RAST( ) ≈ N − n( ) Ψ x( )∫ dr x( )dx
w x( )Ω x( )∫ ds x( )dx

w x( )Ψ x( )∫ ds x( )dx
,

and it is readily seen that this is N − n( ) Ω x( )∫ dr x( )dx ≈ E Tr( ) , under weighted balance, for

dr x( ) ≈ dP x( ) .

3.3.2 Bias of the SMEARING Predictor

For the log-log version (5) of the SMEARING predictor, we find that, to second order,

ˆ T r,SMEAR ≈ eβ 0 wie
ε i xi

β1

r
∑

s
∑ + C b1 − β1( ) + D b1 − β1( )2{ } ,

where C is a constant and

D = − xi
β1 log xi( )

r
∑ wi log xi( )eε i

s
∑ +

1

2
xi

β1 log xi( )( )2

r
∑ wie

ε i

s
∑ +

1

2
xi

β1

r
∑ wi log xi( )( )2

eε i

s
∑ .

The following result is helpful in assessing D.

Lemma. For ai and ui non-negative,

a jj=1

J

∑ bj
2 uii=1

I

∑ + a jj=1

J

∑ uici
2

i=1

I

∑ ≥ 2 a jj=1

J

∑ b j uicii=1

I

∑ .
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This inequality holds trivially for I = J = 1, and can be proved by induction: assuming it holds for

fixed I, J, one shows it holds for I + 1 and J. The expression is symmetric in the i and j terms, so

that, likewise, its holding for any I, J implies it holds for I and J + 1.

Letting 1β
jj xa = , iewu ii

ε= , and bk = ck = log(xk) we see that in general D is positive, so

that SMEARrT ,
ˆ  has a positive bias of order Nn-1.

The general SMEARING predictor (6) will be first order unbiased under model (1). The

jth non-sample term of SMEARrT ,
ˆ  can be written

wi h β0 + β1 x j + εi( ) + δij ′ h β0 + β1 x j + εi( ) + Op δij
2( ){ }

s
∑ ,

where δij = b1 − β 1( ) x j − xi( ) . The expectation of the first term coincides with the expectation of

the jth term of Tr. Duan (1983) has shown that, under mild conditions, the SMEARING predictor

at a point is weakly consistent, and this carries over to the predictor of total.

What if the working model is wrong? As above, let the working model be h yi( ) = ′ z iβ + εi ,

with εi ~ 0,σ 2( ) , and yi’s independent, and suppose the truth is (8), so that, again,

E Tr( ) ≈ N − n( ) Ω x( )∫ dr x( )dx  as in the development after equation (8). As an alternative to the

SMEARING predictor, we consider its “twiced” version with prediction component of the form

˜ T r = ϕ ijs
∑

r
∑ h−1 ′ z j

ˆ β + Ri( ) + w ′ i s
∑ Y ′ i − ϕ i ′ i h

−1 ′ z ′ i 
ˆ β + Ri( )s

∑{ }.,

where the ϕ -weights are positive, add to 1 for each j, and are of order 1/n.

Letting g xi,x j( ) = E h−1 ′ z j
ˆ β + Ri( ){ }, we write its expectation as

E ˜ T r( ) = ϕ ijs
∑

r
∑ g xi,x j( ) + w ′ i s

∑ Ω x ′ i ( ) − ϕ i ′ i g xi,x ′ i ( )
s

∑{ }
≈ N − n( )n ϕ u,v( )g u,v( )∫ ds u( )dr v( )dudv∫
+ n w v( )Ω v( )∫ ds v( )dv − N − n( ) w v( )ϕ u,v( )g u,v( )∫ ds u( )ds v( )d∫ udv .
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This reduces to N − n( ) Ω x( )∫ dr x( )dx ≈ E Tr( ) , if the w-weights are such that

 nw v( )ds v( ) = N − n( )dr v( ). (9)

That is, weighted balance, with the appropriate size adjustment, yields approximate unbiasedness

of the twiced SMEARING estimator, despite mis-specification of the model.

In the simulations described below, we explored “histogram weights”, defined by letting wi

be the number of non-sample units j having ˆ y j − ˆ y i ≤ R n , for si ∈ . This should yield an

approximate version of the weights (9); these weights are like kernel weights in non-parametric

regression estimation; furthermore, by basing them on (tentative) fitted values, the “curse of

dimensionality” would be avoided, were Y dependent on more than one X variable. For the ϕ -

weights, we tried both ni 1=ϕ , referred to as the “plain vanilla” version below, and also ii w=ϕ .

3.4 Variances and Variance Estimation

In the simulation studies described in Section 4 below, we use a jackknife variance estimator to

form confidence intervals. Ignoring lower order terms, we here show the unbiasedness of this

estimator for the variances of the RAST and SMEARING predictors of total. We do this for the

general case, assuming in each case unbiasedness (to low order) of the corresponding predictors,

which holds for the SMEARING predictor under (1), and for the RAST predictor in the log-log

case and in general under favourable weighting structure (see above). We also assume the

sampling fraction is sufficiently small so that var ˆ T r − Tr( ) ≈ var ˆ T r( ).

Then in the case of the RAST predictor, we have

ˆ T r,RAST ≈ wiyis
∑

h−1 β0 + β1xi( )
r

∑
wih

−1 β0 + β1xi( )
s

∑
,
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so that

var ˆ T r,RAST( ) ≈ wi
2 var yi( )

s
∑

h−1 β 0 + β 1xi( )
r

∑
wih

−1 β 0 + β 1xi( )
s

∑

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

2

.

The jackknife variance estimator is vJ ,RAST =
n −1

n
ˆ T r,RAST j[ ] − ˆ T r,RAST( )

2

j ∈s
∑ , where we take

ˆ T r,RAST j[ ] ≈ wiyis− j{ }
∑

h−1 β0 + β1xi( )
r+ j{ }

∑
wih

−1 β0 + β1xi( )
s− j{ }

∑
.

It follows that

ˆ T r,RAST j[ ] − ˆ T r,RAST ≈
h−1 β0 + β1 xi( )

r
∑

wih
−1 β0 + β1 xi( )

s
∑

wiyis− j{ }
∑

w jh
−1 β0 + β1 x j( )
wih

−1 β0 + β1 xi( )
i∈s− j{ }

∑
− w j y j

⎧ 

⎨ 
⎪ 

⎩ ⎪ 

⎫ 

⎬ 
⎪ 

⎭ ⎪ 
.

Under the assumption that RASTT̂  is (nearly) unbiased, we have

E ˆ T r,RAST j[ ] − ˆ T r,RAST( )
2

≈ var ˆ T r,RAST j[ ] − ˆ T r,RAST( )

≈
h−1 β0 + β1 xi( )

r
∑

wih
−1 β0 + β1 xi( )

s
∑

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

2

wi var(yi)s− j{ }
∑

w jh
−1 β0 + β1 x j( )
wih

−1 β0 + β1 xi( )
i∈s− j{ }

∑

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

2

+ w j
2 var(y j )

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

≈
h−1 β0 + β1 xi( )

r
∑

wih
−1 β0 + β1 xi( )

s
∑

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

2

w j
2 var(y j ){ }

since the omitted sum is O(n-1) times the order of w j
2 var y j( ) . The approximate unbiasedness of

RASTJv ,  follows directly from this. For the SMEARING predictor, we take

ˆ T r,SMEAR j[ ] ≈
wih

−1 β0 + β1 xk + Ri( )
i∈s− j{ }

∑
k ∈r+ j{ }

∑
wii∈s− j{ }

∑
.

The argument is then similar to that for the RAST predictor and is omitted.
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3.5 Dealing with outliers

All the predictors developed thus far assume that the linear model (2) for log(Y) in terms of

log(X) fits well, or at least that Y is well behaved with respect to some underlying true model.

However, the reality is that the sample data typically include a substantial number of “special”

values (e.g. zero) and outliers. The logarithmic transformation effectively controls the influence

of raw-scale outliers, but is then susceptible to log-scale outliers (e.g. values near zero). These

values can have a large effect on back-transformed predictions.

In order to control the influence of such outliers, we use robust methods of parameter

estimation. In particular, the simulation study reported on in the next section was carried out

using R (Ihaka and Gentleman, 1996), and we estimated β in (2) using the rlm function, which is

part of the MASS robust statistics library (Venables and Ripley, 1994). We used a biweight

influence function with tuning constant c = 4.685 and calculated the standard deviation s of the

residuals using the MAD estimate output by rlm.

For the RAST and SMEARING predictors, we can go one step further, discounting

outlying terms that enter into the RAST or SMEARING adjustment terms by using the outlier

robust weights {wi}, output by rlm. This leads to robust versions of these predictors such as:

ˆ T RAST
rob = yis

∑ + wiyis
∑

xi
b1

rob

r
∑

wixi
b1

rob

s
∑

,

ˆ T SMEAR
rob = yi +

s
∑ xi

b1
rob

r
∑( ) wi

yi

xi
b1

rob
s

∑ wis
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

where robb1  is the robust estimate of β1 output by rlm.

Thus those sample units that are effectively down-weighted as outliers in the log-scale in

the course of robust estimation of the regression parameters are also down-weighted in the RAST
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and SMEARING adjustments. These weights are not of course the weights described in section

3.3 above to achieve weighted balance. Estimators that incorporate histogram weights will be

codified with an “H”, those that incorporate robust weights, with an “R”. The former (and

twicing, in the case of SMEAR) is meant to deal with global deviations from the working model;

the latter is intended to handle local deviations from the model. It is possible to incorporate both

weights, for example the Twiced Robustified SMEARING estimator:

SM/RH(2):

yis
∑ + Rw ˜ y Oi + wi(yi − Rw ˜ y Oi)s

∑
r

∑
˜ y Oi = exp ˜ α O + ˜ β O log(xi)( )

Rw =
wiyi / ˜ y Ois

∑
wis

∑

where Oα̂  and Oβ̂  are outlier robust estimates and iw  is a histogram weight based on the sample

Oiy~  values.

4. Simulation Study

We carried out an extensive simulation study on four populations of businesses drawn from the

UK’s Monthly Wages and Salaries Survey (MWSS). These were the businesses making up two

sectors of the MWSS sample, labelled A with population size N = 768, and B with N = 1005. For

each sector, we considered two dependent variables Y, wages (WAGES) and number employed

(EMP) at the time of the survey. For each, the dependent variable X was employment as

measured on the UK Inter Departmental Business Register, the sampling frame for the MWSS, at

the time of selection of the MWSS sample. This is denoted Register EMP below. The populations

are represented graphically in Figures 1 and 2. For confidentiality reasons, the actual values have

been re-scaled and the plots do not show a scale. It is readily apparent that the log-log
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transformation yields something close to a homoscedastic linear fit, but with various anomalies

peculiar to each population.

Each population was independently sampled 1000 times using (a) simple random

sampling without replacement (SRSWOR), (b) size stratified random sampling (SizeSTRS), with

size defined by X  = Register EMP, (c) systematic probability proportional to size sampling

(SYSPPS), with X as size variable, and finally (d) restricted “overbalanced” PPSSYS sampling

that give samples that are nearly balanced with respect to inverse X weights (details in the

Appendix.) In all cases sample sizes were n = 50. In the stratified case, we employed 4 strata,

with strata boundaries cutting off approximately equal stratum X-totals. The “top” stratum was

completely enumerated, with SRSWOR for the remaining strata. The sector B allocation was 15,

15, 15, 5, and the sector A allocation, 13,13,12,12.

For all designs, we considered 10 predictors of T. These were the expansion estimator

(EE), the ratio estimator (RE), the naïve back-transform predictor (TA), the Karlberg lognormal

model-based predictor (TK), the RAST predictor (RA), the SMEARING predictor (SM), and

robust versions of the last four, signified by TA/R, TK/R, RA/R and SM/R respectively. In the

case of stratified sampling, we used both stratified versions of these predictors as well as versions

that ignored the strata (i.e. stratification was treated purely as a sampling device). In the latter

case we calculated the across-stratum ratio estimator (RE/stratum weighted) since this is a more

suitable comparator commensurate with “survey practice” for this case. Similarly, for the unequal

probability design SYSPPS, the baseline comparator was the Horvitz-Thompson ratio estimator

(RE/pi-weighted).

Additionally, for STRS we added unstratified versions of the histogram weighted

predictors, namely RA/H and RA/RH, SM/H, SM/RH, SM/H(2), SM/RH(2), SM/H(2v),

SM/RH(2v), where (2) refers to twicing, and “v” to the “plain vanilla” version of the choice of
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ϕ - weights (see above.)  These same additional 8 predictors were also calculated for PPSSYS

and overbalanced samples.

For variance estimation, we used the Jackknife for all transformation-based predictors.

The conventional design-based variance estimator was used for EE, while for RE and RE/Across

we used the robust variance estimator suggested by Royall and Cumberland (1981). Variances

were summed by stratum for the stratified versions of the estimators.

Our measures of simulation performance are given in Table 1. Tables 2 - 5 give the values

of these performance measures for the various predictors under the several sampling schemes for

the four populations. The best values of RMSE and Ratio Dominance (i.e. stochastic dominance

relative to the “usual” ratio estimator for the design, see Table 1) are boldfaced in these tables.

Here “best” means respectively “having RMSE within 10% of the smallest RMSE achieved for a

particular design”, and “Ratio Dominance greater than 50%”, again for the particular design.

Some observations on these results are:

1. Transformation-based predictors should be treated with care. The naïve back-transformed

predictor (TA) was very biased on a number of occasions, while the “unbiased” lognormal

model-based predictor proposed by Karlberg (TK) appeared to be very outlier sensitive

(as indicated by improved performance when robustified.) This sensitivity was shared by

the SMEARING predictor (SM). As anticipated, the RAST predictor (RA) controlled

transformation bias, but was rather inefficient.

2. In contrast, outlier robust versions of transformation-based predictors generally worked

well. In particular the variability of RAST predictor was reduced without an increase in

bias. There were also substantial reductions in both bias and variability for the Karlberg

and SMEARING predictors. Overall, the robust SMEARING predictor worked very well.
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This effect of robustifying seems to hold as well for the “H”-weighted and twiced

predictors.

3. The heteroskedasticity robust standard error estimates used for the various ratio estimators

tended to be biased low, with corresponding undercoverage of associated confidence

intervals. This also applied to the standard errors for the expansion estimators (with or

without stratification). In contrast, jackknife standard errors seemed to be much better.

Their associated coverage was often very good. The exception was for Y = WAGES in the

A population (Table 3), where the robust unstratified transformation-based predictors

based on the SizeSTRS design appeared to have higher biases, leading to a reduction in

coverage. This was particularly the case for R/non-H predictors. Use of the histogram

weights and twicing (for the SMEARING predictor) improves coverage. In Table 3 we

included the effect on the robustified (R) predictors of using the corresponding non-

robustified variance estimates (these are the figures in parentheses in the 2-sigma

coverage column). This improves coverage, sometimes appreciably, at the cost of a

widening of intervals. This may be a good device in practice. It should be noted that there

is no undercoverage (in fact we have the contrary) when the SYSPPS design is restricted

to only choosing overbalanced samples.

4. Coverage of confidence intervals was uneven. Intervals were often too large, especially in

the case of the unstratified predictors under STRS, and for the overbalanced samples. In

the overbalanced samples particularly, it may be noted that the average size of intervals,

as measured by %Relative Av SE, is about the same as for the PPS samples, despite the

fact that by and large the point predictions have sharply lower RMSE.

5. Good RMSE performance often did not translate into stochastic dominance. However,

outlier robust versions of RAST, SMEARING and Karlberg predictors generally
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dominated the associated ratio estimator. This is brought out in Table 6, which

summarizes the number of times each estimator was best with respect to RMSE and Ratio

Dominance across the four populations.

We now focus on RMSE. Table 6 gives the “winners” for each design/population combination. It

is clear that no single predictor dominates.

6. What is most notable is the impact of sample design. In all cases the RMSE for SRS-

based predictors exceeds that of the STRS/stratified predictors, which in turn exceeds that

of the STRS/unstratified predictors, which is about the same as the PPS-based predictors,

which, finally, exceeds the RMSE under overbalanced sampling.

7. The table also suggests that the use of the histogram weights and twicing is more effective

in the Y = WAGES populations than in the Y = EMP populations. This makes sense since

the latter provides a cleaner linear fit on the log scale. (In fact, the hypothesis of a zero

quadratic term in the log-log model is convincingly rejected for the A/Y=WAGES

population.)

Restricting attention to just the three better designs, we give all the “near winners” in Table 7,

that is, those predictors whose RMSE was within 1.1 of the smallest for the given

design/population. Again, robustified predictors dominate and twicing and use of histogram

weights lead to better results for the messier WAGES populations, and we also note:

8. Robust SMEARING (SM/R) is best for the conventional sample designs, in the sense of

appearing most often (3 times for STRS/Unstratified and 3 times for SYPPS) but TK/R

and RA/RH are close behind (both 2 and 3 times, respectively.)

9. The conventional expansion and ratio estimators and the naïve predictor TA are not

contenders, although RE/pi-weighted and TA/R each appear once.
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Some further insight is given by Table 8, which lists all predictors based on the overbalanced

sample design which have RMSE within 1.1 of the smallest RMSE achieved under the

conventional designs (SYSPPS or STRS/Unstratified) for each population. The percentage of the

minimal RMSE is also given in the table. We note:

10. There are serious gains available from narrowing the scope of the sampling design to

selection of overbalanced samples. Except for the “too nice” B/Y=EMP population, many

predictors are more efficient than the best that the conventional designs can offer. For

A/Y=WAGES only SM/H and SM/H(2v) are out of the running.

11. Except for the B/Y=EMP population, the estimators SM/RH(2), RA/RH and TK/R are most

consistently near best, in that order, in the overbalanced samples. Only the last is good for

all 4 populations, though.

5. Summary

Using models for transformed data to handle non-linearity can bring gains in the prediction of

finite population totals. However, outliers in the transformed scale can have a much more

dramatic effect on transformation-based predictors than raw-scale outliers have on linear

predictors. Our empirical results suggest that the robustified SMEARING, RAST, and Karlberg

predictors are the preferred predictors for the log-log model (2), with further modification using

twicing and histogram weights, where the log-log model possibly holds less strictly. In particular,

it seems that SM/R, and SM/RH(2) in the messier WAGES populations, are the most consistently

reliable, with TK/R and RA/RH not far behind. Efficiencies depend strongly on the sample

design. A jackknife variance estimator does a reasonable job of estimating the precision of

estimators, although further work on variance estimation is desirable to reduce instances of below

nominal coverage as well as too long interval length. The RAST and SMEARING estimators can
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also be applied to transform models other than the logarithmic transform, and the theoretical

analysis reported in this paper leads us to anticipate good results. Empirical testing of their

behaviour in this case, however, remains for further investigation.
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Appendix – Weighted Balance

On the original scale of X and Y it is clear that variances of Y given X increase sharply with X. If

we suppose that they increase proportionally to 2X , then, in standard non-transformed

modelling, weighted balance, with weights inversely proportional to X, gives protection against

misspecification of the model, and also lowest variances for estimates of totals (Valliant, et al.

2000). This particular form of balance has been referred to in the literature as overbalance, and is

defined by

xi
−1xi

K

s
∑

n
=

xi
K

P
∑

xiP
∑

,

or, equivalently,

xi
K

P
∑

xiP
∑

xiP
∑

xi
K
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∑

n−1 xi
K−1

s
∑( ) −1
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⎣ 
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⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= 0 ,

for K = 0, 2, 3,… etc. SYSPPS sampling with X size variable aims at overbalance, but does not

actually achieve it for most samples. Figure 3 indicates the extent to which samples selected via

this design deviated from overbalance for the A and B populations. In these plots, (deviation

from) K-order overbalance is measured by the term in square brackets above (that is, the relative

difference of the sample moment and the corresponding population ratio), with a value of zero

indicating that a sample is exactly overbalanced at that order. The 100 samples (out of the 1000

actually drawn) with smallest values of 0th order overbalance2 + 2nd order overbalance2  were

taken as defining an overbalanced sampling strategy. Based on the results in Table 8, such a

sampling strategy seems to be a promising way to proceed.
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Table 1. Performance measures used in the simulation study.

Measure Description
% Relative Bias Average simulation error, expressed as a percentage of the target population total.
% Relative RMSE Square root of average squared simulation error, expressed as a percentage of the target population total.
% Relative Av SE Average simulation estimated standard error, expressed as a percentage of the target population total.
2-sigma Coverage Proportion of simulation "2-sigma" confidence intervals that include the target population total.
Ratio Dominance Proportion of times a predictor stochastically dominates (i.e. has smaller absolute simulation error than) the corresponding ratio estimator.

We compared with the simple ratio estimator (RE) for the SRSWOR design, the stratified ratio estimator (RE) for stratified predictors
based on the SizeSTRS design, the across-stratum ratio estimator (RE/stratum weighted) for the unstratified predictors based on the
SizeSTRS design and the inverse pi-weighted ratio estimator (RE/pi-weighted ) for the PPSSYS design.
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Table 2. Simulation results for Sector A, Y = EMP.

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
SRSWOR design

EE 3.82 65.15 48.54 0.72 0.13
RE 0.72 12.38 9.21 0.86 .
TA 0.36 17.44 17.18 0.96 0.33
TA/R 5.58 12.30 11.95 0.97 0.48
TK 13.13 22.61 18.27 0.95 0.28
TK/R 8.95 14.54 12.52 0.95 0.41
RA 1.34 15.53 15.98 0.94 0.37
RA/R 3.96 12.90 13.21 0.93 0.52
RA/H 11.29 20.46 17.31 0.94 0.31
RA/RH 10.56 15.74 13.14 0.94 0.38
SM 14.04 26.30 21.00 0.95 0.29
SM/R 9.12 14.66 12.51 0.95 0.40
SM/H 15.25 27.75 21.67 0.94 0.27
SM/RH 9.62 14.95 12.58 0.94 0.40

SizeSTRS design / Stratified predictors
EE 0.15 9.23 8.66 0.89 0.25
RE 0.11 4.85 3.76 0.89 .
TA -2.52 5.58 5.29 0.94 0.38
TA/R -1.35 4.19 5.06 0.94 0.47
TK 0.73 5.19 5.47 0.98 0.52
TK/R -0.13 4.24 5.26 0.96 0.55
RA 0.24 5.21 5.49 0.97 0.46
RA/R 0.06 4.76 5.58 0.95 0.53
SM 0.82 6.84 6.01 0.97 0.48
SM/R -0.12 4.27 5.28 0.96 0.56



3

Table 2 (continued)

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
SizeSTRS design / Unstratified predictors

RE/stratum weighted 0.03 4.79 4.17 0.93
RE/unweighted -3.64 3.82 2.85 0.97 0.39
TA -4.54 5.17 4.99 0.98 0.27
TA/R -2.15 2.79 3.82 1.00 0.59
TK -0.53 2.59 4.47 1.00 0.68
TK/R -1.29 2.25 3.81 1.00 0.73
RA -1.89 3.47 4.93 1.00 0.59
RA/R -1.80 2.62 4.10 1.00 0.64
RA/H -0.07 3.40 4.81 1.00 0.69
RA/RH -0.59 2.48 4.17 1.00 0.70
SM -1.42 3.53 4.65 1.00 0.60
SM/R -1.29 2.25 3.82 1.00 0.73
SM/H 0.19 6.72 5.62 1.00 0.63
SM/RH -0.93 2.18 3.94 1.00 0.75
SM/H(2v) 0.76 4.43 5.57 1.00 0.54
SM/RH(2v) -1.36 3.22 4.95 1.00 0.59
SM/H(2) -0.03 4.46 5.51 1.00 0.56
SM/RH(2) -0.48 2.65 4.27 1.00 0.67

SYSPPS design
RE/pi-weighted -0.22 3.07 3.15 0.92
TA -4.39 5.45 5.44 0.97 0.21
TA/R -1.70 3.25 4.11 1.00 0.41
TK 0.03 2.87 4.58 1.00 0.59
TK/R -0.79 3.09 4.05 1.00 0.46
RA -1.14 4.03 5.49 1.00 0.47
RA/R -0.87 3.00 4.42 1.00 0.51
RA/H 0.48 3.52 5.18 1.00 0.48
RA/RH -0.06 3.05 4.46 1.00 0.49
SM -1.39 3.32 4.69 1.00 0.47
SM/R -0.81 3.09 4.07 1.00 0.45
SM/H 0.56 3.62 5.22 1.00 0.56
SM/RH -0.10 2.92 4.53 0.99 0.51
SM/H(2v) 2.94 5.87 6.96 0.98 0.35
SM/RH(2v) -2.82 4.58 6.38 1.00 0.28
SM/H(2) 0.39 4.26 5.97 1.00 0.29
SM/RH(2) -0.04 3.31 4.58 1.00 0.44



4

Table 2 (continued)

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
100 best “overbalanced  PPSSYS samples

RE/pi-weighted 0.98 1.29 3.57 1.00 .
TA -2.44 2.69 4.53 1.00 0.27
TA/R -2.23 2.53 3.52 1.00 0.25
TK 0.15 1.09 4.24 1.00 0.65
TK/R -1.56 1.97 3.49 1.00 0.35
RA -0.03 1.66 4.42 1.00 0.51
RA/R -1.69 2.34 3.68 1.00 0.33
RA/H 2.86 3.02 6.43 1.00 0.03
RA/RH -1.37 1.54 3.53 1.00 0.37
SM -0.03 1.05 4.39 1.00 0.74
SM/R -1.57 1.98 3.50 1.00 0.35
SM/H 1.73 2.07 6.07 1.00 0.18
SM/RH -1.42 1.78 3.53 1.00 0.34
SM/H(2v) 6.45 6.78 10.14 1.00 0.00
SM/RH(2v) -2.33 2.41 4.46 1.00 0.17
SM/H(2) 4.27 4.40 7.17 1.00 0.00
SM/RH(2) -1.30 1.43 3.63 1.00 0.41
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 Table 3. Simulation results for Sector A, Y = WAGES. Values in brackets for 2-sigma coverage are obtained by combining robustified predictors with variance
estimates associated with corresponding non-robustified predictors.

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
SRSWOR design

EE 3.09 55.18 42.57 0.72 0.29
RE 6.87 31.14 22.57 0.86
TA 1.96 24.89 23.99 0.96 0.55
TA/R -0.17 20.09 20.71 0.93 0.60
TK 28.76 45.46 32.01 0.98 0.40
TK/R 12.20 26.98 25.30 0.98 0.59
RA 5.26 33.55 31.64 0.93 0.55
RA/R -0.20 25.38 25.89 0.90 0.64
SM 50.48 104.23 54.15 0.98 0.36
SM/R 12.24 27.03 24.73 0.98 0.58

SizeSTRS design / Stratified predictors
EE 0.51 14.05 12.74 0.87 0.36
RE 1.03 12.23 9.46 0.89
TA -6.32 11.38 11.03 0.85 0.32
TA/R -6.75 11.08 11.08 0.82 0.33
TK 2.47 12.71 12.87 0.96 0.50
TK/R -2.00 10.11 12.47 0.93 0.47
RA 1.68 12.25 13.98 0.94 0.47
RA/R -2.52 10.54 12.84 0.91 0.42
SM 7.75 32.90 19.21 0.96 0.48
SM/R -1.74 10.37 12.98 0.93 0.47
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Table 3 (continued)

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio
Dominance

SizeSTRS design / Unstratified predictors
RE/stratum weighted 0.31 10.80 9.83 0.91 .
RE/unweighted -18.60 18.97 4.45 0.01 0.08
TA -12.75 13.65 7.37 0.63 0.18
TA/R -12.15 12.83 6.47 0.58 (0.68) 0.20
TK -3.74 8.17 9.18 0.88 0.58
TK/R -7.97 9.05 6.49 0.79 (0.85) 0.40
RA -7.94 10.15 8.28 0.81 0.41
RA/R -9.38 10.41 6.66 0.75 (0.81) 0.34
RA/H -0.84 9.37 10.65 0.95 0.58
RA/RH -5.26 7.81 8.04 0.91 (0.95) 0.52
SM -1.66 17.19 11.88 0.87 0.54
SM/R -8.47 9.54 6.54 0.77 (0.85) 0.36
SM/H 4.54 51.58 17.52 0.91 0.46
SM/RH -7.02 8.41 7.01 0.85 (0.91) 0.44
SM/H(2v) -0.28 10.13 11.43 0.96 0.57
SM/RH(2v) -5.32 7.87 8.12 0.91 (0.95) 0.52
SM/H(2) -0.15 12.82 13.05 0.96 0.57
SM/RH(2) -5.25 7.81 8.05 0.92 (0.96) 0.53

SYSPPS design
RE/pi-weighted -0.38 13.67 7.91 0.86 .
TA -10.90 11.97 7.64 0.73 0.16
TA/R -10.56 11.30 6.64 0.71 (0.79) 0.13
TK -2.75 7.26 8.67 0.86 0.48
TK/R -6.75 8.05 6.85 0.84 (0.86) 0.27
RA -4.11 8.07 8.74 0.90 0.44
RA/R -6.32 8.10 7.09 0.85 (0.88) 0.35
RA/H -2.59 8.20 9.39 0.89 0.38
RA/RH -5.08 7.70 7.98 0.89 (0.90) 0.40
SM -2.56 7.86 9.30 0.86 0.39
SM/R -6.69 8.06 6.99 0.84 (0.86) 0.27
SM/H -3.44 13.35 9.68 0.88 0.36
SM/RH -5.61 7.95 8.00 0.88 (0.89) 0.37
SM/H(2v) -2.61 10.21 12.31 0.90 0.33
SM/RH(2v) -4.68 8.79 9.92 0.90 (0.92) 0.36
SM/H(2) -1.65 10.09 10.60 0.91 0.38
SM/RH(2) -4.68 7.81 8.37 0.90 (0.91) 0.42
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 Table 3 (continued)

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
100 best “overbalanced  PPSSYS samples

RE/pi-weighted 2.25 5.28 7.74 1.00 .
TA -7.14 7.51 6.90 0.98 0.25
TA/R -7.78 7.96 5.88 0.94 0.20
TK -0.43 3.17 7.59 1.00 0.55
TK/R -4.70 5.09 5.93 0.98 0.33
RA -1.62 3.82 7.83 1.00 0.47
RA/R -5.23 5.78 6.38 0.98 0.30
RA/H 1.54 5.56 9.51 1.00 0.40
RA/RH -2.76 3.71 7.17 1.00 0.46
SM -0.40 3.52 7.95 1.00 0.53
SM/R -4.74 5.13 5.96 0.98 0.33
SM/H 0.42 8.72 11.18 1.00 0.26
SM/RH -4.55 5.32 7.33 0.98 0.32
SM/H(2v) 3.15 8.27 12.77 1.00 0.10
SM/RH(2v) -2.34 3.85 8.86 1.00 0.56
SM/H(2) 2.57 4.24 9.31 1.00 0.40
SM/RH(2) -1.66 3.01 7.32 1.00 0.60
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Table 4. Simulation results for Sector B, Y = EMP.

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
SRSWOR design

EE -0.07 38.01 31.73 0.81 0.23
RE 2.28 14.93 11.78 0.90
TA -11.33 17.63 13.46 0.85 0.43
TA/R -1.79 11.33 11.85 0.93 0.59
TK 2.74 15.14 14.84 0.95 0.47
TK/R 3.55 11.97 12.13 0.95 0.59
RA 1.30 15.38 15.37 0.93 0.45
RA/R 3.49 13.88 14.14 0.93 0.56
SM 2.60 15.85 15.56 0.95 0.45
SM/R 3.72 12.12 12.12 0.95 0.58

SizeSTRS design / Stratified predictors
EE -0.31 11.86 11.18 0.90 0.29
RE -0.16 7.41 6.43 0.93
TA -7.92 10.55 7.89 0.84 0.26
TA/R -3.46 7.13 8.27 0.95 0.46
TK 1.86 7.86 8.59 0.98 0.44
TK/R 0.29 6.33 8.44 0.98 0.56
RA -0.44 7.76 8.35 0.97 0.45
RA/R 0.24 6.62 8.54 0.98 0.58
SM 0.87 8.16 8.81 0.98 0.41
SM/R 0.24 6.43 8.41 0.98 0.57
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Table 4 (continued)

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
SizeSTRS design / Unstratified predictors

RE/stratum weighted -0.26 7.30 6.57 0.94
RE/unweighted -9.34 9.99 7.38 0.89 0.17
TA -9.34 10.66 7.10 0.80 0.20
TA/R -3.12 5.28 6.83 0.99 0.56
TK 2.42 5.97 7.21 1.00 0.56
TK/R 0.88 4.25 6.58 1.00 0.64
RA -3.69 6.64 8.62 0.99 0.46
RA/R -2.50 4.83 8.23 1.00 0.60
RA/H 0.01 7.54 8.39 0.97 0.42
RA/RH 0.90 5.48 7.17 0.99 0.58
SM -0.32 5.63 7.17 0.99 0.57
SM/R 0.62 4.21 6.50 1.00 0.66
SM/H 0.17 8.89 9.71 0.99 0.44
SM/RH -0.08 4.54 7.50 1.00 0.66
SM/H(2v) -0.06 6.89 7.89 0.97 0.47
SM/RH(2v) 3.46 6.33 7.84 0.99 0.51
SM/H(2) 0.05 7.34 8.34 0.97 0.45
SM/RH(2) 0.56 4.95 7.05 0.99 0.62

SYSPPS design
RE/pi-weighted -0.03 6.06 5.98 0.95
TA -8.13 9.86 7.01 0.83 0.23
TA/R -2.08 4.23 6.34 1.00 0.62
TK 2.31 6.30 7.07 1.00 0.51
TK/R 1.27 4.00 6.11 0.99 0.61
RA -2.92 7.40 8.60 0.99 0.37
RA/R -0.97 4.36 7.51 1.00 0.59
RA/H -0.20 7.35 7.76 0.98 0.25
RA/RH 0.83 4.90 6.75 1.00 0.51
SM -0.12 5.82 6.98 1.00 0.52
SM/R 1.14 3.98 6.19 0.99 0.62
SM/H -0.33 8.57 9.11 0.99 0.46
SM/RH 0.29 4.59 7.42 1.00 0.55
SM/H(2v) -0.16 8.14 8.50 0.98 0.22
SM/RH(2v) 0.08 5.21 7.46 1.00 0.48
SM/H(2) -0.10 8.15 8.17 0.98 0.21
SM/RH(2) 0.91 5.00 6.77 1.00 0.50
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Table 4 (continued)

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
100 best “overbalanced  PPSSYS samples

RE/pi-weighted -2.10 6.75 5.96 0.96 .
TA -10.46 11.66 7.07 0.65 0.17
TA/R -3.98 4.94 6.34 1.00 0.73
TK -0.45 5.74 7.10 1.00 0.64
TK/R 0.50 3.67 6.24 1.00 0.64
RA -5.82 9.49 8.80 1.00 0.36
RA/R -2.09 4.07 7.30 1.00 0.81
RA/H -3.50 7.28 7.39 0.96 0.30
RA/RH -1.72 5.37 6.87 1.00 0.59
SM -2.36 6.67 7.18 1.00 0.58
SM/R 0.24 3.57 6.27 1.00 0.64
SM/H -1.26 8.55 9.07 1.00 0.46
SM/RH -2.01 4.73 7.13 1.00 0.75
SM/H(2v) -3.83 7.72 8.01 0.91 0.29
SM/RH(2v) -3.56 7.14 7.71 1.00 0.34
SM/H(2) -4.20 7.80 7.76 0.91 0.29
SM/RH(2) -1.69 5.52 6.93 1.00 0.56
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Table 5. Simulation results for Sector B, Y = WAGES.

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
SRSWOR design

EE 0.40 38.73 33.32 0.79 0.40
RE 5.63 30.91 23.48 0.87
TA -23.67 30.84 19.96 0.66 0.41
TA/R -16.40 28.27 23.42 0.77 0.47
TK 12.42 30.62 28.48 0.96 0.54
TK/R 11.56 30.30 30.66 0.95 0.55
RA 5.23 31.79 29.92 0.89 0.47
RA/R 5.34 32.06 30.91 0.89 0.50
SM 9.94 29.93 28.98 0.95 0.55
SM/R 7.66 28.53 27.90 0.94 0.58

SizeSTRS design / Stratified predictors
EE 0.14 16.26 16.35 0.91 0.38
RE 0.27 13.05 12.62 0.93
TA -21.77 24.37 12.90 0.57 0.18
TA/R -18.16 21.68 15.68 0.71 0.22
TK 2.15 15.02 16.97 0.96 0.45
TK/R 2.23 15.79 21.93 0.97 0.45
RA -0.53 13.67 16.13 0.95 0.46
RA/R -1.78 13.60 17.61 0.95 0.45
SM 0.97 15.39 17.51 0.96 0.41
SM/R -1.18 14.16 18.39 0.95 0.44



12

Table 5 (continued)

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
SizeSTRS design / Unstratified predictors

RE/stratum weighted 0.14 12.96 13.01 0.94 .
RE/unweighted -25.63 26.78 13.02 0.51 0.09
TA -27.71 28.64 10.11 0.23 0.08
TA/R -24.87 26.08 11.00 0.39 0.11
TK 0.82 11.04 14.48 0.98 0.58
TK/R 0.69 13.55 20.69 0.96 0.48
RA -13.97 16.85 14.60 0.89 0.31
RA/R -13.69 16.46 14.13 0.88 0.32
RA/H -2.12 14.05 15.76 0.93 0.45
RA/RH -4.04 12.90 14.80 0.94 0.50
SM -3.98 10.95 13.41 0.96 0.56
SM/R -5.64 11.29 13.21 0.95 0.53
SM/H -8.27 16.50 16.89 0.89 0.34
SM/RH -10.41 14.94 15.23 0.90 0.35
SM/H(2v) -2.53 12.84 14.80 0.94 0.50
SM/RH(2v) -3.24 11.83 14.44 0.96 0.53
SM/H(2) -3.56 13.64 15.47 0.93 0.45
SM/RH(2) -6.00 12.83 14.44 0.92 0.46

SYSPPS design
RE/pi-weighted 0.15 11.32 11.50 0.97 .
TA -22.47 24.25 10.66 0.43 0.12
TA/R -19.13 21.31 11.45 0.64 0.16
TK 6.12 12.47 14.76 0.99 0.46
TK/R 2.91 10.33 14.35 0.99 0.56
RA -4.97 12.38 15.84 0.99 0.44
RA/R -4.41 11.14 15.46 0.99 0.48
RA/H -0.72 10.19 14.73 0.97 0.52
RA/RH -1.40 9.53 14.24 0.98 0.59
SM 1.26 10.78 13.74 0.99 0.56
SM/R 0.41 9.97 13.76 0.99 0.56
SM/H -4.48 15.53 17.72 0.97 0.29
SM/RH -5.31 12.45 16.62 0.97 0.35
SM/H(2v) -1.23 10.79 16.03 0.96 0.49
SM/RH(2v) -2.42 9.90 14.81 0.97 0.54
SM/H(2) 0.47 10.17 15.03 0.97 0.56
SM/RH(2) -0.60 9.47 14.32 0.98 0.59
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Table 5 (continued)

Predictor % Relative Bias % Relative RMSE % Relative Av SE 2-sigma Coverage Ratio Dominance
100 best “overbalanced  PPSSYS samples

RE/pi-weighted 1.52 11.66 11.93 1.00 .
TA -23.36 24.02 11.10 0.42 0.11
TA/R -16.98 17.86 11.66 0.85 0.16
TK 10.62 14.03 16.11 1.00 0.28
TK/R 4.01 7.83 14.39 1.00 0.63
RA -10.59 14.99 14.74 1.00 0.18
RA/R -7.72 11.91 14.68 1.00 0.21
RA/H -4.00 8.04 13.16 1.00 0.43
RA/RH -2.39 5.51 13.86 1.00 0.63
SM -0.02 9.57 13.69 1.00 0.32
SM/R 0.73 6.83 13.94 1.00 0.52
SM/H -0.59 23.39 20.95 1.00 0.13
SM/RH -4.05 11.14 20.41 1.00 0.31
SM/H(2v) -5.06 8.65 14.09 1.00 0.36
SM/RH(2v) -4.61 6.74 14.69 1.00 0.40
SM/H(2) -4.72 6.60 13.39 1.00 0.48
SM/RH(2) -1.81 5.15 13.60 1.00 0.67
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 Table 6. Predictors achieving minimum % Relative RMSE for each Design/Population

Population A/Y=EMP A/Y=WAGES B/Y=EMP B/Y=WAGES
Design Predictor minimum %

Rel RMSE
Predictor minimum %

Rel RMSE
Predictor minimum %

Rel RMSE
Predictor minimum %

Rel RMSE
SRSWOR TA/R 12.30 TA/R 20.09 TA/R 11.33 TA/R 28.27

SizeSTRS
Stratified

TA/R 4.19 TK/R 10.11 TK/R 6.33 RE 13.05

SizeSTRS
Unstratified

SM/RH 2.18 RA/RH
SM/RH(2)

7.81 SM/R 4.21 SM 10.95

SYSPPS TK 2.87 TK 7.26 SM/R 3.98 SM/RH(2) 9.47

Over-balanced SM 1.05 SM/RH(2) 3.01 SM/R 3.57 SM/RH(2) 5.15
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Table 7. Predictors achieving Near Best values (< 1.1 minimum value) of % Rel RMSE for 3 Designs

Population A/Y=EMP A/Y=WAGES B/Y=EMP B/Y=WAGES
Design Predictor % Rel RMSE Predictor % Rel RMSE Predictor % Rel RMSE Predictor % Rel RMSE
STRS
Unstratified

SM/RH
TK/R
SM/R

RA/RH

2.18
2.25
2.25
2.48

RA/RH
SM/RH(2)

SM/RH(2v)
SM/RH

7.81
7.81
7.87
8.41

SM/R
TK/R

SM/RH

4.21
4.25
4.54

SM
TK

SM/R
SM/RH(2v)

10.95
11.04
11.29
11.83

SYSPPS TK
SM/RH

RA/R
RA/RH
RE/pi-

weighted
TK/R
SM/R

2.87
2.92
3.00
3.05
3.07

3.09
3.09

TK
RA/RH

SM/RH(2)
SM

SM/RH

7.26
7.70
7.81
7.86
7.95

SM/R
TK/R
TA/R
RA/R

3.98
4.00
4.23
4.36

SM/RH(2)
RA/RH

SM/RH(2v)
SM/R
SM/H
RA/H
TK/R

9.47
9.53
9.90
9.97

10.17
10.19
10.33

Overbalanced SM
TK

1.05
1.09

SM/RH(2)
TK

3.01
3.17

SM/R
TK/R

3.57
3.67

SM/RH(2)
RA/RH

5.15
5.51
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Table 8. Overbalanced Samples. Predictors with % Rel RMSE < 1.1 of minimum % Rel RMSE of predictors based on both SYSPPS and STRS/unstratified
designs (percentages of minimum % Rel RMSE shown). Entries in square brackets lie outside the tolerance range, but represent the next best performers.

A/Y=EMP A/Y=WAGES B/Y=EMP B/Y=WAGES
Predictor % of min

RMSE
Predictor % of min

RMSE
Predictor % of min

RMSE
Predictor % of min

RMSE
SM 48 SM/RH(2) 41 SM/R 90 SM/RH(2) 54
TK 50 TK 44 TK/R 92 RA/RH 58

RE/pi-weighted 59 SM 48 RA/R 102 SM/H(2) 70
SM/RH(2) 66 RA/RH 51 [RA/RH] [135] SM/RH(2) 71

RA/RH 71 RA 53 [SM/RH(2)] [139] SM/R 72
RA 76 SM/RH(2v) 53 TK/R 83

SM/RH 82 SM/H(2) 58 RA/H 85
TK/R 90 TK/R 70 SM/H(2v) 91
SM/R 91 SM/R 71 SM 101
SM/H 95 RE/pi-weighted 73
RA/R 107 SM/RH 73

RA/H 77
RA/R 80

TA 103
TA/R 110
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Figure 1: The sector A populations from the Monthly Wages and Salaries Survey
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Figure 2: The sector B populations from the Monthly Wages and Salaries Survey
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Figure 3: Zero order overbalance (x axis) plotted against second order overbalance (y axis) for the 1000 samples selected via PPSSYS.
Overbalance calculations exclude certainty units. Note that in the A population, no sample achieved both zero and second order
overbalance. Points indicated in red correspond to the 100 best overbalanced PPSSYS samples.
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