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Abstract

This paper discusses the post randomisation method (PRAM) as a method

for disclosure control. PRAM protects the privacy of respondent by misclas-

sifying specific variables before data are released to researchers outside the

statistical agency. Two variants of the initial idea of PRAM are discussed

concerning the information about the misclassification that is given along with

the released data. The first variant concerns calibration probabilities and the

second variant concerns misclassification proportions. The paper shows that

the distinction between the univariate case and the multivariate case is impor-
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tant. Additionally, the paper discusses two measures for disclosure risk when

PRAM is applied.

Keywords: calibration; information loss; misclassification; PRAM.

1 Introduction

The post randomisation method (PRAM) is discussed in Gouweleeuw, Kooiman,

Willenborg, and De Wolf (1998) as a method for statistical disclosure control

(SDC). When survey data are released by statistical agencies, SDC protects the

identity of respondents. SDC tries to prevent that a user of the released data can

link the data of a respondent in the survey to a specific person in the popula-

tion. See Willenborg and De Waal (2001) for an introduction into SDC and SDC

methods other than PRAM.

There is a close link between PRAM and randomised response, a method to ask

sensitive questions in a survey, see Warner (1965) and Rosenberg (1979). Van den

Hout and Van der Heijden (2002) sum up some differences and similarities between

randomised response and PRAM.

When SDC is used, there will always be a loss of information. This is inevitable

since SDC tries to determine the information in the data that can lead to the

disclosure of an identity of a respondent, and eliminates this information before

data are released. It is not difficult to prevent disclosure, but it is difficult to prevent

disclosure and release data that is still useful for statistical analysis. Applying SDC

means searching for a balance between disclosure risk and information loss.

The idea of PRAM is to misclassify some of the categorical variables in the sur-

vey using fixed misclassification probabilities and to release the partly misclassified

data together with those probabilities. Say variable X, with categories {1, ..., J},
is misclassified into variable X∗. The survey containing X∗ but not X is released
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together with conditional probabilities IP (X∗ = k|X = j) for k, j ∈ {1, ..., J}. In

this way PRAM introduces uncertainty in the data: the user of the released data

cannot be sure that the information is original or perturbed due to PRAM and

it becomes harder to establish a correct link between a respondent in the survey

and a specific person in the population. Since the user has the misclassification

probabilities he can adjust his analysis by taking into account the perturbation due

to PRAM.

This paper discusses two ideas to make PRAM more efficient with respect to

the balance between disclosure risk and information loss. First, the paper discusses

the use of calibration probabilities

IP (true category is j|category i is released). (1)

in the analysis of released data and compares this with using misclassification

probabilities

IP (category i is released|true category is j). (2)

The idea of using calibration probabilities is discussed by De Wolf, Gouweleeuw,

Kooiman, and Willenborg (1997), who refer to the discussion of calibration prob-

abilities in misclassification literature, see, e.g., Kuha and Skinner (1997). We will

elaborate the discussion and show that the advantage of calibration probabilities is

limited to the univariate case. Secondly, the paper shows that information loss can

be reduced by providing misclassification proportions along with the released data.

These proportions inform about the actual change in the survey data due to the ap-

plication of PRAM. (Probabilities (1) and (2) inform about the expected change.)

Additionally, the paper discusses two measures for disclosure risk when PRAM is

applied. The first is a general measure presented in Elamir and Skinner (2003)

as an extension of the measure introduced by Skinner and Elliot (2002). The sec-
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ond measure links up with the SDC practice at Statistic Netherlands. Simulation

results are given to illustrate the theory.

The outline of the paper is as follows. Section 2 provides the framework and

the notation. Section 3 describes frequency estimation for PRAM data. Section

4 discusses the use of calibration probabilities. In Section 5 we introduce the use

of misclassification proportions. Section 6 discusses measures for disclosure risk,

whereas information loss is briefly considered in Section 7. Section 8 presents some

simulations, and Section 9 concludes.

2 Framework and notation

In survey data we distinguish between identifying variables and non-identifying

variables. Identifying variables are variables that can be used to re-identify indi-

viduals represented in the data. These variables are assumed to be categorical,

e.g., Gender, Race, Place of Residence. We assume that the sensitive information

of respondents is contained in the non-identifying variables, see Bethlehem, Keller,

and Pannekoek (1990), and that we want to protect this information by applying

PRAM to (a subset of) the identifying variables.

The notation in this paper is the same as in Skinner and Elliot (2002). Units

are selected from a finite population U and each selected unit has one record in the

microdata sample s ⊂ U . Let n denote the number of units in s. Let the categor-

ical variable formed by cross-classifying (a subset of) the identifying variables be

denoted X with values in {1, ..., J}. Let Xi denote the value of X for unit i ∈ U .

The population frequencies are denoted

Fj =
∑

i∈U

I(Xi = j), j ∈ {1, ..., J},

where I(·) is the indicator function: I(A) = 1 if A is true and I(A) = 0 otherwise.
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The sample frequencies are denoted

fj =
∑

i∈s

I(Xi = j), j ∈ {1, ..., J}.

In the framework of PRAM, we call the sample that is released by the statistical

agency the released microdata sample s∗. Note that unit i ∈ s∗ if and only if i ∈ s.

Let X∗ denote the released version of X in s∗. By misclassification of unit i we

mean Xi 6= X∗
i . The released sample frequencies are denoted

f∗k =
∑

i∈s∗
I(X∗

i = k), k ∈ {1, ..., J}.

Let PX denote the J × J transition matrix that contains the conditional misclas-

sification probabilities pkj = IP (X∗ = k|X = j), for k, j ∈ {1, ..., J}. Note that

the columns of PX sum up to one. The distribution of X∗ conditional on s is the

J-component finite mixture given by

IP (X∗
i = k|i ∈ s) =

J∑

j=1

IP (X∗
i = k|Xi = j)IP (Xi = j|i ∈ s), k ∈ {1, ..., J},

where the component distributions are given by PX and the component weights

are given by the conditional distribution of X. The conditional distribution of X

in sample s is multinomial with

IP (Xi = j|i ∈ s) =
1
n

fj , j ∈ {1, ..., J}.

3 Frequency estimation for PRAM data

When PRAM is applied and some of the identifying variables are misclassified,

standard statistical models do not apply to the released data since these models do

not take into account the perturbation. This section shows how the misclassification

can be taken into account in frequency estimation.
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We have IE[F ∗|f ] = PXf , where f = (f1, ..., fJ)t and F ∗ = (F ∗
1 , ..., F ∗

J )t is

the stochastic vector of the released sample frequencies. An unbiased moment

estimator of f is given by

f̂ = P−1
X f∗, (3)

see Kooiman, Willenborg, and Gouweleeuw (1997). In practice, assuming that PX

is non-singular does not impose much restriction on the choice of the misclassifi-

cation probabilities. Matrix P−1
X exists when the diagonal of PX dominates, i.e.,

pii > 1/2 for i ∈ {1, ..., J}. An additional assumption is that the dimensions of f

and f∗ are the same.

PRAM is applied to each variable independently and a transition matrix is re-

leased per variable. When the user of the released sample assesses a compounded

variable, he can construct its transition matrix using the transition matrices of

the individual variables. For instance, consider identifying variables X1, with cat-

egories {1, .., J1} and X2, with categories {1, .., J2}, and the cross-classification

X = (X1, X2), i.e., the Cartesian product of X1 and X2. Since PRAM is applied

independently, we have

IP

(
X∗ = (k1, k2)|X = (j1, j2)

)
= IP (X∗

1 = k1|X1 = j1)

× IP (X∗
2 = k2|X1 = j2), (4)

for k1, j1 ∈ {1, .., J1} and k2, j2 ∈ {1, .., J2}. In matrix notation, we have PX =

PX1⊗PX2 , where ⊗ is the Kronecker product. Note that when one of two variables

is not perturbed by PRAM, the transition matrix of that variable is the identity

matrix.

The variance of (3) equals

V [f̂ |f ] = P−1
X V [F ∗|f ](P−1

X )t = P−1
X

( J∑

j=1

fjVj

)
(P−1

X )t (5)
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where Vj is the J × J covariance matrix of two released values given the original

value j, i.e.,

Vj(k1, k2) =





pk2j(1− pk2j) if k1 = k2

−pk1jpk2j if k1 6= k2

for k1, k2 ∈ {1, ..., J},

see Kooiman et al. (1997). The variance can be estimated by substituting f̂j for

fj in (5), for j ∈ {1, .., J}.
The variance given by (5) is the extra variance due to PRAM and does not

take into account the sampling distribution. The formulas for the latter are given

in Chaudhuri and Mukerjee (1988) for multinomial sampling and compared to (5)

in Van den Hout and Van der Heijden (2002), see also Appendix B.

4 Calibration probabilities

Literature concerning misclassification shows that calibration probabilities (1) are

more efficient in the analysis of misclassified data than misclassification probabil-

ities (2), see the review paper by Kuha and Skinner (1997). Often, calibration

probabilities have to be estimated. However, when PRAM is applied, the statisti-

cal agency can compute the calibration probabilities using the sample frequencies.

The idea of using calibration probabilities for PRAM is mentioned in De Wolf et

al. (1997). The following elaborates this idea and makes a comparison with PRAM

as explained in the previous section.

The J × J matrix with calibration probabilities of univariate variable X is

denoted by ←−P X and has entries ←−p jk defined by

IP (Xi = j|X∗
i = k, i ∈ s) =

pkjfj∑J
j0=1 pkj0fj0

, j, k ∈ {1, ..., J}, (6)

where pkj are the entries of PX . Matrix ←−P X is again a transition matrix; each
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column sums up to one. We have

f = ←−
PXIE[F ∗|f ], (7)

see Appendix A. An unbiased moment estimator of f is therefore given by

f̃ = ←−
P Xf∗. (8)

In general, ←−P X 6= P−1
X , see Appendix A. The variance of (8) is given by (5) where

P−1
X is replaced by ←−P X and fj is estimated by f̃j , for j ∈ {1, ..., J}.

In the remainder of this section we compare estimators (3) and (8). The first

difference is that (3) might yield an estimate where some of the entries are negative,

whereas (8) will never yield negative estimates, see, e.g., De Wolf et al. (1997).

Secondly, estimator (8) is more efficient than (3) in the univariate case. This

is already discussed in Kuha and Skinner (1997). Consider the case where X has

two categories. Say we want to know π = IP (X = 1). Let π̂ be the estimate using

PX and π̃ the estimate using ←−P X . The efficiency of π̂ relative to π̃ is given by

eff(π̂, π̃) =
V [p̃ ]
V [p̂ ]

= (p11 + p22 − 1)2(←−p 22 −←−p 21)
2 < 1. (9)

So π̃ is always more efficient than π̂. An important difference with the general

situation of misclassification is that in the situation of PRAM, matrices PX and
←−
P X are given and do not have to be estimated. Comparison (9) is therefore a

simple form of the comparison in Kuha and Skinner (1997, Section 28.5.1.3.).

The third comparison is between the maximum likelihood properties of (3)

and (8). Assume that X1, ...Xn are independently multinomially distributed with

parameter vector π = (π1, .., πJ)t. In the framework of misclassification, Hochberg

(1977) proves that estimator (8) yields a MLE. When (3) yields an estimate in the

interior of the parameter space, the estimate is also a MLE. See Appendix B for the

maximum likelihood properties of (8) and (3). Note that the likelihood function
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corresponding to (8) is different from the likelihood function corresponding to (3),

since the information used is different. This explains why both can be MLE despite

being different estimators of f .

The fourth comparison is with respect to transition matrices of Cartesian prod-

ucts and is less favourable for (8). It has already been noted that PX1 ⊗ PX2

is the matrix with misclassification probabilities for the Cartesian product X =

(X1, X2), see (4). Analogously, given ←−P X1 and ←−P X2 the user can construct ma-

trix ←−P X1 ⊗ ←−
P X2 . However, this matrix does not necessarily contain calibration

probabilities for X. Note that

IP
(
Xi = (j1, j2)|X∗

i = (k1, k2), i ∈ s
)

=
pk1j1pk2j2IP

(
Xi = (j1, j2)|i ∈ s

)

∑J1
v

∑J2
w pk1vpk2wIP

(
X1 = (v, w)|i ∈ s

) , (10)

It follows that ←−P X = ←−
P X1 ⊗←−P X2 when X1 and X2 are independent. In general,

this independence is not guaranteed and since the user of the released data does

not have the frequencies of X, he cannot construct ←−P X .

The fifth and last comparison is with respect to the creation of subgroups.

Consider the situation where a user of the released data creates a subgroup by

using a grouping variable that is not part of X. When the number of categories in

the subgroup is smaller than J , estimate (8) is not well-defined. When the number

of categories is equal to J , estimate (8) is biased due to the fact that (7) does not

hold. Note with respect to (7) that the frequencies that are used to construct ←−P X

are the frequencies in the whole sample which will differ from the frequencies in the

subgroup, see also Appendix A. The estimator (3) is still valid for the subgroup.

Since calibration probabilities contain information about the distribution of

the sample s, they perform better than misclassification probabilities regarding the

univariate case. However, in a multivariate setting this advantage may disappear.
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Table 1: Classification by X∗ and X

X
X∗ 1 2 total
1 300 200 500
2 100 400 500
total 400 600 1000

Section 8 presents some simulation results.

5 Misclassification proportions

Matrices PX and ←−P X inform about the expected change due to PRAM. As an al-

ternative we can create transition matrices that inform about the actual change due

an application of PRAM. These matrices contain proportions and will be denoted

P ◦
X and ←−P ◦

X . Matrix P ◦
X contains misclassification proportions and ←−P ◦

X contains

calibration proportions. This section shows how P ◦
X and ←−

P
◦
X are computed and

discusses properties of these matrices.

We start with an example. Say that X has categories {1,2}. Assume that

applying PRAM yields the cross-classification in Table 1. From this table it follows

that the proportion of records with X = 1 that have X∗ = 1 in the released sample

is 300/400=3/4 and that the proportion of records with X∗ = 1 that have X = 1

in the original sample is 300/500=3/5. Analogously we get the other entries of

P ◦
X =

(
3/4 1/3
1/4 2/3

)
and ←−

P
◦
X =

(
3/5 1/5
2/5 4/5

)
.

For the general construction of P ◦
X and ←−P ◦

X , let the cell frequencies in the cross-

classification X∗ by X be denoted ckj , for k, j ∈ {1, .., J}. The entries of the J ×J

transition matrices with the proportions are given by

pe
kj =

ckj

fj
and ←−p e

jk =
ckj

f∗k
,

10



where k, j ∈ {1, .., J}.
It follows that f∗ = P ◦

Xf and f = ←−
P
◦
Xf∗. This is the reason to consider

the matrices with the proportions more closely, since it is a great improvement

compared to (3) and (8). Note that when the user of the released sample has P ◦
X

or ←−P ◦
X , he can reconstruct Table 1.

Conditional on f , P ◦
X and ←−P ◦

X are stochastic, whereas PX and ←−P X are not.

In expectation P ◦
X equals PX , and P ◦

X1
⊗ P ◦

X equals PX1 ⊗ PX2 , see appendix C.

However, since f∗ is a value of the stochastic vector F ∗, and IP (F ∗
k = 0) 6= 0, the

expectation of ←−P ◦
X does not exists. Nevertheless, an approximation shows that

←−
P
◦
X will be close to ←−P X , see appendix C.

There is a set back with respect to the use of proportions for Cartesian products

and this is comparable to the problem mentioned in the previous section. Given

P ◦
X1

and P ◦
X2

the user can construct P ◦
X1
⊗ P ◦

X2
for X = (X1, X2). However,

P ◦
X1
⊗P ◦

X2
does not contain proportions as defined above. Note that the user does

not have the cross-classification of X and X∗, so he cannot derive the proportions

in P ◦
X . The same holds for ←−P ◦

X . The optimal use of misclassification proportions

is thereby limited to the univariate case.

Since misclassification proportions contain information about the actual per-

turbation due to PRAM, we expect them to perform well also in the multivariate

case. Section 8 discusses a multivariate example.

6 Disclosure risk

There are several ways to measure disclosure risk, see, e.g., Skinner and Elliot

(2002), and Domingo-Ferrer and Torra (2001). This section discusses two measures

for disclosure risk with respect to PRAM. Section 6.1 discusses an extension of the

general measure of disclosure risk introduced by Skinner and Elliot (2002). Section

6.2 introduces a measure that links up with the way disclosure risk is assessed at
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Statistics Netherlands.

6.1 The measure θ

The following describes how the general measure for disclosure risk introduced in

Skinner and Elliot (2002) can be extended to the situation where PRAM is applied

before data are released by the statistical agency. When a disclosure control method

such as PRAM has been applied, a measure for disclosure risk is needed to quantify

the protection that is offered by the control method. Scenarios that may lead to a

disclosure of the identity of a respondent of are about persons that aim at disclosure

and that may have data that overlap the released data. A common scenario is that

a person has a sample from another source and tries to identify respondents in the

released sample by matching records. Using the extension of the measure in Skinner

and Elliot (2002) we can investigate how applying PRAM reduces the disclosure

risk.

Under simple random sampling Skinner and Elliot (2002) introduced the mea-

sure of disclosure risk θ = IP (correct match|unique match) as

θ =
∑

j

I(fj = 1)

/ ∑

j

Fj I(fj = 1),

where the summations are over j = 1, ..., J . The measure θ is the proportion of

correct matches among those population units which match a sample unique. The

measure is sample dependent and a distribution-free prediction is given by

θ̂ = πn1

/(
πn1 + 2(1− π)n2

)
,

where π is the sampling fraction, n1 =
∑

j I(fj = 1) is the number of uniques and

n2 =
∑

j I(fj = 2) is the number of twins in the sample, see Skinner and Elliot

(2002). Elamir and Skinner (2003) extended θ for the situation where misclassifi-
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cation occurs. The extension is given by

θmm =
∑

i∈s

I(fXi = 1, X∗
i = Xi)

/ ∑

j

Fj I(fj = 1)

and its distribution-free prediction is given by

θ̂mm = π
∑

j

I(fj = 1)Pjj

/(
πn1 + 2 (1− π) n2

)
,

where Pjj is the diagonal entry (j, j) of the transition matrix P which describes

the misclassification, see Elamir and Skinner(2003)

Section 8 presents some simulation results with respect to the measure θ before

applying PRAM, and θmm after applying PRAM.

6.2 Spontaneous recognition

Statistics Netherlands releases data in several ways. One way is the releasing of

detailed survey data under contract, i.e., data are released to bona fide research

institutes that sign an agreement in which they promise not to look for disclosure

explicitly, e.g, by matching the data to other data files. In this situation, SDC

only concerns the protection against what is called spontaneous recognition. This

section introduces a measure for disclosure risk for PRAM data that is specific to

the control for spontaneous recognition.

Controlling for spontaneous recognition means that one should prevent that

certain records attract attention. A record may attract attention when a low

dimensional combination of its values has a low frequency. Also, without cross-

classifying, a record may attract attention when one of its values is recognized as

being very rare in the population. Combinations of values with low frequencies in

the sample are called unsafe combinations.

Statistics Netherlands uses the rule of thumb that a recognition of a combination

of values of more than three variables is not spontaneous anymore. For this reason,
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only combinations of three variables are assessed with respect to disclosure control

for spontaneous recognition.

Note that applying PRAM causes two kinds of modifications in the sample that

make disclosure more difficult. First, it is possible that unsafe combinations in the

sample change into apparently safe ones in the released sample, and, secondly, it is

possible that safe combinations in the sample change into apparently unsafe ones.

Since misclassification probabilities are not that large (in order to keep analysis of

the released sample possible) and the frequency of unsafe combinations is typically

low, the effect of the first modification is negligible in expectation. The second

modification is more likely to protect an unsafe combination j when there are a

lot of combinations k, k 6= j, which are misclassified into j. This is the reason to

focus, for a given record i with the unsafe combination of scores j, on the calibration

probability

µ = IP (Xi = j|X∗
i = j, i ∈ s).

When there are hardly any k, k 6= j, misclassified into j, this probability will be

large, and, as a consequence, the record is unsafe. Note that combinations with

frequency equal to zero are never unsafe.

Measure µ is a simplification since it ignores possible correlation between X and

other variables in the sample. Note that X will be a Cartesian product and that

the statistical agency can compute the calibration probability µ using (6) since the

agency has the frequencies of X.

7 Information loss

Since we stressed in the introduction that SDC means searching for a balance be-

tween disclosure risk and information loss, this section indicates ways to investigate

information loss due to PRAM.

14



First, the transition matrix PX gives an idea of the loss of information. The

more this matrix resembles the identity matrix, the less information gets lost. In

general, this requires a definition of a distance between two matrices. However, we

can apply PRAM using matrices that are parameterized by one parameter, denoted

pd. The idea is as follows. Each time PRAM is applied, the diagonal probabilities

in the transition matrices are fixed and equal to pd for all selected variables. In the

columns, the probability mass 1 − pd is equally divided over the entries that are

not diagonal entries. In this situation 1 − pd is a measure for the deviation from

the identity matrix.

Although transition matrices give an idea of the information loss, it is hard to

have an intuition about how a certain deviation from the identity matrix affects

analysis of the released data. A second way to investigate information loss is the

comparison of extra variances due to PRAM with respect to frequency estimation.

The idea here is that when this extra variance is already substantial, more complex

analyses of the released sample is probably not possible. The variance with respect

to frequency estimation can be estimated using (5).

The next section will assess information loss due to PRAM using these two

approaches.

8 Simulation results

The objective of this section is to illustrate the theory in the foregoing sections and

to investigate disclosure risk and information loss for different choices of misclas-

sification parameters. The population is chosen to consist of units with complete

records in the British Household Survey 1996-1999. We have N = 16710 and we

distinguish 5 identifying variables with respect to the household owner: Sex (S),

Marital Status (M), Economic status (D), Socio-Economic Group (E), and Age

(A), with number of categories 2, 7, 10, 7, and 8 respectively. In the following we
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consider simple random sampling without replacement from the population where

the sample fraction π is equal to 0.05, 0.10 or 0.15. The three samples are denoted

s1, s2 and s3 and have sample sizes 836, 1671 and 2506 respectively.

The transition matrices used to apply PRAM to the selected variables are

mostly of a simple form and determined by one parameter pd, as described in

Section 7. A more sophisticated construction of the transition matrices can reduce

the disclosure risk further. An example of this fine-tuning will be given.

8.1 Disclosure risk and the measure θ

The following discusses disclosure risk by comparing the measure θ before PRAM is

applied with the measure θmm after PRAM has been applied, see Section 6.1. The

identifying variables are described by X = (S, M,D, E, A) with J = 7840 possible

categories.

Since the population is known, we can compute the measures and using the

samples we can compute their predictions. Table 2 presents the simulation results

using simple random sampling without replacement using different sampling frac-

tions π and different choices of pd. Given a choice of π and pd, drawing the sample

and applying PRAM is 100 times simulated. The means of the computed and pre-

dicted measures are reported in Table 2. Note that θ and θ̂ reflect the risk before

applying PRAM and θmm and θ̂mm reflect the risk after applying PRAM.

It is clear from Table 2 that applying PRAM will reduce the risk, for example,

when pd = 0.80 and π = 0.10, applying PRAM reduces the risk from θ = 0.166 to

θmm = 0.055. When pd decreases, disclosure risk decreases too, as one might expect.

Note that disclosure risk increases when sample size increases. In a larger sample, a

record with a unique combination of scores is more likely to be a population unique

and therefore the danger of a correct match is higher.
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Table 2: Simulation results of disclosure risk measures for X = (S,M, D, E,A)
before and after applying PRAM with pd.

pd π θ θ̂ θmm θ̂mm

0.05 0.084 0.087 0.061 0.065
0.95 0.10 0.151 0.147 0.112 0.110

0.15 0.217 0.215 0.165 0.166

0.05 0.087 0.086 0.047 0.051
0.90 0.10 0.148 0.157 0.083 0.087

0.15 0.213 0.216 0.123 0.127

0.05 0.087 0.090 0.028 0.031
0.80 0.10 0.166 0.151 0.055 0.054

0.15 0.213 0.221 0.065 0.064

8.2 Disclosure risk and spontaneous recognition

This following illustrates the measure µ for disclosure risk for spontaneous recog-

nition that is discussed in Section 6.2.

Spontaneous recognition is defined for combinations up to three identifying

variables, see Section 6.1. So there are 10 groups to consider. We will discuss

only one of them, namely the group defined by X = (M,D, E). The number of

categories of X is 490. The measure for disclosure risk is given by

µ = IP

(
(M,D, E) = (m, d, e)

∣∣∣∣(M∗, D∗, E∗) = (m, d, e)
)

,

for those combinations of values (m, d, e) that have frequency 1 in sample s1, s2

or s3. Note that when PRAM is not applied, µ = 1. Table 3 shows results with

respect to the maximum of µ when PRAM is applied to M , D and E. With respect

to X = (M,D, E) the number of unique combinations in s1, s2 or s3 are 48, 44,

and 53 respectively.

We draw two conclusions from the results. First, the results illustrate that the

probability pd matters, as one might expect. Second, the results show that the
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Table 3: Maximum of µ for values of (M,D, E) with frequency 1 when applying
PRAM to M , D and E.

pd

0.95 0.90 0.85 0.80 0.70 0.60
sample

s1 with n= 836 0.94 0.86 0.76 0.65 0.43 0.24
s2 with n= 1671 0.94 0.85 0.74 0.61 0.36 0.18
s3 with n= 2506 0.93 0.83 0.69 0.55 0.31 0.15

size of the sample is important. In order to protect an unsafe combination j, it is

necessary that there are a lot of combinations that can change into j due to PRAM.

Note that this is the other way around compared to the measure θ where a larger

sample size causes a higher disclosure risk. This difference shows that different

concepts of disclosure induce different methods for disclosure control.

The following introduces a method to fine-tune a transition matrix and shows

that this can help to diminish the disclosure risk. The idea is to adjust one or

more columns in the transition matrix of each variable that is part of an unsafe

combination. Consider PX1 where variable X1 has J1 categories. The column that

is chosen first corresponds to the category of X1 with the highest frequency in

sample s, say column j. Let furthermore k be the number that corresponds to the

category of X1 with the lowest frequency in s. The columns of PX1 that are not

column j are constructed as explained in Section 7: pd on the diagonal and (1−pd)

equally divided over the other entries. Column j is fine-tuned by

plj =





pd if l = j

(1− pd)/η if l = k ,

(1− pd)/(η(J1 − 2)) if l 6= j, k

(11)

for l ∈ {1, .., J1} and η > 1. The idea here is that when we choose η close to

1, the category with the highest frequency has a relatively high probability to
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Table 4: Maximum of µ for values of (M, D, E) with frequency 1 in sample s3 when
using fine-tuning for all three variables.

pd

0.95 0.90 0.85 0.80 0.70

no fine-tuning 0.93 0.83 0.69 0.55 0.31
fine-tuning 1 column where η = 1.001 0.92 0.80 0.66 0.51 0.28
fine-tuning 2 columns where η = 1.001 0.91 0.74 0.57 0.42 0.20
fine-tuning 3 columns where η = 1.001 0.90 0.72 0.52 0.34 0.15

change into the category with the lowest frequency. Assuming a link between an

unsafe combination and a low frequency in the original sample, this idea explicitly

supports the concept of PRAM: an unsafe combination c is after PRAM protected

by creating new combinations c from combinations that have high frequencies in

the original sample.

In the same way other columns in PX1 can be fine-tuned. For example, the

second column chosen is the column that corresponds to the category of X1 with

the second highest frequency in sample s, and the chosen row is now the row that

corresponds to the category of X1 with the second lowest frequency in sample s.

Table 4 presents results for sample s3 when the transition matrices of M , D, and

E are fine-tuned. The advantage of fine-tuning the transition matrices is dependent

of the data and on the size of the sample. One can see that the idea works, e.g., if

pd = 0.80, fine-tuning can decrease the maximum of µ from 0.55 to 0.34.

Even after using fine-tuning, the maximum of µ is still quite large. Additional

simulations, not reported, show that the maximum of µ decreases rapidly when

sample size is increased. Conclusion and advice: determine a largest tolerated µ

and check all combinations of three identifying variables and use fine-tuning. The

protection offered by PRAM dependents on pd, but also very much on the sample

size.
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Table 5: Frequencies before PRAM and standard errors of estimated frequencies
after PRAM of the variable M in sample s3.

pd

0.95 0.90 0.85

f standard error of f̂

using PM
←−
P M PM

←−
P M PM

←−
P M

99 5.27 4.08 7.87 4.77 10.23 4.87
378 6.33 5.62 9.40 7.35 12.13 8.30
353 6.24 5.52 9.27 7.21 11.97 8.11
471 6.65 5.95 9.85 7.83 12.69 8.90
525 6.83 6.12 10.11 8.08 13.01 9.21
551 6.78 6.08 10.04 8.02 12.93 9.13
169 5.55 4.64 8.28 5.77 10.74 6.20

8.3 Information loss in frequency estimation

To investigate information loss due to PRAM, this section discusses an example

with univariate frequency estimation with respect to the variable M and bivariate

frequency estimation with respect to the variables S and E in sample s3. We

illustrate the difference between using PX and←−P X by comparing standard errors in

estimating the univariate frequencies of variable M . In the following we assume that

the released sample frequencies of M to be equal to the expected released sample

frequencies. That is, released sample frequencies f∗ are given by IE(F ∗|f) = PMf ,

where F ∗ and f are defined with respect to M . It follows that in this situation

f̂ = f , so that (5) can be used to compare variances. To estimate the standard

errors when using calibration, we use ←−P M in (5) instead of P−1
M . Table 5 presents

standard errors of estimated frequencies for different choices of pd. The example

shows that ←−P M is more efficient than PM , a difference that becomes more striking

when pd is smaller.

In the bivariate situation calibration probabilities and proportions do not always

work well. To illustrate this, the following example is about frequency estimation of
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Figure 1: Estimating frequencies of X = (S, E) after applying PRAM to S and E in
sample s3 with pd=0.85 in 10 simulations. (a) Using misclassification probabilities.
(b) Using calibration probabilities.

variable X = (S, E) that has 14 categories. The χ2-test of independence between

S and E yields 529.55, where df = 6 and the p-value < 0.00. It is this lack of

independence between the variables that causes calibration probabilities to perform

badly. PRAM was applied 10 times to both S and E with pd = 0.85. Figure 1 shows

the estimation of the frequencies of X using X∗ and PS ⊗PE versus using X∗ and
←−
P S⊗←−P E . From the figure it is clear that the misclassification probabilities perform

better, i.e., the points (fj , f̂j) are closer to the identity line then the points (fj , f̃j),

j ∈ {1, ..., 14}. The variance is less when ←−P S ⊗←−P E is used, but the figure shows

that in that case estimates are biased. Violating the independence assumption

regarding the use of ←−P S ⊗←−P E has sever consequences.
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Table 6: Actual coverage percentage w.r.t. X = (S,E) for sample s3 and 1000
simulated perturbed samples, where pd = 0.85.

ACP using ACP using
category PS ⊗ PE P ◦

S ⊗ P ◦
E category PS ⊗ PE P ◦

S ⊗ P ◦
E

(1,1) 94.8 98.2 (2,1) 94.5 97.8
(1,2) 95.3 98.1 (2,2) 95.6 97.7
(1,3) 95.7 97.7 (2,3) 95.0 97.9
(1,4) 95.4 98.0 (2,4) 95.7 98.8
(1,5) 95.5 99.1 (2,5) 93.5 97.3
(1,6) 95.1 97.4 (2,6) 93.8 97.5
(1,7) 96.0 98.3 (2,7) 96.0 98.7

Misclassification proportions are close to misclassification probabilities in the

above example. Compare for instance

PS =

(
0.85 0.15
0.15 0.15

)
and P ◦

S =

(
0.854 0.154
0.156 0.156

)
.

A simulation study can be used to investigate the performance of misclassifica-

tion probabilities versus misclassification proportions. The study compares using

PS⊗PE versus using P ◦
S ⊗P ◦

E by looking at the actual coverage percentage (ACP),

which is the percentage of the replicated perturbed samples for which the confidence

interval of the estimated frequency covers the actual frequency in the original sam-

ple. We used sample s3, pd = 0.85 and 1000 simulated perturbed samples. Table 6

shows that misclassification proportions perform better than then misclassification

probabilities. The mean value of ACP when using PS ⊗ PE equals 95.14, and the

mean value of ACP when using P ◦
S ⊗ P ◦

E equals 98.04. (A Paired t-Test yields a

p-value < 0.00.) So, although the transition matrices are quite alike at first sight,

misclassification proportions perform best.
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9 Conclusion

The paper shows that the analysis of PRAM data is more efficient when misclassi-

fication proportions are used instead of misclassification probabilities. Calibration

probabilities and calibration proportions work fine in the univariate case, but cause

serious bias in the multivariate case. Since in most situations the user of PRAM

data will be interested in multivariate analysis, it seems wise not to release calibra-

tion probabilities or calibration proportions along with the PRAM data. The two

measures for disclosure risk that are used in this paper show that PRAM helps in

protecting the identity of respondents.

Given that releasing misclassification proportions makes PRAM more efficient

with respect to information loss, it is still an open question how this works out

when PRAM is compared to other SDC methods, see Domingo-Ferrer and Torra

(2001). It might be worthwhile to state that PRAM was never meant to replace

existing SDC methods. Working with PRAM data and taking into account the

information about the misclassification in the analysis might be quite a burden

for some researchers. However, when researchers are interested in specific details

in data, details that might disappear when, e.g., global recoding is used, PRAM

can be a solution. Note that PRAM is statistically sound. Data are perturbed,

but information about the perturbation can be used. Although estimates will have

extra variance due to the perturbation, they will be unbiased.

Since the misclassification proportions provide more information about the orig-

inal sample than the misclassification probabilities, one should consider the ques-

tion whether providing these proportions increases the disclosure risk. Since the

privacy protection that is offered by PRAM is at the record level, we do not think

that disclosure risk increases when misclassification proportions are released. With

these proportions, sample frequencies of the identifying variables can be deduced,
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but these frequencies are not sensitive information. Note also that when one works

with the measures for disclosure risk discussed in Section 6, the risk does not change

when misclassification proportions are released.

Appendix A

The following shows that f = ←−
P XIE[F ∗|f ]. First note that IE[F ∗|f ] = PXf

and that entries ←−p jk of ←−P X are defined as ←−p jk = (pkjfj)(
∑J

j0=1 pkj0fj0)
−1 for

k, j ∈ {1, ..., J}. For each j ∈ {1, ..., J} we have

(←−
P XIE[F ∗|f ]

)
(j) =

J∑

k=1

←−p jk

(
IE[F ∗|f ]

)
(k)

=
J∑

k=1

←−p jk

( J∑

j0=1

pkj0fj0

)
=

J∑

k=1

pkjfj = fj ,

since the columns of PX sum up to one. So f = ←−
P XPXf and f is an eigenvector

of ←−P XPX with eigenvalue 1.

In general, ←−P X 6= P−1
X . To illustrate this, let R = ←−

P XPX . The entries of R

are rij =
∑J

k=1
←−p ikpkj , for i, j ∈ {1, ..., J}. Assume that the entries of PX are

all > 0 and that f j > 0, for j ∈ {1, ..., J}. Then ←−p jk > 0, for j, k ∈ {1, ..., J}
and rij > 0, for i, j ∈ {1, ..., J}. In this case, R is not the identity matrix and

consequently ←−P X 6= P−1
X . A more intuitive explanation is that ←−P X changes when

the survey data change, whereas PX can be determined independently from the

data and hence does not necessarily change when the data change. Therefore, it is

always possible to cause ←−P X 6= P−1
X by changing the data.

Appendix B

The following derives the maximum likelihood properties of (3) and (8). The

reasoning is the same as in Hochberg (1977), but simpler, since in the PRAM
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situation calibration probabilities do not have to be estimated. Also, we show that

the reasoning applies both to (3) and to (8).

Assume that X1, ...Xn are independently multinomially distributed with pa-

rameter vector π = (π1, .., πJ)t, where πj > 0 for j ∈ {1, .., J}, and
∑J

j=1 πj = 1.

Consider the transformation π∗ = Pπ, where P is a J × J transition matrix, i.e.,

columns sum up to one and pkj ≥ 0 for k, j ∈ {1, .., J}. Assume that P is nonsin-

gular. Let the distribution of X∗ be given by IP (X∗ = k) = π∗k, for k ∈ {1, .., J}.
It follows that X∗

1 , X∗
2 , ..., X∗

n are multinomially distributed with parameters n and

π∗. Indeed, π∗k = pk1π1 + ... + pkJπJ > 0 for k ∈ {1, .., J} and

J∑

k=1

π∗k =
( J∑

l=1

pl1

)
π1 + ... +

( J∑

l=1

plJ

)
πJ = 1.

The likelihood L∗ for π∗ and observed x∗ = (x∗1, x∗2, ..., x∗n)t is well known. Let

f∗ = (f∗1 , f∗2 , ..., f∗J )t denote the observed cell frequencies. The MLE is given by

π̂∗ = f∗/n and has covariance matrix Ω = [Diag(π∗)−π∗(π∗)t]/n, where Diag(π∗)

is the diagonal matrix with the diagonal entries given by the elements of π∗.

Next we can use the invariance property of maximum likelihood. Define the

transformation g(π∗) = P−1π∗. Since g is one-to-one, it follows from L∗(π∗|x∗)
and π = g(π∗) that the likelihood for π is given by L∗(g−1(π)|x∗) which is

maximized for π̂ = g(π̂∗) = P−1π̂∗. Consequently, when π̂ ∈ (0, 1)J , it is the

MLE. Since g has a first order derivative, the covariance matrix of π̂ can be ob-

tained using the delta-method, see, e.g., Agresti (1990, Chapter 12). We have

∂g(π∗)/∂π∗ = (P−1)t and the covariance matrix of π̂ is given by n−1P−1Ω(P−1)t.

So, with respect to (3) maximum likelihood properties are proven by taking P =

PX and obtaining π̂ = g(π̂∗) = P−1
X π̂∗. With respect to (8), the misclassification

design is described by π = ←−
P Xπ∗, so P = ←−

P
−1

X and the MLE is given by π̃ =

g(π̂∗) = ←−
P X π̂∗.
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Appendix C

Let P ◦
kj denote the stochastic variable of the kj-th entry of P ◦

X and Ckj the stochas-

tic variable of the kj-th cell in the cross-classification X∗ by X. It follows that Ckj

has a binomial distribution with parameters fj and pkj . Consequently, IE[P ◦
kj |f ] =

IE[Ckj/fj |f ] = fjpkj/fj = pkj and in expectation P ◦
X equals PX . Since Ck1j1 and

Ck2j2 are independent given f , it follows that IE[P ◦
k1j1

P ◦
k2j2

|f ] = pk1j1pk2j2 . So, in

expectation, P ◦
X1
⊗ P ◦

X equals PX1 ⊗ PX2 .

We define ←−P ◦
jk = Ckj/(F ∗

k + ε) where ε is a small positive value. Using the

delta method, see, e.g., Rice (1995, Section 4.6), we obtain

IE[←−P ◦
jk|f ] ≈ IE[Ckj |f ]

IE[F ∗
k |f ]

+
1

IE[F ∗
k |f ]2

(
V [F ∗

k |f ]
IE[Ckj |f ]
IE[F ∗

k |f ]
− ρ

√
V [Ckj |f ]V [F ∗

k |f ]
)

,

where IE[Ckj |f ] = fjpkj and ρ is the correlation between Ckj and F ∗
k . From this

we see that the difference between IE[←−P ◦
jk|f ] and ←−p jk will be small when V [F ∗

k |f ]

is small and IE[F ∗
k |f ] is large.
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