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Abstract

Measures of disclosure risk at the record level have a variety
of potential uses in statistical disclosure control for microdata.
We propose a new record level measure of disclosure risk which
is the probability that a unique match between a microdata
record and a population unit is correct. For discrete key vari-
ables subject to no measurement error, we study this measure
under the assumption of a Poisson model and a Poisson-gamma
model. Moreover, we apply the approaches to a sample of mi-
crodata from the U.K. General Household Survey. The results
indicate that the risk measure may be used to establish whether
sample unique records are unique in the population.
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1 Introduction
Researchers require access to survey microdata for analysis, but agen-
cies conducting surveys have obligations to the respondents providing
the data and need to protect against statistical disclosure when mak-
ing microdata available. There is a growing literature on methods
for undertaking such protection; see, for example, Duncan and Lam-
bert (1989), Bethlehem et al. (1990), Lambert (1993), Fienberg and
Makov (1998) and Willenborg and Waal (2001) and there is increasing
interest in applying these methods, especially in government statistical
agencies; see Doyle et al. (2001).

In this paper we consider the problem of assessing whether a spec-
i�ed form of microdata output could lead to statistical disclosure. Di-
rect identi�ers for individuals, such as names and addresses, are as-
sumed to have been removed from the data to form an `anonymised'
�le. Disclosure could still arise, however, if the user of the �le could
identify an individual using the values of the variables recorded in
the microdata. We shall use disclosure risk as a broad term to refer
to the probability of such an event; the precise nature of the event
and the probability requiring further clari�cation. The challenge is to
construct a measure of disclosure risk which not only re�ects relevant
concerns about disclosure, but also can be estimated adequately from
the microdata.

Measures of disclosure risk are often based upon the notion of iden-
tifying or key variables, Bethlehem et al. (1990). These are variables
with values assumed known both for individuals in the microdata sam-
ple and for certain identi�able individuals in the population. We shall
assume that the relevant units are individuals, but other units, such
as households, are possible. An example of a measure of disclosure
risk is the proportion of individuals in the microdata sample which
have a unique combination of values of the key variables (assumed
categorical) in the population; see, Fienberg and Makov (1998). Such
individuals, referred to as population unique, may be judged to be
particularly `at risk of disclosure'.
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A measure of the form `the proportion of individuals in the mi-
crodata �le at risk of disclosure' may be problematic, however, if it is
considered unacceptable for disclosure to arise for any individual in
the �le. In this case, even if one individual out of 10, 000 in the mi-
crodata sample is seriously `at risk' then this might be unacceptable,
despite the small value (0.0001) of the measure. The basic problem
here is that the measure is a `�le-level' measure which `averages the
risk' across the whole microdata sample and thus may conceal small
parts of the sample where the risk is high.

To address such concerns, it is natural to consider a record-level
measure, i.e. a measure which may take a di�erent value for each
record in the microdata; see, Elliot (2001). Such a measure may help
identify those parts of the sample where disclosure risk is high and
more protection is needed and may be aggregated in di�erent ways to
a �le level measure if desired; see, Lambert (1993). While record-level
measures may provide greater �exibility and insight when assessing
whether speci�ed forms of microdata output are `disclosive', they are
potentially more di�cult to estimate than �le-level measures.

Skinner and Holmes (1998) propose one approach to the estima-
tion of record-level measures. They restrict attention to sample unique
records, i.e. records with combinations of values of the key variables
which are unique in the microdata sample, on the grounds that these
are the records most at risk. They de�ne their measure as the probabil-
ity of population uniqueness, with probability interpreted with respect
to a model. Like Bethlehem et al. (1990), they assume a compound
Poisson model for the generation of the frequencies of the values of
the key variables, but with a log-normal distribution for the com-
pound error rather than a gamma distribution. Like Fienberg and
Makov (1998), they use a log-linear model to capture the dependence
on the key variables. After estimating the model parameters, they use
numerical integration to compute the measure.

In this paper we investigate an alternative approach. We propose
a di�erent measure, replacing the probability of population unique-
ness by the probability that an observed match between a microdata
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record and an identi�able unit in the population is correct. This par-
allels the approach to �le-level measures developed by Skinner and
Elliot (2002) and we discuss this further in Section 2, where we also
introduce the formal framework for this paper. The estimation of this
new measure is discussed in Section 3, with particular consideration
of how the computations in Skinner and Holmes (1998) can be sim-
pli�ed. An empirical evaluation of the approaches outlined in Section
3 is presented in Section 4 based upon data from the U.K. General
Household Survey.

2 Framework and Disclosure Risk at the
File Level

In this section we introduce the formal framework and some �le-level
measures of disclosure risk. We consider a �nite population U , con-
sisting of N individuals (or some other form of unit) and suppose that
the microdata �le consists of records for a sample s ⊆ U of size n ≤ N .
The sampling fraction is denoted π = n/N . Following Bethlehem et al.
(1990), we assume that the possibility of statistical disclosure arises
if an intruder gains access to the microdata and attempts to match a
microdata record to external information on a known individual using
the values of m discrete key variables X1, X2, ...., Xm.

In order to de�ne some measures of disclosure risk we introduce
some further notation. Let the variable formed by cross-classifying
X1, X2, ...., Xm be denoted X, with values denoted 1, ...., J, where J is
the number of categories or key values of X . Each of these key values
corresponds to a possible combination of categories of the key vari-
ables. Let Fj be the number of units in the population with key value
j, i.e. the population frequency or size of cell j for j = 1, ...., J , and
let the population frequencies of frequencies be Nr =

∑J
j=1 I (Fj = r),

r = 1, 2, .... For example, N1 is the number of population uniques. The
sample counterpart of Fj is denoted by fj and the sample frequencies
of frequencies by nr =

∑J
j=1 I (fj = r), r = 1, 2, .... For example, n1 is

the number of sample uniques.
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Four examples of �le level measures of risk are

Pr (PU) =
∑

I(fj = 1, Fj = 1)/n,

Pr(PU |SU) =
∑

I(fj = 1, Fj = 1)
/ ∑

I((fj = 1),

θU =
∑

I (fj = 1)
/∑

FjI (fj = 1) ,

and
θs =

∑
F−1

j I (fj = 1)
/∑

I (fj = 1) ,

where all the summations are over j = 1, ....., J . The �rst two mea-
sures may be interpreted as the proportions of sample individuals or
sample unique individuals, respectively, which are population unique;
see, for example, Fienberg and Makov (1998) and Samuels (1998).
Since only sample unique records can be population unique we must
have Pr(PU) ≤ Pr(PU |SU) and the latter measure may be treated
as more conservative. Skinner and Elliot (2002) argue, however, that
both these measures may be overoptimistic, because they fail to re-
�ect the risk arising from values of X which are twins (Fj = 2), triples
(Fj = 3) and so forth, and they introduce the third and fourth mea-
sures. These may be interpreted as the probability that an observed
match (on the key variables) between a sample unique individual and
a known individual in the population is in fact correct, according to
whether the individual is drawn at random (with equal probability)
from the population, for θU , or from the sample unique cases, for θs.
Whether θU or θs is a more realistic measure depends upon the as-
sumed threat from the intruder, but it will always be the case that
θU ≤ θs.

3 Disclosure Risk at the Record Level
In order to de�ne record-level measures of disclosure risk we make
use of the X information available for each record. The �le level mea-
sures could all be interpreted as probabilities with respect to sampling
mechanisms which draw individuals from the population or sample
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with equal probability. These probabilities are e�ectively uncondi-
tional on the value of X. To obtain record-level measures we propose
to condition these probabilities on the values of the key variables de�n-
ing X. This implies that any two records with the same value of X

will have the same measure of disclosure risk. In fact, we shall only
consider sample records and restrict attention to records which are
sample unique, since these may be expected to be the most risky fol-
lowing Skinner and Holmes (1998), so that all records of interest will
have di�erent values of X .

We assume there is no measurement error in X (which could lead to
false matches). In this case, there will be Fj individuals in the popula-
tion which match a speci�ed record with X = j. Assuming symmetry
of the sampling scheme, as for example for simple random sampling or
Bernoulli sampling, the probability that an observed match between
this speci�ed record and an individual in the population is correct,
conditional on X = j and Fj, is

Pr (correct match| unique match, X = j, Fj) =
1

Fj

.

In practice, Fj will generally be unknown. We therefore consider
specifying a model which generates the Fj, j = 1, ..., J , and de�ne the
record-level measure of risk for a speci�ed sample unique record with
X = j as

θj = Pr (correct match| unique match, X = j)

= E
(

1

Fj

∣∣∣∣ fj = 1

)
(1)

This expectation is with respect to both the model generating the Fj

and the sampling scheme.
The measure θj has the same form as the �le-level measures θU

and θs if the expectation in (1) is replaced by a mean of F−1
j across

sample unique records, either with weights proportional to Fj for θU or
with equal weights for θs. In particular, we may expect that the (un-
weighted) average of the record-level measures θj will approximately
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equal θs. Since θs ≥ θU , it follows that if θU is used as a �le-level
measure, e.g. for the reasons of simplicity of estimation discussed in
Skinner and Elliot (2002), this measure will tend to understate the
(unweighted) average of the record-level measures of risk θj.

To implement the de�nition of θj in practice, we need to specify the
model generating the Fj. Following Bethlehem et al. (1990) and other
authors, we assume that the Fj are independently Poisson distributed
with means λj, treated initially as �xed parameters. We assume fur-
ther, like Skinner and Holmes (1998) that the sampling scheme is such
that fj and zj = Fj − fj are independently Poisson distributed as

fj | λj ∼ Po (πλj) and zj | λj ∼ Po [(1− π) λj] . (2)

This is the case, for example, under Bernoulli sampling with selection
probability π. It follows that

θj = E
[

1

fj + zj

| fj = 1, data
]

= E
[
E

(
1

1 + zj

| λj

)
| fj = 1, data

]
. (3)

It follows from (2) that

E
(

1

1 + zj

| λj

)
=

∞∑
z=0

1

1 + z

exp [− (1− π) λj] ((1− π) λj)
z

z!

=
1

(1− π) λj

{1− exp [− (1− π) λj]} . (4)

If λj is �xed then (4) provide an expression for θj. If λj is random, we
obtain from (3) and (4) that

θj = E
[

1

(1− π) λj

{1− exp [− (1− π) λj]}| fj = 1, data
]

=

∫
1

(1− π) λj

{1− exp [− (1− π) λj]} g (λj | fj = 1) dλj

where g (λj| fj = 1) is the conditional density of λj given that fj = 1.
We now consider the estimation of θj from sample data.
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3.1 Estimation of θj - Fixed λj

We assume that the Fj are unobserved and that the data available to
to estimate θj consist of the sample frequencies fj. From (2), these
are assumed to be independently Poisson distributed, fj ∼ Po (µj),
where µj = πλj. A log-linear model for the µj may be expressed as

logµj = u′jβ (5)

where uj is a vector containing speci�ed main e�ects and interactions
for X1, ...., Xm. Such a model may be �tted using standard procedures;
see, Agresti (1996), to give an estimated vector β̂ and �tted values

µ̂j = exp
(
u′jβ̂

)
.

From (4) the estimated disclosure risk is

θ̂j =
1

(1− π) λ̂j

{
1− exp

[
− (1− π) λ̂j

]}

=
1

(1− π) π−1µ̂j

{
1− exp

[− (1− π) π−1µ̂j

]}
(6)

If a very complex log-linear model is chosen then the resulting θ̂j

may either be unstable or not very informative. In the extreme case,
if a saturated model is employed, µ̂j = 1 for all j and the θ̂j fail to
discriminate at all between the sample unique cases. This suggests
selecting a simpler log-linear model. The problem then is that, if
the model is 'too' simple, the speci�ed uj may fail to capture all the
variation between the µj, that is there may be overdispersion. Making
allowance for overdispersion in θ̂j is discussed in the next section.

3.2 Estimation of θj - Random λj

A common approach to allowing for overdispersion is by introducing
a multiplicative error term; see, for example, Cameron and Trivedi
(1998) and Agresti (1996). Suppose the distribution of a random count
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y = fj is conditionally Poisson, that is

y | µj ∼ Po (µj) ,

where now

log µj = x′jβ + εj

µj = exp
(
x′jβ + εj

)

For simplicity, we specify a gamma distribution for wj = exp (εj) as

g (w; v, b) =
bv

Γ (v)
wv−1exp (−bw) , v, b > 0,

where E (w) = v/b and var (w) = v/b2. To center the distribution of
εj, the gamma mean is assumed to be one, v = b; that is

g (wj | v) =
vv

Γ (v)
wv−1

j exp (−vwj) . (7)

The measure of disclosure risk θj is then given by

θj =

∫ ∞

0

1

(1− π) π−1wφj

{
1− exp

[− (1− π) π−1wφj

]}
g (w | fj = 1) dw,

(8)
where φj = exp

(
u′jβ

)
.

From Skinner and Holmes (1998) we �nd that

g (wj | fj = 1) =
µjexp (−µj) g (wj)∫

µjexp (−µj) g (wj) dwj

. (9)

Under the gamma model given in (7), we �nd that the conditional
distribution of wj give fj = 1 is also gamma with parameters v + 1

and v + φj. It follows from (8) and (9) that

θj =
π (φj + v)

(1− π) φjv

[
1−

(
φj + v

π−1φj + v

)v]
.

Suppose now that the Poisson-gamma (negative binomial) model is
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�tted to the fj giving estimates v̂ and β̂ of the parameters. Let µ̂j =

φ̂j = exp
(
u′jβ̂j

)
then the estimated value of θj is given by

θ̂j =
π

(
φ̂j + v̂

)

(1− π) φ̂j v̂


1−

(
φ̂j + v̂

π−1φ̂j + v̂

)bv
 .

4 Empirical Evaluation
In this section we seek to evaluate the properties of the θ̂j empirically
using an arti�cial �nite population. We wish to avoid basing our eval-
uation on any single assumed model and hence cannot simply compare
the values of θ̂j with 'true values' θj, since the latter are de�ned with
respect to a model. We therefore adopt two alternative approaches.
First, we study the relation between θ̂j and the empirical proportion
of population uniques among sample unique units. Second, we study
the relation between the average value of θ̂j and the average value
of 1/Fj within subgroups. For θ̂j to be a useful measure, we expect
a strong positive relationship in the �rst case and a strong positive
relationship, with approximate equality between the two averages, in
the second case.

As a basis for studying these relationships, we constructed an arti-
�cial population �le by combining data for two years (1996,1997) from
the U.K. General Household Survey, resulting in records on N = 33142

individuals. Following consideration of possible intruder scenarios by
Dale and Elliot (2001), we used the following m = 5 key variables:

1. X1 sex in 2 categories;

2. X2 marital status in 7 categories;

3. X3 economic status in 13 categories;

4. X4 socio-economic group 10 categories;

5. X5 age in ten-year bands in 8 categories;
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generating J = 2 × 7 × 13 × 10 × 8 = 14560 possible key values.
We evaluated the estimated measures of disclosure risk for two simple
random samples from this population, one of size n = 2500 (π = 0.075)
and one of size n = 5000 (π = 0.15).

The numbers of sample uniques were n1 = 370 in the �rst sample
and n1 = 495 in the second sample. The four �le-level measures of
risk were:

• sample 1 (n = 2500) : Pr(PU) = 0.024,Pr(PU |SU) = 0.159,

θU = 0.115, θs = 0.313;

• sample 2 (n = 5000) : Pr(PU) = 0.026,Pr(PU |SU) = 0.262,

θU = 0.210, θs = 0.443.

As expected, we �nd Pr(PU) ≤ Pr(PU |SU) ≤ θs and θU ≤ θs for
both samples so that θs is the most conservative measure.

We next compute values of θ̂j for each of the sample unique cases in
each sample. We �rst assume �xed λj and compute θ̂j using iterative
proportional �tting, for the following two speci�cations of the model
in (5):

• Model 1: a log-linear model including all main e�ects;

• Model 2 : a log-linear model including also all two-factor inter-
actions.

Tables 1, 2, 3 and 4 show the distributions of θ̂j across sample unique
cases for these two models for both samples. For the �rst sample
(n = 2500), we �nd the mean values of θ̂j to be 0.442 and 0.296

for Models 1 and 2 respectively, compared with the 'expected' mean
θs = 0.313. For the second sample (n = 5000) we �nd mean values of
θ̂j of 0.513 and 0.435 for the two models, compared with θs = 0.443.
The correspondence with θs seems rather better for Model 2. (This
suggests a means of estimating θs to augment the simpler approach to
estimating θU discussed by Skinner and Elliot (2002)). In all cases θU

understates substantially the average record-level measure.
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Model 1 Model 2

θ̂j Freq. Prop. Pop. Unique Freq. Prop. Pop. Unique
0− 84 0.07 113 0.07

0.20− 61 0.11 68 0.08
0.40− 88 0.13 78 0.09
0.60− 79 0.19 67 0.18

0.80− 1 58 0.33 44 0.59
Total 370 370

Table 1: Frequency distributions of θ̂j (Freq.) and Proportions of
population unique records (Prop. Pop. Unique) for models 1 and 2
with no overdispersion and n = 2500.

Model 1 Model 2

θ̂j Freq. Prop. Pop. Unique Freq. Prop. Pop. Unique
0− 79 0.05 105 0.06

0.20− 64 0.08 86 0.06
0.40− 85 0.15 79 0.10
0.60− 87 0.22 59 0.27

0.80− 1 55 0.34 41 0.58
Total 370 370

Table 2: Frequency distributions of θ̂j (Freq.) and Proportions of
population unique records (Prop. Pop. Unique) for models 1 and 2
with overdispersion and n = 2500.

The �ve divisions of the range [0, 1] for θ̂j in Tables 1 and 2 de�ne
subsets of sample uniques with similar values of θ̂j. For each of these
subsets, the proportion of population unique cases are presented in
these tables. As in Skinner and Holmes (1998), we �nd that the θ̂j

are useful for deciding whether a sample unique case is population
unique, with Model 2 providing better discrimination. For the �rst
sample, it is more likely than not that a sample unique is population
unique if θ̂j > 0.8 for Model 2, but not for Model 1. The ability to
detect population uniques with high probability is even stronger for
the second sample.

Tables 3 and 4 give the results when λj is random and follows
a gamma distribution, as discussed in Section 3.2. We �nd similar
results to the model with no overdispersion, with no evidence of im-
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Model 1 Model 2

θ̂j Freq. Prop. Pop. Unique Freq. Prop. Pop. Unique
0− 110 0.11 137 0.07

0.20− 94 0.11 92 0.08
0.40− 98 0.12 88 0.14
0.60− 92 0.42 76 0.49

0.80− 1 101 0.55 92 0.70
Total 495 495

Table 3: Frequency distributions of θ̂j (Freq.) and Proportions of
population unique records (Prop. Pop. Unique) for models 1 and 2
with no overdispersion and n = 5000.

Model 1 Model 2

θ̂j n1 Prop. Pop. Unique n1 Prop. Pop. Unique
0− 88 0.09 114 0.08

0.20− 123 0.17 146 0.20
0.40− 102 0.23 111 0.23
0.60− 99 0.32 83 0.45

0.80− 1 83 0.54 41 0.71
Total 495 495

Table 4: Frequency distributions of θ̂j (Freq.) and Proportions of
population unique records (Prop. Pop. Unique) for models 1 and 2
with overdispersion and n = 5000.

proved discrimination for the model with random e�ects.
We next study the relationship between the mean of θ̂j and the

mean of 1/Fj within the 40 (=2 + 7 + 13 + 10 + 8) subgroups de�ned
by the univariate categories of the �ve key variables for sample unique
records for each of the two samples. Tables 5 and 6 gives the results
for the main e�ects and all two-way interaction models for π = 0.075

and 0.15. Given the lack of evidence of improved performance using
random e�ects, we only consider the model with λj �xed. We �nd,
as expected, a strong relationship between the mean of the θ̂j and the
mean of the values 1/Fj. The two means are broadly similar for all
the subgroups h, except for some cases where the size of the subgroup,
nh, is small. The correlation coe�cients between the two means are
0.76 and 0.82 for the two models with π = 0.075 and 0.75 and 0.96
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for the models with π = 0.15. It is clearly preferable to include the
two-way interaction in the model.

Regression curves, obtained using the loess method (locally weighted
regression scatter plot smoothing; see, Cleveland (1979) and Bowman
and Azzalini (1997)) are displayed in Figure 1 for the data in Tables 5
and 6. They con�rm the strong linear relationship between the mean
of θ̂j and the mean of 1/Fj, especially for the model including two-way
interactions.

5 Conclusion
Skinner and Elliot (2002) argued in favour of measuring disclosure risk
at the �le level by the probability that an observed match is correct
rather than by the probability of population uniqueness. In this pa-
per, we have shown how the record-level measure of disclosure risk
of Skinner and Holmes (1998), de�ned in terms of the probability of
population uniqueness, may be extended in a parallel way to a record-
level measure of the probability that an observed match is correct.
Both measures depend on the speci�cation of a log-linear model for
an assumed set of key variables. In an empirical evaluation of di�er-
ent versions of the new record-level measure using real survey data,
we found evidence of discrimination by the measure between records
of di�erent levels of risk, in particular records which are very likely to
be population unique could be identi�ed by consideration of records
with high values of the measure. We found no evidence, however,
that allowance for overdispersion via the inclusion of random e�ects
in the model improved its performance. The measure obtained under
the simpler model with no random e�ects was validated by comparing
its average value in forty subpopulations with the 'true' population
quantity it was estimating and the relationship was found to be very
good for a model including only one and two-way interactions. This
measure is much easier to compute, requiring only the �tting of a
standard log-linear model, than the measure proposed by Skinner and
Holmes (1998), which additionally required numerical integration. In
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Variable Subpop. Samp. Unique Mean of θ̂j mean of
h n1h Model 1 Model 2 F−1

j

Sex 1 202 0.431 0.300 0.333
2 168 0.455 0.292 0.288

Marital 3 108 0.291 0.224 0.266
status 4 40 0.522 0.385 0.349

5 94 0.401 0.296 0.294
6 31 0.393 0.221 0.202
7 62 0.593 0.347 0.351
8 33 0.690 0.410 0.465
9 2 0.988 0.932 1

Economic 10 104 0.197 0.214 0.206
status 11 7 0.926 0.245 0.541

12 3 0.921 0.167 0.541
13 33 0.506 0.327 0.308
14 33 0.577 0.425 0.472
15 34 0.610 0.362 0.345
16 58 0.316 0.281 0.308
17 38 0.597 0.269 0.235
18 6 0.831 0.386 0.478
19 14 0.806 0.467 0.587
20 8 0.256 0.405 0.441
21 2 0.977 0.661 0.75
22 30 0.293 0.213 0.182

Socioeco. 23 26 0.349 0.325 0.338
group 24 40 0.388 0.291 0.380

25 42 0.434 0.290 0.286
26 46 0.374 0.287 0.310
27 58 0.405 0.259 0.253
28 73 0.496 0.267 0.285
29 42 0.524 0.369 0.327
30 8 0.256 0.405 0.441
31 29 0.561 0.338 0.340
32 6 0.602 0.208 0.444

Age 33 26 0.634 0.272 0.361
34 28 0.627 0.283 0.315
35 60 0.463 0.297 0.274
36 72 0.403 0.288 0.292
37 64 0.437 0.294 0.344
38 40 0.426 0.311 0.315
39 50 0.449 0.332 0.311
40 30 0.531 0.431 0.409

Table 5: means of θ̂j and 1/Fj across forty subpopulations (subpop.)
de�ned by Sex (2), Marital status (7), Economic status (13), Socio-
economic group (10) and Age (8) for sample unique records with mod-
els 1 and 2 and n = 2500.
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Variable Suppop. Samp. Unique Mean of θ̂j Mean of
h n1h Model 1 Model 2 F−1

j

Sex 1 231 0.510 0.448 0.442
2 264 0.515 0.423 0.443

Marital 3 119 0.352 0.355 0.379
status 4 59 0.619 0.538 0.500

5 123 0.468 0.405 0.408
6 53 0.407 0.364 0.361
7 80 0.628 0.476 0.488
8 55 0.732 0.532 0.538
9 6 0.958 0.817 0.875

Economic 10 125 0.267 0.315 0.338
status 11 5 0.958 0.500 0.475

12 7 0.975 0.653 0.671
13 55 0.583 0.420 0.421
14 42 0.668 0.468 0.471
15 56 0.656 0.490 0.465
16 60 0.373 0.407 0.402
17 65 0.551 0.440 0.452
18 8 0.878 0.728 0.783
19 32 0.840 0.688 0.674
20 14 0.212 0.594 0.470
21 1 0.976 0.933 1
22 25 0.610 0.521 0.502

Socioeco. 23 28 0.500 0.500 0.547
group 24 54 0.410 0.440 0.461

25 51 0.496 0.405 0.409
26 72 0.45 0.429 0.418
27 70 0.485 0.421 0.430
28 89 0.550 0.416 0.399
29 59 0.610 0.438 0.422
30 14 0.212 0.594 0.470
31 50 0.656 0.480 0.506
32 8 0.675 0.641 0.629

Age 33 33 0.721 0.480 0.506
34 55 0.636 0.470 0.465
35 83 0.508 0.431 0.443
36 100 0.514 0.397 0.406
37 72 0.479 0.424 0.401
38 68 0.505 0.476 0.517
39 49 0.535 0.473 0.464
40 35 0.196 0.358 0.324

Table 6: means of θ̂j and 1/Fj across forty subpopulations (subpop.)
de�ned by Sex (2), Marital status (7), Economic status (13), Socio-
economic group (10) and Age (8) for sample unique records with mod-
els 1 and 2 and n = 5000.
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Figure 1: Scatter plot of mean of estimated measure of risk θ̂j and
mean of 1/Fj and loess curves with smoother span 2/3 for (a) Model
1 with n = 2500, (b) Model 2 with n = 2500, (c) Model 1 with
n = 5000, (d) Model 2 with n = 5000.
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summary, we suggest for use in practice the measure obtained from
equation (6) for a log-linear model with main e�ects and two-way inter-
actions. We are currently exploring the robustness of the measure to
model choice and whether any improvements can be obtained through
the use of higher-order interactions and model selection techniques.

The measure obtained from (6) ignores any error in estimating the
parameters β of the log-linear model by β̂. In principle, if the true
measure is taken as the posterior probability of a correct match from a
Bayesian perspective and if uncertainty about β can be represented in
an appropriate way (this may need to take account of the complexity of
the survey sampling scheme) then this uncertainty could be integrated
out, perhaps using a simulation-based approach. We have not pursued
this possibility, however, and suspect that it is more important initially
to explore the dependence of the measure on model speci�cation.
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